# SYSTEMES DE FONCTIONS ITÉRÉES

## COMPRESSION FRACTALE



# Evelyne LUTTON

Equipe APIS - INRIA Saclay - Ile-de-France - Evelyne.Lutton@inria.fr http://complex.inria.fr/

IFS : Iterated Function Systems – Système de fonctions itérées

#### Mot-clé: Attracteur



## Base théorique : le théorème du point fixe

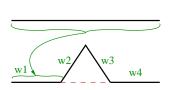
 $w: X \longrightarrow X$  (X, d) un espace métrique complet

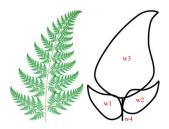
w est Lipschitz ssi  $\forall x,y \in X \qquad d(w(x),w(y)) \leq sd(x,y)$ 

Si 0 < s < 1, w est contractante, il existe un unique point fixe ou attracteur  $x_0$ , tel que  $w(x_0) = x_0$ 

$$\forall x \in X, \quad \lim_{n \to \infty} w^n(x) = x_0$$

#### Construction itérative : intuition

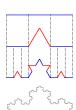




$$A = w_1(A) \bigcup w_2(A) \bigcup w_3(A) \bigcup w_4(A)$$
 
$$A = \bigcup w_i(A) = W(A)$$

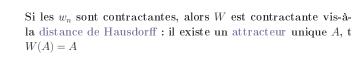
Les  $w_i$  "rétrécissent" la forme à chaque itération et A est invariant par W.

## Dans l'espace des sous-ensemble du plan





L'opérateur de Hutchinson W :  $\forall \ K \subset F, \ \ W(K) = \bigcup_{n \in [0,N]} w_n(K)$ 



 $d_H(A,B) = \max[\max_{x \in A} (\min_{y \in B} d(x,y)), \max_{y \in B} (\min_{x \in A} d(x,y))]$ 













Construction itérative à l'aide de la transformati

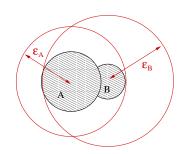
## La distance de Hausdorff

$$\begin{array}{lll} d_H(A,B) &=& \max[\max_{x \in A} (\min_{y \in B} d(x,y)), \max_{y \in B} (\min_{x \in A} d(x,y))] \\ d_H(A,B) &=& \max[\max_{x \in A} d(x,B), \max_{y \in B} d(A,y)] \end{array}$$

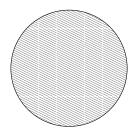
## Autre définition :

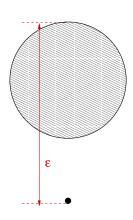
Soit 
$$A_{\epsilon} = \{x \ tq \ d(x, A) \le \epsilon\}$$

$$d_H(A,B) = \inf\{\epsilon \ tq \ A \subset B_\epsilon \ et \ B \subset A_\epsilon\}$$



## La distance de Hausdorff est parfois contre-intuitive

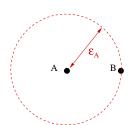


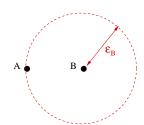


## Propriétés de la distance de Hausdorff

$$-\operatorname{Si} A = B$$
  
 $-\operatorname{Si} A \text{ et } B \text{ sont des points}$ 

$$d_H(A, A) = 0$$
  
$$d_H(A, B) = d(A, B)$$





## Facteur de contractance de W vis à vis de la distance de Hausdorff

$$W(A) = \bigcup w_i(A), \quad W(B) = \bigcup w_i(B)$$

Les  $w_i$  sont contractantes :  $\forall i$ ,  $\forall x, y \quad d(w_i(x), w_i(y)) \leq c_i d(x, y)$ 

$$d_H(W(A), W(B)) \le Cd_H(A, B)$$
 avec  $C = \max\{c_i\}$ 

Soit 
$$\epsilon = d_H(A, B)$$
, alors  $A \subset B_{\epsilon}$  et  $B \subset A_{\epsilon}$ 

$$\forall i \qquad w_i(A) \subset w_i(B_\epsilon) \qquad \subset [w_i(B)]_{c_i\epsilon} \qquad \subset [\bigcup w_i(B)]_{c_i\epsilon}$$
$$\Rightarrow W(A) = \bigcup w_i(A) \subset [W(B)]_{C\epsilon}$$

De même, on démontre  $W(B) \subset [W(A)]_{C\epsilon}$ 

$$\mathbf{Comme} \quad d_H(A,B) = \inf\{\epsilon \quad tq \quad A \subset B_\epsilon \quad et \quad B \subset A_\epsilon\} \quad \Rightarrow d_H(W(A),W(B)) \leq Cd_H(A,B)$$

## Génération des attracteurs

## - Méthode stochastique : toss-coin ou chaos-game

Soit  $x_1$  le point fixe de  $w_1$ 

On construit la suite de points  $x_n$ 

$$x_{n+1} = w_i(x_n)$$

 $w_i$ choisi aléatoirement dans  $\{1..N\}$  avec probabilité  $p_i$   $\bigcup \{x_n\}$  approxime A

## -M'ethode~d'eterministe~:

A partir d'un noyau  $S_0 = \{x_0\}$  on construit la suite d'ensembles  $\{S_n\}$ 

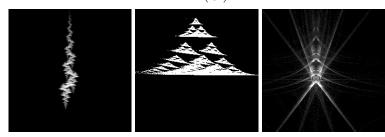
$$S_{n+1} = W(S_n) = \bigcup_n w_n(S_n)$$

Quand  $n \longrightarrow \infty$ ,  $S_n \longrightarrow A$  (10 à 20 itérations)

## Attracteurs et mesures self-homographiques

$$\begin{pmatrix} x' \\ y' \\ t' \end{pmatrix} = \begin{pmatrix} a & b & e \\ c & d & f \\ g & h & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$w_i(x,y) = \begin{pmatrix} \frac{x'}{t'} \\ \frac{y'}{t'} \end{pmatrix}$$



## Exemple: fonctions affines contractantes

$$w_i(x,y) = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e_i \\ f_i \end{pmatrix}$$





Fougère de Barnsley

12

Feuille

## Attracteurs self-sinusoidaux

$$w_i(x,y) = \begin{pmatrix} a\cos x + b\sin y + e \\ c\cos x + d\sin y + f \end{pmatrix}$$



## Usage de fonctions non-linéaires

$$\begin{split} w_1(x,y) &= \left( \begin{array}{c} \sqrt{|\sin(\cos 0.90856 - \log(1 + |x|))|} \\ \sin y \\ w_2(x,y) &= \left( \begin{array}{c} \cos(\cos(\sqrt{|x|})) \\ \cos(\log(1 + |y|)) \\ \sqrt{|\sin(0.084698|} \\ w_4(x,y) &= \left( \begin{array}{c} \log(1 + |\sin(\sqrt{|0.565372|})|) \\ \sqrt{|0.81366 - ((\log(1 + |0.814259|)) *\cos y|)} \\ \end{array} \right) \\ w_5(x,y) &= \left( \begin{array}{c} \log(1 + |\sqrt{|0.565372|})| \\ \log(1 + |\sqrt{|0.747399 + \cos y|}) \\ \sin \frac{\cos(2x + |y|)}{\cos(2x + |y|)} \cos \frac{\cos(2x + |y|)}{\cos(2x + |y|)} \end{array} \right) \end{split}$$

## Dimension de Hausdorff

$$\text{mesure } S\text{-dimensionnelle}: \quad H^s(A) = \sum_{i=1}^N H^s(w_i(A)) = \sum_{i=1}^N \lambda^s H^s(A)$$

Soit  $s = D^{\dim_H(A)}$  (la dimension est supposée finie) :

$$N\lambda^{s} = 1 \implies logN + s \ log\lambda = 1$$
 
$$s = -\frac{logN}{log\lambda}$$

#### Dimension fractale des attracteurs

$$A = \bigcup_{i=1}^{N} w_i(A)$$

Si les  $w_i$  sont des bijections telles que  $\forall i, j, i \neq j \ w_i(A) \cap w_i(A) = \emptyset$  (attracteur totalement disconnecté), ayant le même coefficient le contraction  $\lambda$ .

Alors la dimension de boîtes et la dimension de Hausdorff sont :

$$D_H = D_B = -\frac{logN}{log\lambda}$$

#### Dimension de boîtes

$$dim_B(F) = -\lim_{\delta \to 0} \frac{log N_{\delta}(F)}{log \delta}$$

Soit d le diamètre de la plus petite boule  $B_0$  qui recouvre F, on construit la su recouvrements suivants :

- $\bullet$   $F \subset B0$
- $F = \bigcup w_i(F) \subset \bigcup w_i(B0)$ 
  - $\rightarrow$   $N_1(F)=N$  (nombre de fonctions) et  $\delta_1=\lambda d$  (facteurs de contractance homo
  - $\begin{array}{l} \bullet \ F = \bigcup \bigcup \ldots \bigcup w_{i_1}(w_{i_2}(\ldots w_{i_k}(F))) \subset \bigcup \bigcup \ldots \bigcup w_{i_1}(w_{i_2}(\ldots w_{i_k}(B_0))) \\ \to \qquad N_k(F) = N^k \ \ \text{et} \ \ \delta_k = \lambda^k d \end{array}$

$$dim_B(F) = -\lim_{k \to \infty} \frac{k log N}{k loq \lambda + loq d} = -\frac{log N}{loq \lambda}$$

#### Mesures invariantes

On associe une probabilité  $p_i$  à chaque  $w_i, \qquad \sum_{i=1}^N p_i = 1$ 

On définit la suite de mesures  $\nu_n$  suivante :

$$\forall B \qquad \nu_{n+1}(B) = \sum_{i=1}^{N} p_i \nu_n(w_i^{-1}(B))$$

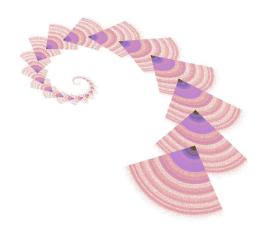
$$\forall \nu_0 \qquad \nu_n \to \mu$$

 $\mu$  est la mesure invariante telle que :

$$\mu(B) = \sum_{i=1}^{N} p_i \mu(w_i^{-1}(B))$$

Le support de la mesure invariante est l'attracteur des  $w_i : supp(\mu) = A$ .

#### Exemple



#### Images en niveaux de gris

La mesure invariante des  $(w_i, p_i)$  est représentée par une image en niveaux de gris telle que pour tout pixel (i, j):

$$A(i,j) = \sum_{k=1}^{N} p_k A(w_k^{-1}(i,j))$$

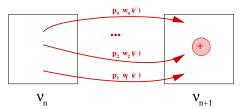
-A(i,j) est nulle à l'extérieur de l'attracteur des  $w_i$ ,

-A(i,j) "colore" l'intérieur de l'attracteur des  $w_i$ .

## Algorithmes de génération de mesures invariantes

Même principe que pour les attracteurs.

Méthode globale : on farique la suite de mesures  $\nu_n$  (=images) qui tend vers  $\mu$ .



#### Toss coin avec probabilités

- $-w_i$  est tirée avec la probabilité  $p_i$ .
- on compte le nombre de fois où l'orbite  $x_n$  passe par chaque point de l'image

 $\rightarrow$  coloration de A.

#### Applications à la synthèse de textures

Si les probabilités dépendent de la position dans l'espace  $p_i(x)$ , on peut générer une grande variété de textures.

Exemple avec l'IFS remplissant le carré :

$$w_1(x,y) = (0,5x+0,5,0,5y+0,5)$$
  

$$w_2(x,y) = (0,5x+0,5,0,5y-0,5)$$
  

$$w_3(x,y) = (0,5x-0,5,0,5y+0,5)$$
  

$$w_4(x,y) = (0,5x-0,5,0,5y-0,5)$$



Probabilités polynômiales en x et y



Probabilité proportionnelle à la distance au centre de l'image.

#### Théorème du collage

Soit A l'attracteur de l'IFS W:

$$\forall K \subset X, \qquad d_H(K,W(K)) < \varepsilon \qquad \Rightarrow \ d_H(K,A) < \frac{\varepsilon}{1-c}$$

 $c = \max\{c_i\}$  étant le plus grand des facteurs de contractance  $c_i$  des  $w_i$ .

 $\text{Supposons} \ d_H(K,W(K)) \leq \epsilon \qquad \qquad \text{alors} \ d_H(W(K),W^2(K)) \leq c d_H(K,W(K)) \leq c \epsilon$ 

$$\begin{array}{ll} d_H(K,A) & \leq \ d_H(K,W(K)) + d_H(W(K),W^2(K)) + \ldots + d_H(W^m(K),A) \\ & \leq \ \epsilon + c\epsilon + \ldots + c^{m-1}\epsilon + d_H(W^m(K),A) \\ & \leq \ (1 + c + c^2 + \ldots + c^{m-1})\epsilon + d_H(W^m(K),A) \\ & \leq \ \frac{1 - c^m}{1 - c}\epsilon + d_H(W^m(K),A) \end{array}$$

 $\text{Pour } m \to \infty \qquad d_H(W^m(K),A) \to 0 \qquad \Rightarrow \qquad d_H(K,A) < \frac{\varepsilon}{1-c}$ 

## Problème inverse pour les IFS

Pour une forme donnée, trouver l'ensemble de fonctions contractantes dont l'a teur approxime au mieux cette forme, au sens d'une mesure d'erreur prédéfin

- ⊕ Encodage de formes à l'aide de très peu de paramètres.
- 🖰 🕀 Décodage à n'importe quelle échelle.
  - ⊖ Problème extrêmement complexe.

#### Le problème inverse pour les IFS : méthodes de résolution

## • Espace de recherche

- fonctions affines en nombre fixé
- fonctions affines en nombre variable
- fonctions non-affines en nombre variable

# Straté

déterministe, recuit simu algorithmes évolutionnair

# • Fonction à optimiser

- fondée sur le théorème du collage,
- fondée sur le calcul direct de l'attracteur (toss-coin),
- contraintes : les  $w_i$  doivent être contractantes,
- contraintes additionnelle pour réduire les calculs : les points fixes des  $w_i$  doive partenir à la cible.

## Les points fixes de $w_i$

Ils appartiennent forcément à l'attracteur des  $\{w_i\}$ .

$$A = \bigcup w_i(A) \quad \Leftrightarrow \quad \forall y \in A \ \exists i \ \text{et} \ x \in A \ \text{tq} \ y = w_i(x)$$

En particulier pour les  $x_i$ , tels que  $x_i = w_i(x_i)$ .





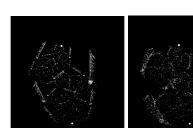
Il a été montré (M. Dekking) que sous certaines hypothèses sur les fonctions, les points fixes sont placés sur la frontière de A.

## Applications

- Compression de signaux et d'images.
- Synthèse d'images, morphing de formes.
- Représentation fonctionnelle de signaux de parole.
- Génération de signaux à régularité prescrite (interpolation fractale par des IFS généralisés).
- Watermarking.
- Optimisation de formes mécaniques représentées par des IFS.

## Déplacement des points fixes

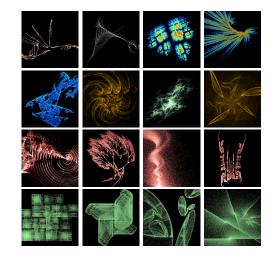






Une légère modification sur les fonctions donne des attracteurs de formes "voisine

## Applications en synthèse d'images



Les IFS non-affines sont grap ment plus intéressants.

Mais l'espace des "beaux" IFS linéaires est très dispersé.

 $\Longrightarrow$  Design graphique fondé sur

représentation de W par arb + évolution intera

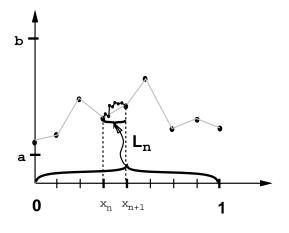
## Morphing d'IFS



A partir de deux attracteurs  $\{v_i\}$  et  $\{w_i\}$  on crée la suite d'attracteurs :

$$\alpha \in [0,1]$$
  $\{\alpha v_i + (1-\alpha)w_i\}$ 

#### Interpolation fractale



- On "comprime" suivant x avec  $L_n$ .
- On "recopie" les échantillons dans le  $n^{\text{ième}}$  intervalle de façon à conserver la continuité en  $x_n$  et  $x_{n+1}$ .

#### INTERPOLATION FRACTALE

A partir d'un ensemble de points caractéristiques :  $\{(x_i,y_i)\in[0,1]\times[a,b],i=0,1,\ldots,N\}$  on définit N contractions  $w_i$  sur  $[0,1]\times[a,b]$   $(-\infty< a< b<+\infty)$ 

$$w_i(x,y) = (L_i(x), F_i(x,y))$$

o  $L_i$  est la contraction qui envoie [0,1] sur  $[x_{i-1},x_i]$ 

 $\circ F_i: [0,1] \times [a,b] \to [a,b]$  est une contraction selon y telle que :

$$F_i(x_0, y_0) = y_{i-1}$$
 et  $F_i(x_N, y_N) = y_i$ 

L'attracteur de cet IFS est une fonction fractale continue qui *interpole* les  $(x_i, y_i)$ 

#### Interpolation fractale affine

Pratiquement, on considère les  $w_n$  sous la forme :

$$w_n \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_n & 0 \\ b_n & c_n \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

$$avec \quad |c_n| < 1$$

 $v\'{e}rifiant$ 

$$w_n \left( \begin{array}{c} x_0 \\ y_0 \end{array} \right) = \left( \begin{array}{c} x_{n+1} \\ y_{n+1} \end{array} \right) \quad \text{ et } \quad w_n \left( \begin{array}{c} x_N \\ y_N \end{array} \right) = \left( \begin{array}{c} x_n \\ y_n \end{array} \right)$$

 $\Rightarrow a_n$  et  $u_n$  sont définis uniquement par :

$$a_n = \frac{x_{n-1} - x_n}{x_0 - x_n}$$
$$u_n = x_{n-1} - a_n x_0$$

 $\Rightarrow b_n$  et  $v_n$  dépendent de  $c_n$ 

On peut donc générer un ensemble de fonctions interpolant les  $(x_n, y_n)$ . Les  $c_n$  sont des paramètres qui permettent d'ajuster la dimension fractale de la fointerpolante.

## Dimension de boîte de la fonction interpolante

Si les points sont équidistants :  $x_n = \frac{n}{N}$   $n \in [0, N]$ 

alors 
$$a_n = \frac{1}{N}$$
 et  $u_n = \frac{n-1}{N}$ 

Les  $w_n$  s'écrivent :

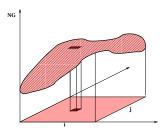
$$w_n \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{N} & 0 \\ b_n & c_n \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{n-1}{N} \\ v_n \end{pmatrix}$$

La dimension de boîte de la courbe interpolante est :

$$dim_B(F) = 1 + \frac{log(c_1 + \dots + c_N)}{logN}$$

Compression fractale d'images = problème inverse pour les IFS en 3D!!

Principe : résoude un problème inverse pour une image en niveaux de gris.



L'ensemble à approximer est dans  $\mathbb{R}^3$ .

- Même principe que pour l'interpolation fractale : on veut fabriquer une nappe et non un esemble 3D quelconque.
- Hypothèses restrictives pour simplifier le problème inverse.

COMPRESSION D'IMAGES

Compression IFS: principe

Codage : résolution du problème inverse simplifié.

Code: paramètres de définition des fonctions des IFS.

 ${\color{red} \textbf{D\'ecodage}: calcul de l'attracteur par it\'erations à partir de n'importe quelle image de de l'attracteur par it\'erations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à partir de n'importe quelle image de de l'attracteur par itérations à l'attracteur par itérations de l'attracteur par itération de l'attracteur par$ 

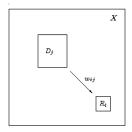
 $\forall K \qquad A = \lim_{n \to \infty} W^n(K)$ 

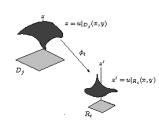
## Compression d'images à l'aide de PIFS

On cherche un IFS 3D simplifé : z = niveaux de gris.

 $-w_i(x,y,z)=(v_i(x,y),t_i(z)),$  avec  $v_i$  et  $t_i$  des fonctions affines.

– La part géometrique,  $v_i$ , est localisée (PIFS) :  $v_i : D_i \to R_i$ , les "ranges"  $R_i$  et les "domains"  $D_i$  sont carrés en général.





#### Résolution du problème inverse pour les PIFS

Pour chaque couple  $(D_i, R_i)$  on peut calculer les paramètres de la transformation affine :

- par calcul géométrique pour  $v_i$  (cad  $a_i, b_i, c_i, d_i, e_i, f_i$ ),
- par minimisation de l'erreur aux moindres carrés pour la transformation sur les niveaux de gris :

$$(s_i,o_i) = argmin\{\sum_{(x,y) \in D_j} (sI(x,y) + o - I[wj(x,y)])^2\}$$

Il reste a trouver les couples  $(D_i,R_i)$  tels que les  $\{R_i\}$  forment une partition de l'image.

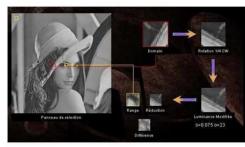
C'est une optimisation combinatoire, on minimise :

$$Err(D_i, R_i) = \sum_{(x,y) \in D_j} (s_i I(x, y) + o_i - I[wj(x, y)])^2$$

## PIFS = IFS partitionnés

$$w_i \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_i & b_i & 0 \\ c_i & d_i & 0 \\ 0 & 0 & s_i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} e_i \\ f_i \\ o_i \end{pmatrix}$$

 $w_i$  restreint à  $D_i \subset I$   $w_i(D_i) = R_i$ 



Pour avoir une image à chaque itération de l'opérateur de Hutchinson W, on doit av

$$\int R_i = I$$
 et  $\forall i \neq j$ ,  $R_i \cap R_j = \emptyset$ 

## Stratégies de partitionnements

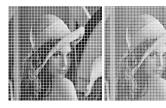
## ${\bf Partition nement\ uniforme\ r\'egulier\ :}$

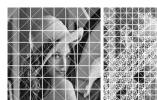
les  $R_i$  sont 4 fois plus petits que les  $d_i$ .

## Partitonnement HV:

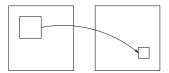
les  $R_i$  et les  $D_i$  sont des rectangles

# Partitionnement en triangles (Delaunay)





## Principe des partitionnements de type quadtree

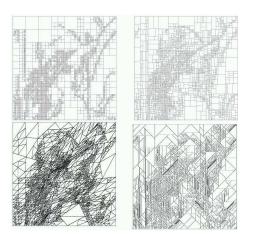


- Pour chaque  $R_i$ , on cherche un domaine  $D_i$  plus grand, et un  $t_i$  qui transforme correctement les niveaux de gris de  $D_i$  en ceux de  $R_i$  (erreur aux moindres carrés).
- S'il n'existe pas de  $D_i$  remplissant les conditions,  $R_i$  est divisé en blocs plus petits, et la recherche se poursuit.

## Améliorations

- Pré-classification des blocs : suivant le type de  $R_i$  (contour régulier, contour irrégulier, texture, uniforme), on recherche des blocs  $D_i$  de même type.
- Utilisation de transformations en niveaux de gris non linéaires : le calcul local se complique.
- Combinaison linéaire des informations provenant de plusieurs blocs.
- Hybridation avec une DCT ou une transformée en ondelettes.

## Partitionnements en quadtree



Quadtree

Triangulaire

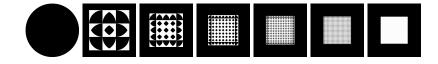
Rectangulaire H

Polygonal

# La décompression est extrêmement rapide

Applications successives de la tranformation W à partir de n'importe quelle image





## Décompression

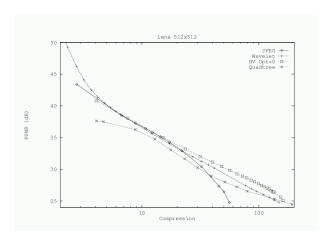


Méthode de Jacquin (partition carrée)



Partition en triangles

## Comparaisons SNR avec d'autres méthodes de compression



A Comparison of Fractal Methods with DCT and Wavelets, Fisher et al, SPIE 2304, 1994.

## Le fichier comprimé

Le fichier comprimé est un codage de l'IFS, il contient :

- la partition  $R_i$ ,
- les  $D_i$  correspondants (indéxés),
- les paramètres  $t_i$  (deux valeurs réelles).

En outre des pre- (filtrages) et post-traitements (compression de fichier) permette réduire la taille des fichiers comprimés.

## Comparaisons visuelle, taux de compression $\simeq 58$







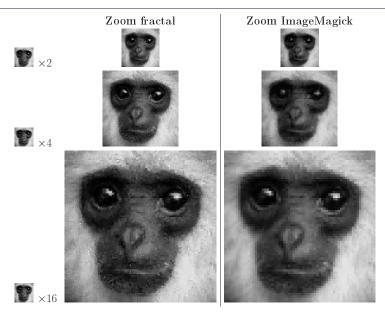


512x512.8og hinge Companion = 543:1.0147hpp) PSSR = 23.7d8



512x51236ost briago Cinquescios = 550.1 (0.) 35 bpp PSSR = 26.448

## Zoom fractal



## Watermarking - principe

## <u>But</u> : identifier le propriétaire de données numériques.

## Pour les images, la marque doit être :

- non localisée (caractère holographique),
- indécelable visuellement,
- robuste :
- à la compression/décompression,
- à la transmission,
- aux distorsions géométriques (intentionnelles ou non),
- aux bruits et filtrages,
- $-\,\mathrm{aux}$  attaques frauduleuses.

WATERMARKING

## Vocabulaire

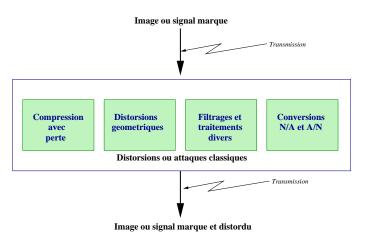
<u>Watermarking</u>: le fait d'attacher une marque aux donnés, correspondant à l'ident propriétaire des droits d'auteurs.

Authtentification ou signature digitale : faire la preuve que le message reçu parvien d'un certain expéditeur (fonctions de hachage).

 $\frac{\textbf{Fingerprinting}:}{\textbf{d\'ecod\'ees (suivi}} \frac{\textbf{le fait de laisser une empreinte à chaque fois que les donn\'ees sont le décod\'ees (suivi}{\textbf{d'images, d\'etection de piratage}}.$ 

<u>Stéganographie</u>: l'art de cacher des messages (en général le message porteur est cor en fonction du message caché).

## Schéma des données marquées



#### Deux grandes familles de méthodes

- Les méthodes spatiales : tags, patchworks.
  - → Faiblesses vis-à-vis des transformations géométriques et aux filtrages
- Les méthodes fréquencielles : la marque est insérée sur la tranformée (Fourier, Ondelettes, DCT).
  - $\rightarrow$  Une meilleure robustesse

 $\begin{array}{c|c} Image \\ X(i,j) \end{array} \hspace{0.5cm} \begin{array}{c} Transformee \\ en \\ frequence \end{array} \hspace{0.5cm} \begin{array}{c} Insertion \\ de \ la \\ marque \end{array} \hspace{0.5cm} \begin{array}{c} Transformee \\ inverse \end{array} \hspace{0.5cm} \begin{array}{c} Image \ marquee \\ X'(i,j) \end{array}$ 

Evaluation des techniques de watermarking

bruit - distorsions

• Robustesse compression/décompression

transformations géométriques

• Indécelabilité à l'oeuil

par traitement numérique

marque non localisée

• aspect holographique utilisation d'une partie seulement de l'image

• Authentification certitude de présence ou d'absence de marque.

marquages multiples,

• Résistance aux fraudes maques ambigües,

destruction de la marque,

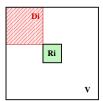
collisions (avec plusieurs images marquées différemme

## Watermarking à base de compression fractale

## ${\bf Algorithme\ de\ marquage:}$

- L'image est divisée en blocs de taille fixée,  $R_i$  de taille  $n \times n$ .
- Les  $D_i$  sont de taille  $2n \times 2n$ .
- Le codage fractal classique assiocie à chaque  $R_i$  le  $D_i$  qui minimise  $Err(R_i, D_i)$ .
- Pour chaque  $R_i$  la recherche du  $D_i$  est restreinte à un voisinage donné :

56



## Inclusion de la marque

Soit  $S = \{s_0, ....s_{31}\}$  une marque de 32 bits, incluse avec une redondance U.

Pour chaque bit  $s_k$  de la marque, on choisit aléatoirement U blocs  $R_i$ , le choix se fait par une méthode connue seulement par l'utilisateur (clé secrète).

Le voisinage local V est divisé en deux sous domaines  $V_0$  et  $V_1$ , tels que  $V_0 \cup V_1 = V$ .

- $\bullet$  si  $s_k=0$   $D_j$ est recherché dans  $V_0,$
- si  $s_k = 1$   $D_j$  est recherché dans  $V_1$ , pour les autres blocs,  $D_j$  est recherché dans V.

L'image marquée est alors l'attracteur de cet IFS. → Elle diffère de l'image originale.

#### Robustesse

Tests avec des blocs de taille n=4 et redondance U=50 ou n=8 et U=25.

Signature de 32 bits sur Lena  $256 \times 256$ .

→ Robustesse à une compression/décompression JPEG (erreur jusqu'à 50%) + filtrage passe-bas (blurring  $3 \times 3$ ): les 32 bits de la marque sont correctement retrouvés (résultats un peu meilleurs pour n = 8).

Mais la méthode ne résiste pas à des transformations géométriques (perte des blocs).

Amélioration en employant un partitionnement triangulaire ancré sur des points d'intérêt.

#### Authentification

- $\bullet$  On accède aux  $R_i$  donnés par l'utilisateur.
- Suivant la région dans laquelle on trouve l'antécédent des R<sub>i</sub>, on peut reconstit signature S.
- $s_k$  est estimé à 0 ou 1 en fonction du nombre de blocs redondants identiques (utilisation d'un seuil).