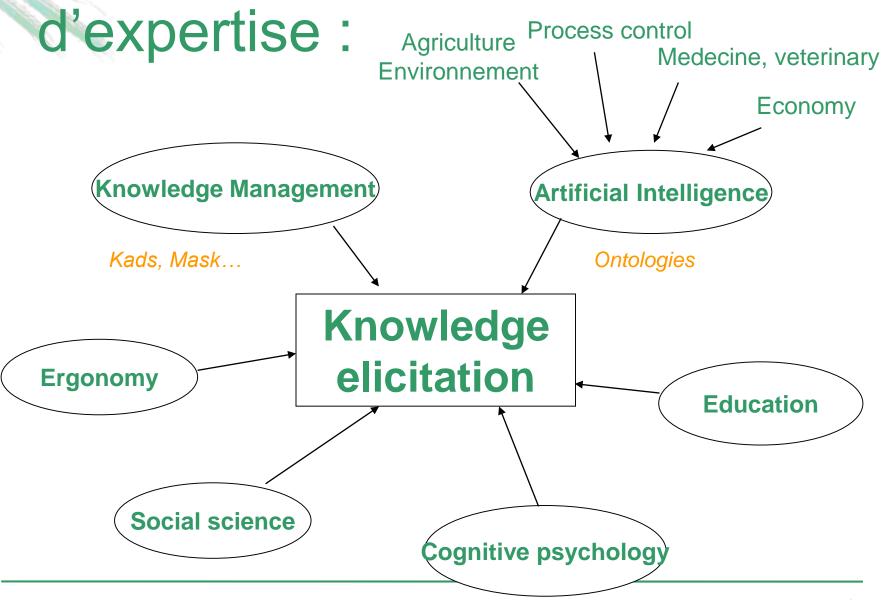


Manager les connaissances expertes

Pourquoi le recueil d'expertise ?

28/05/2010 Nathalie Perrot



Pourquoi le recueil d'expertise?

- Aide à la décision
- Formation, information
- Modélisation
- Compréhension de phénomènes complexes
- Capitalisation de connaissances
- Quantification de l'incertitude (Booker 2004, Forester 2004)

Utilisation du recueil

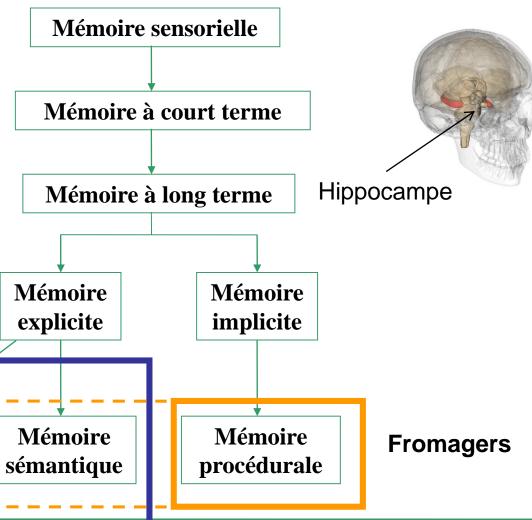
Qu'est ce qu'un expert ?

Qu'est ce qu'un expert ?

- Pratique régulière de longue durée (Hoc et Darses, 2004)
- Haut niveau de performances (Ericsson and Charness, 1997)
- Richesse des connaissances
- Organisation performante des connaissances (Raufaste, 2001)
- Reconnaissance par les pairs

Fonctionnement cognitif

Des connaissances en mémoire...


MCT: Principles of psychology W.

James(1890) permet de retenir et
de réutiliser une quantité
limitée d'informations pendant
un temps relativement court,
environ une demi-minute

Scientifiques

Mémoire

épisodique

MCT: Empan mnésique

Taille de l'empan mnésique : 7± 2 items

MCT: Empan mnésique

CANHTCEHI

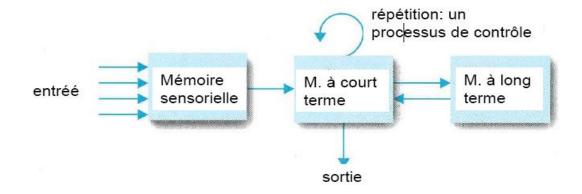
Taille de l'empan mnésique : 7± 2 items

MCT: Empan mnésique

CANHTCEHI CHAT CHIEN

Taille de l'empan mnésique : 7± 2 items

Effet de récence et primauté



Les connaissances des experts

- Richesses:
 - Théoriques
 - Episodiques
 - Procédurales
- Pertinence
- Flexibilité :
 - Métaconnaissances
 - Organisation

Le modèle modal de Richard ATKINSON et Richard SHIFFRIN (1968):

1) mémoire sensorielle (2) mémoire à court terme (3) mémoire à long terme.

Processus de contrôle (1) répétition (2) stratégies qui rendent le stimulus plus mémorisable (établir des relations,...) (3) stratégies d'attention

Mémoire à long terme

Déclarative (consciente)

Implicite (inconsciente)

Épisodique (événements personnels)

Sémantique (faits, connaissance) Effets d'amorçage

Mémoire procédurale

MLT: mémoire déclarative (souvenirs d'évènements ou faits), mémoire épisodique (une séquence souvenir lieu +date), mémoire sémantique (mémoire évènement global ne nous concernant pas directement), mémoire non déclarative (influence sans que ns en soyons conscients), mémoire procédurale (le vélo par exple)

Acquisition des connaissances expertes

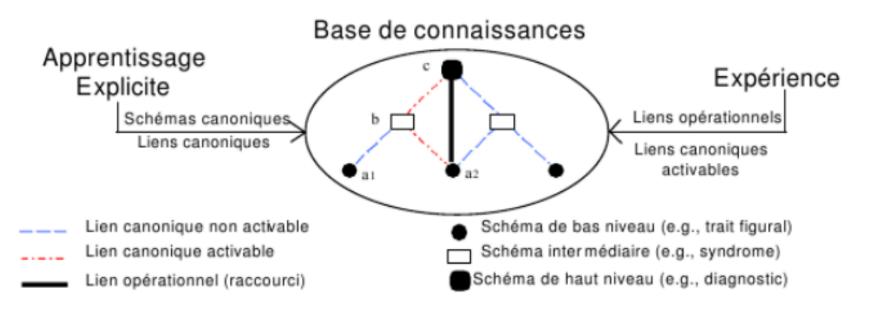
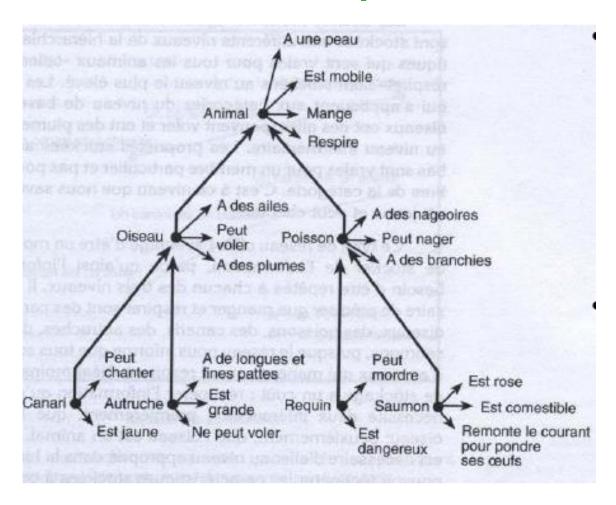
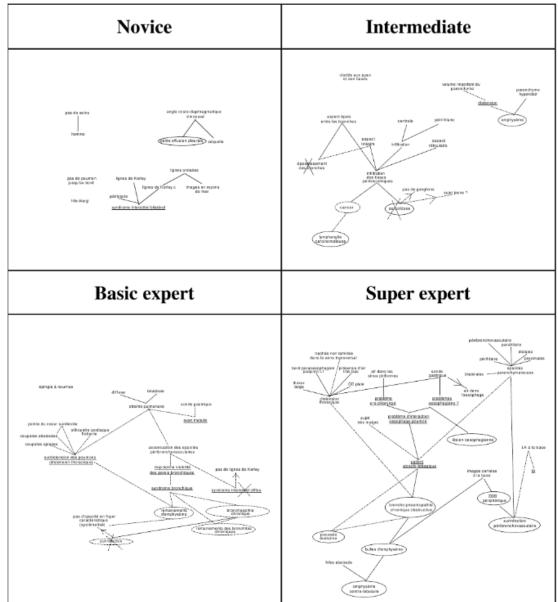
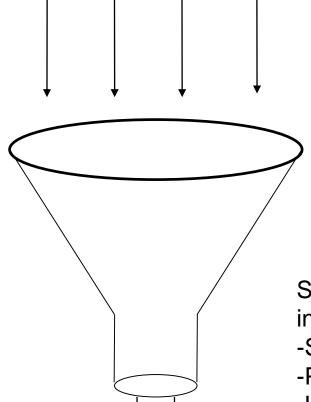



Figure 5 : Effet de l'expérience sur la base de connaissances*

Raufaste 2001


Réseau sémantique développé

28/05/2010 Nathalie Perrot


Acquisition de la pertinence

(Raufaste 2001)

Processus attentionnel:

Théorie du filtre sélectif

(BroadBent 1958)

Perceptions sensorielles:

- -Nombreuses
- -Rapides
- -Non conscientes

Système central de traitement, informations :

- -Séquentielles
- -Peu nombreuses
- -Lentes
- -Conscientes

La problématique de la décision humaine

L'individu humain n'est pas un maximiseur d'utilité espérée (Raufaste et al.) mais un organisme vivant adapté à un environnement

E = p.U(S1)+(1-p).U(S2) introduit par Bernouilli 1738

- 1. La recherche de dominance
- 2. Articulation des niveaux symboliques et subsymboliques
- 3. Les jugements d'incertitude
- 4. Les jugements d'utilité
- 5. La combinaison de l'utilité et de l'incertitude.

Effet Stroop

Vert Rouge Bleu Jaune Bleu Jaune

Effet Stroop

Vert Rouge Bleu Jaune Bleu Jaune

Bleu Jaune Rouge Vert Jaune Vert

Organisation performante des connaissances

- Scripts et scénarii, schémas: séquence d'action sur une expérience particulière
- **Heuristiques** Une heuristique, ou méthode approximative, le contraire d'un algorithme exact, qui trouve une solution optimale pour un problème donné.
- Métaconnaissances
- Chuncks exemple chat/chien
- Réseau de connaissances
- Automatismes

La représentation du hasard

Une pièce non truquée vient d'être lancée 6 fois. A chaque fois la pièce est tombée sur pile. Si vous deviez parier 100 Euros sur le résultat du prochain jet, sur quel résultat (pile ou face) parieriez-vous et pourquoi ?

Différences entre les représentations symboliques et subsymboliques de l'incertitude

Heuristique de représentativité

Cas de Linda (Tversky et Kahneman 1982) :

Linda, 31, est célibataire, franche et très intelligente. Elle a obtenu un baccalauréat en philosophie. Lorsqu'elle était étudiante, elle s'est beaucoup impliquée dans les causes de discrimination et de justice sociale et a aussi pris part à des manifestations anti-nucléaires.

- Quel est le cas le plus probable ?
 - Linda est employée de banque
 - Linda est employée de banque et féministe

illusion de focalisation

Les gens se focalisent sur un aspect de la situation et ignorent les autres aspects qui peuvent aussi être importants

A dans quelle mesure êtes-vous heureux

B combien de rendez vous avez vous eu pendant le mois passé?

La corrélation $A \rightarrow B$ est plus faible que la corrélation $B \rightarrow A$ car poser la question sur le nombre de rendez vous amène le sujet à focaliser sur cet aspect de leur vie et cette perspective détermine les évaluations du bonheur

28/05/2010 Nathalie Perrot

Heuristique d'ancrage-justement

28/05/2010 Nathalie Perrot

Heuristique d'ancrage-justement

Calcul mental : On demande à une moitié des sujets d'estimer, en moins de 5 secondes, le résultat de l'opération suivante :

$$8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

On demande à l'autre moitié des sujets d'estimer, en moins de 5 secondes, le résultat de l'opération suivante :

$$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8$$

L'heuristique de disponibilité

Pour chacune des paires suivantes de causes de décès, indiquez laquelle est la plus fréquente ?

1. • Cancer du poumon

- ОU
- Accident de la route

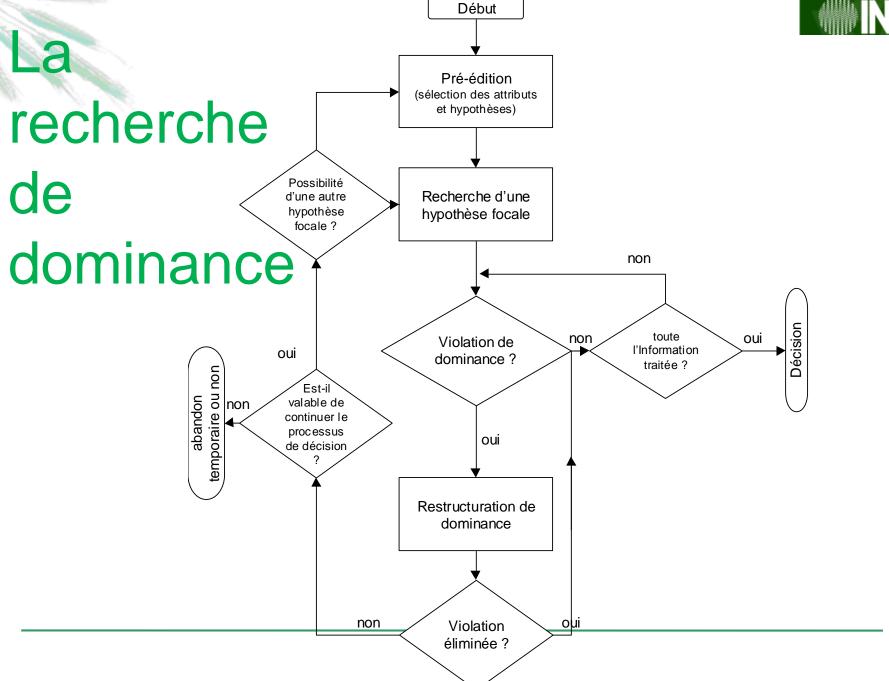
2. • Emphysème

- ОU
- Homicide

3. • Tuberculose

- OU
- Incendie

Quels sont les mots les plus fréquents en français?


- Les mots commençant par R
- Les mots dont la troisième lettre est un R

La recherche de dominance

- 1. La règle de dominance
- 2. La recherche de dominance guide la construction de la représentation de la situation de décision
- 3. Pour pouvoir prendre une décision, il se produit des effets de restructuration

Les renversements de préférences

Imaginez que la France se prépare à l'arrivée d'une épidémie rare en provenance d'Asie qui tuera 600 personnes si l'on ne fait rien. 2 programmes concurrents pour combattre l'épidémie ont été proposés. L'estimation des conséquences de l'application de ces programmes est censée être exacte. Si le programme A est adopté, 200 personnes seront sauvées. Si le programme B est adopté, il y a une probabilité de 1/3 que 600 personnes soient sauvées et une probabilité de 2/3 que personne ne soit sauvé.

En tant que médecin-chef responsable de la décision, quel programme préférez-vous ? (cochez votre choix)

- □ Le programme A
- □ Le programme B

Les renversements de préférences

Imaginez que la France se prépare à l'arrivée d'une épidémie rare en provenance d'Asie qui tuera 600 personnes si l'on ne fait rien. 2 programmes concurrents pour combattre l'épidémie ont été proposés. L'estimation des conséquences de l'application de ces programmes est censée être exacte. Si le programme A est adopté, 400 personnes décèderont. Si le programme B est adopté, il y a une probabilité de 1/3 que 600 personnes soient sauvées et une probabilité de 2/3 que personne ne soit sauvé.

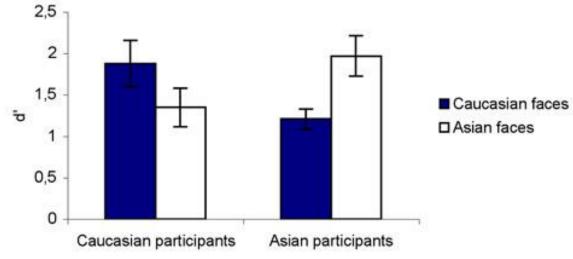
En tant que médecin-chef responsable de la décision, quel programme préférez-vous? (cochez votre choix)

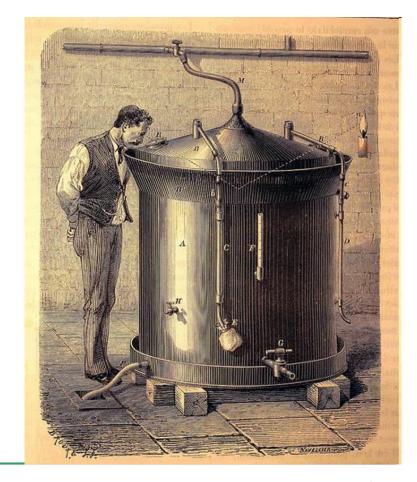
- □ Le programme A
- Le programme B

Experts et perceptions

Les chunks perceptifs :

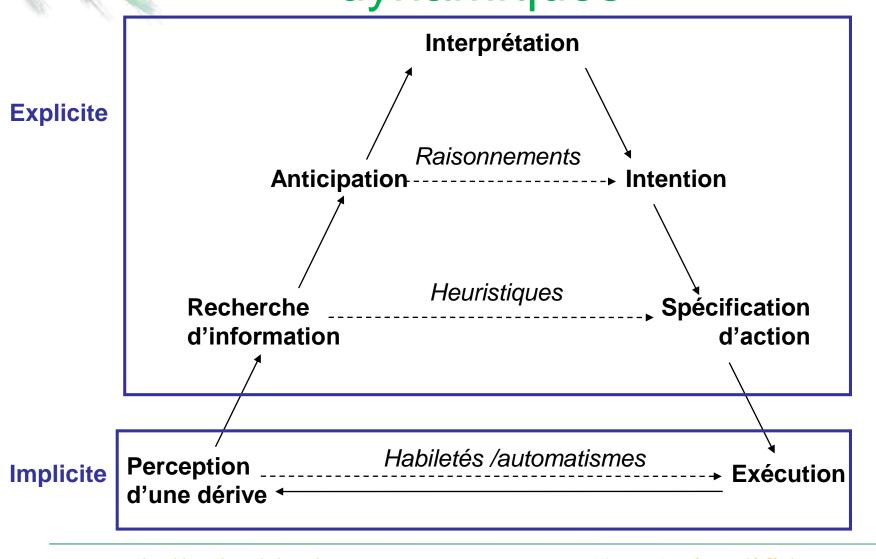
Encodage des informations par l'expert (Chase&Simon 1973)





« Other-race effect » Shepherd et al. 1974 Michel et al. 2006

Gestion de processus dynamiques


Les experts en action :

Prendre des décisions pour des procédés complexes et dynamiques :

Plutôt que d'évaluer toutes les alternatives les experts utilisent leur expérience pour évaluer la situation et déterminer une solution possible dès la première tentative.

Pour conduire des processus dynamiques

Une partie du savoir-faire des experts est de nature implicite...

Des méthodes appropriées de recueil de connaissances sont nécessaires !

Les méthodes de recueil :

Verbalisation :

- Interview dirigée/semi-dirigée/non dirigée
- Protocoles verbaux, (pendant l'activité description et enregistrement)
- Entretiens d'explicitation (Vermersch, 1994) guidée vers l'évocation sensorielle
- Techniques des incidents critiques (+ ou -)
- Catégorisations…

(Y.Clot 1999, Bisseret, Sebillote et Falzon 1999)

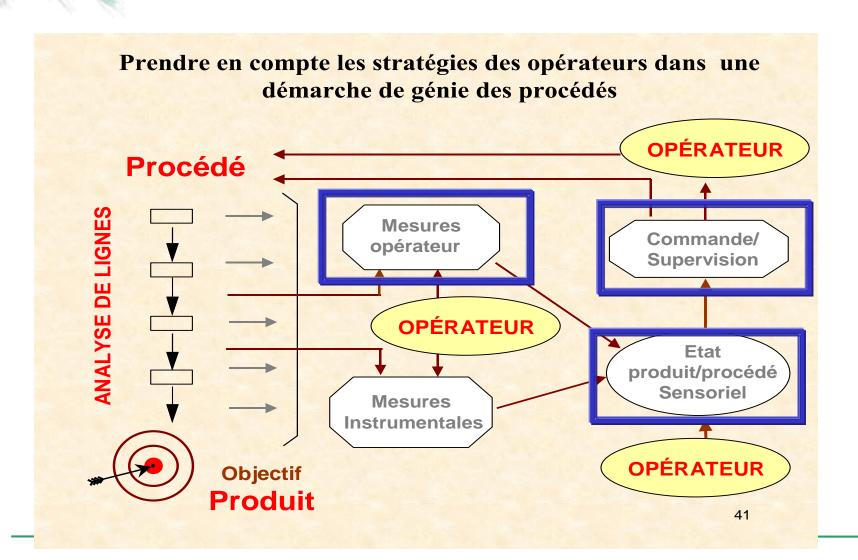
• Etude d'activité :

- Enregistrements de traces (video, audio, bsd. informatiques...)
- Confrontations croisées

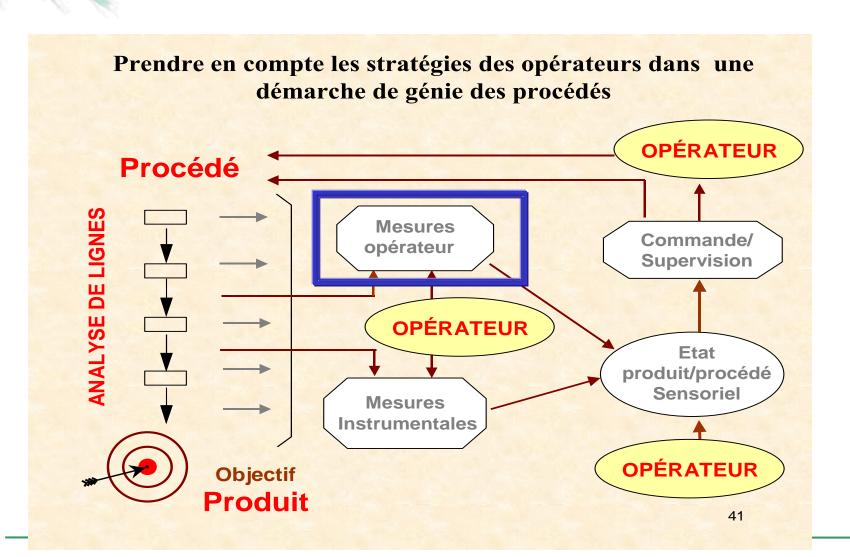
Simulations

<u>I.A</u>: méthode Ford&Wood (1992)

Quelques biais des questionnaires


- Les questions à double détentes
- "Pensez-vous que le double air-bag est utile et bon marché?"
- Questions (biaisées) incluant la réponse
- "Achèteriez-vous cette voiture malgré ses défauts de sécurité ?"
- Effets de halo
- "Pensez-vous comme le Président Bush que les impôts sont trop élevés ?"
- Le jargonnage
- « Etes-vous contre le spamming? »
- Questions imprécises
- "utilisez-vous l'e-mailing " ou "envoyez-vous des e-mails en nombre?"
- Questions ouvertes ou fermées

Applications en food engineering



Différentes voies pour aider à la décision

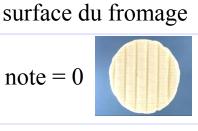
Différentes voies pour aider à la décision

Introduction:

- L'opérateur réalise souvent des évaluations sensorielles sur le produit en cours de fabrication
- il existe un savoir-mesurer
 - évaluation sensorielle de la texture
 - \Rightarrow \neq sens: toucher, vision, audition, olfaction
 - Information tactile pour apprécier le développement du gluten
 - ⇒ **é**tirer un morceau de pâte
 - apparition de son et odeur caractéristiques quand la pâte est surpétrie
- Les méthodes sensorielles classiques ne sont pas adaptées pour la formalisation des évaluations faites par l'opérateur sur la ligne

A. Formalisation des mesures sensorielles sur la ligne : le concept d'indicateur sensoriel

Démonstration à voir



Exemple d'indicateur sensoriel

Nom de l'indicateur :	Répartition de la couverture par <i>Geotrichum candidum</i> Répartition de la couverture par <i>G. candidum</i> sur la surface des fromages	
Définition de l'indicateur :		
Mode opératoire :	 - Prendre le fromage par les côtés - Regarder les deux faces et les côtés du fromage - Evaluer la répartition de <i>G. Candidum</i> sur les deux faces 	
Echelle:	0 : absence de couverture 3 : couverture par G. candidum sur la moitié du fromage	

Référence sur échelle :

note = 0

note = 3

6 : couverture par G. candidum maximum sur toute la

note = 6

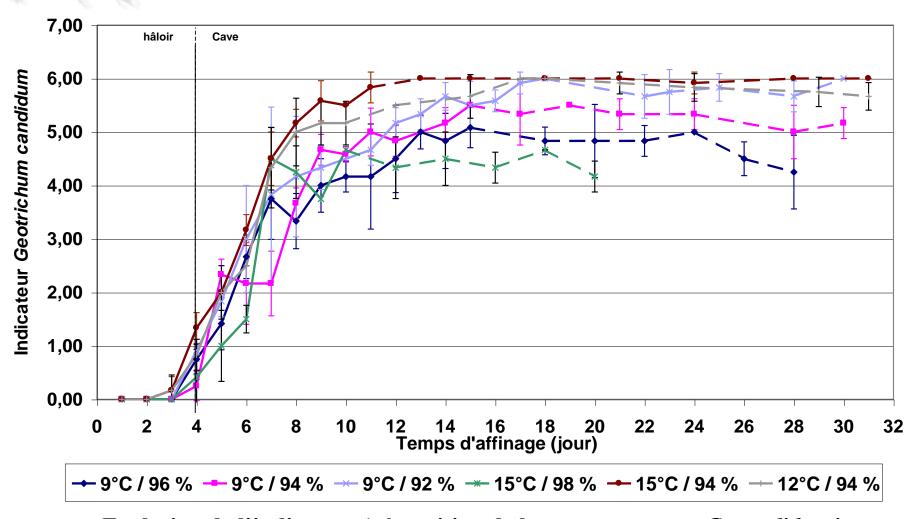
Moment de la mesure :

A chaque jour de mesure

Lieu du prélèvement :

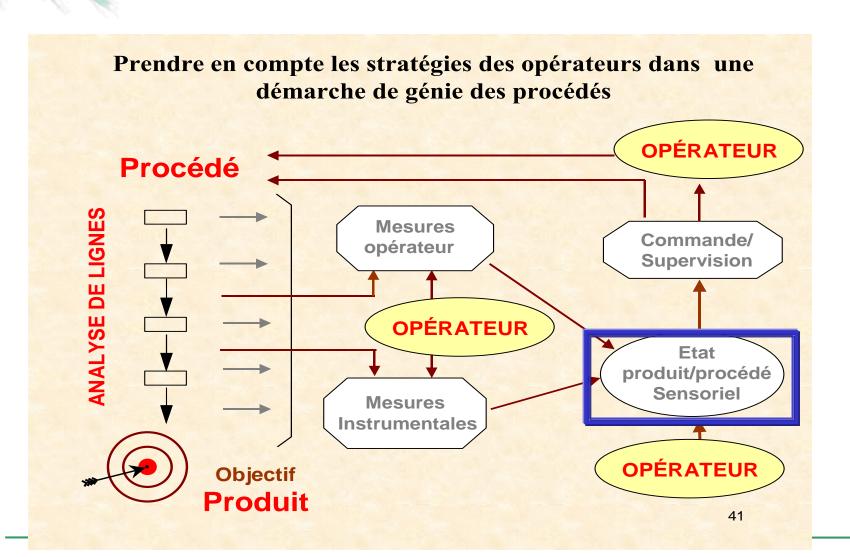
Prélèvement au hasard dans l'enceinte

Vérification des mesures sensorielles – méthode de calibrage



Performances du panel sensoriel

		Juge 1	Juge 2	Juge 3	Juge 4
Humidité	Calib.	100%	90%	100%	100%
	Répet.	100%	100%	100%	100%
Couleur	Calib.	85%	80%	90%	100%
	Répet.	90%	100%	90%	100%
P.C dvpt	Calib.	85%	80%	85%	100%
	Répet.	85%	90%	100%	85%
Sous-croûte	Calib.	100%	90%	100%	90%
	Répet.	100%	100%	100%	100%
Odeur	Calib.	90%	85%	90%	85%
	Répet.	100%	85%	100%	100%


Exemple d'évolution d'une variable sensoriel

Evolution de l'indicateur 'répartition de la couverture par *G. candidum*' au cours de l'affinage

Différentes voies pour aider à la décision

Evaluation du croûtage par l'expert

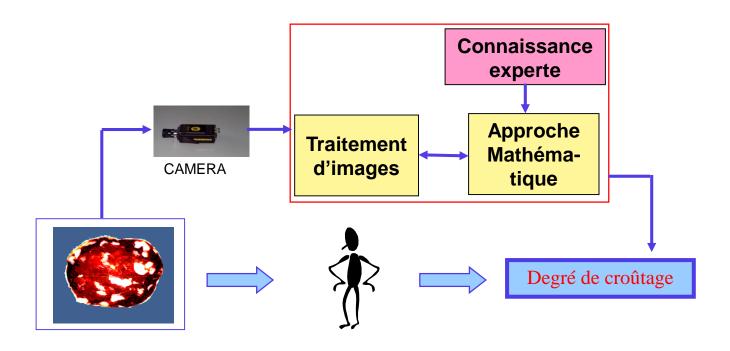
Saucisson non croûté Degré de croûtage : 1 Ln inexistantes Lf peu étendues

Saucisson croûté
Degré de croûtage : 3
Ln étendues
Lf étendues

Saucisson croûté
Degré de croûtage : 4
Ln très étendues
Lf très étendues

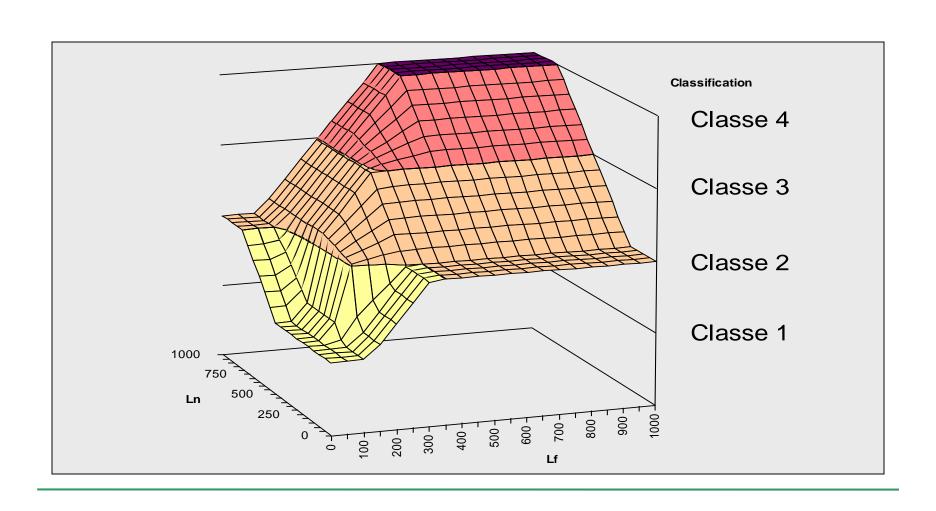
Croûtage a	acceptable	Croûtage non acceptable		
1	2	3	4	

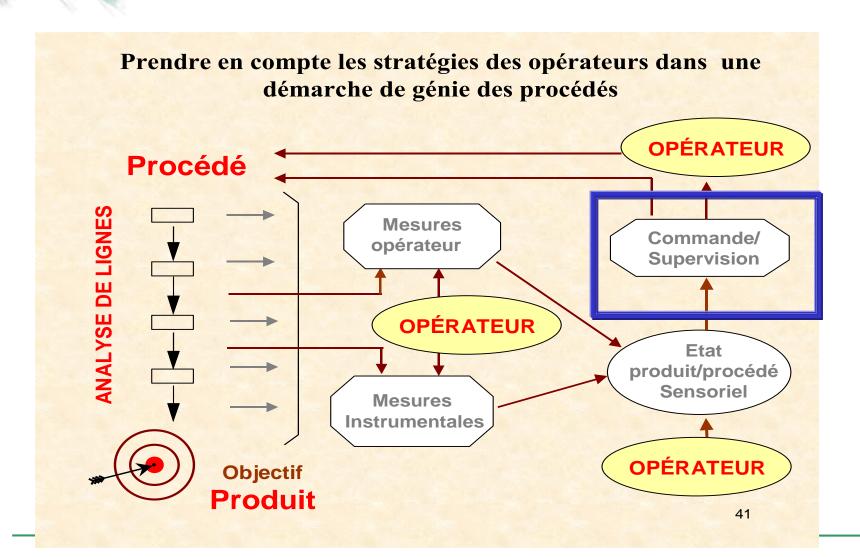
Recueil des règles expertes


Pour une couleur du centre donné, les experts nous ont donné les règles suivantes :

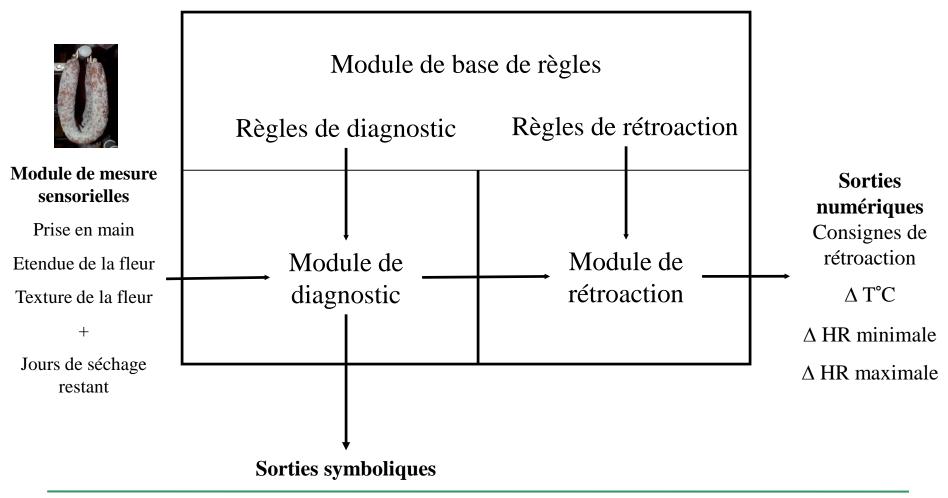
Lfoncé	Inexistantes	Peu étendues	Etendues	Très étendues
Inexistantes	1	1	1	2
Peu étendues	1	2	2	2
Etendues	2	2	3	3
Très étendues	2	2	3	4

Exemple : Si **Lnoir** est *Inexistante* et **Lfoncé** est *Inexistante* Alors **le degré de croûtage** est de 1


Principe du modèle


Surface de réponse

Etablie en terme de degré de croûtage D'après le modèle précédent.



Différentes voies pour aider à la décision

Modèle d'aide à la décision

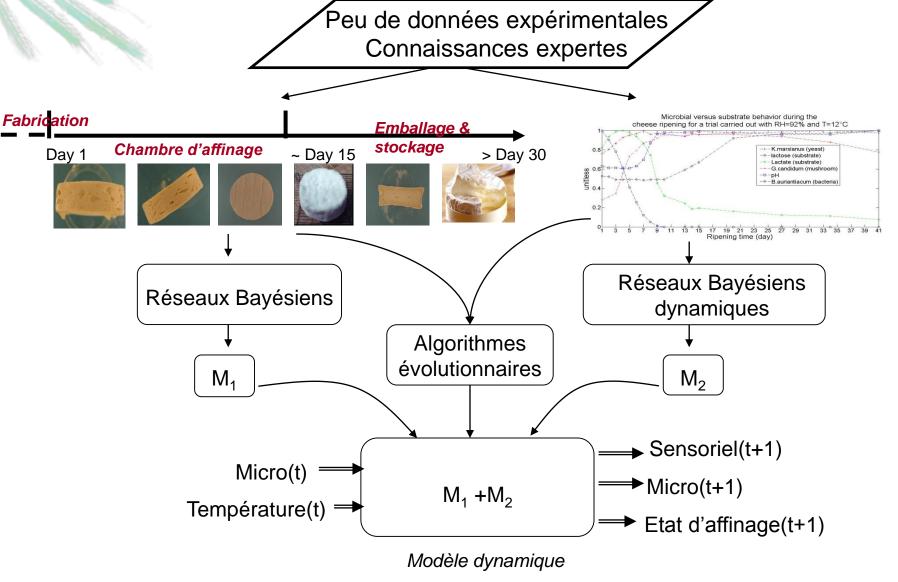
Diagnostic du couple produit / procédé

Exemple d'un tableau des règles du diagnostic

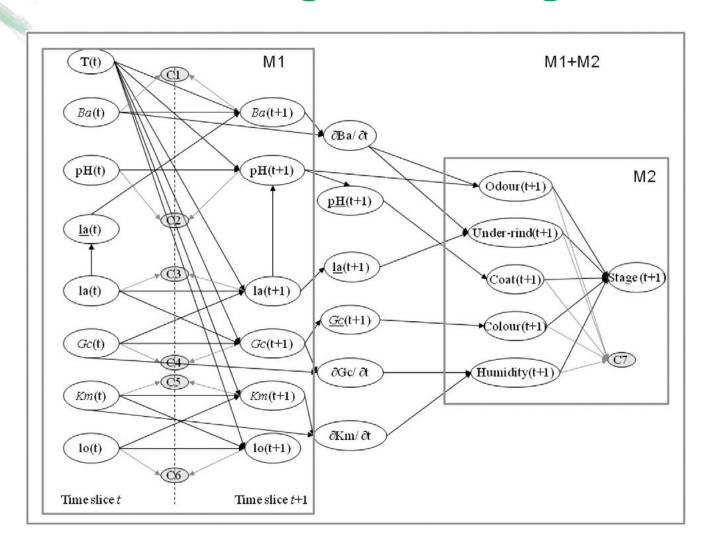
Prise en main		Très souple Souple		semi-ferme	
Etendue Texture					
Absente		Dérive étuvage MA	Dérive étuvage produit rouge rattrapable Risque de croûtage	Dérive étuvage produit rouge rattrapable Risque de croûtage	
Peu développée		Dérive étuvage RA MA	Dérive étuvage rattrapable Risque de croûtage	Dérive étuvage rattrapable Risque de croûtage	
	Collante	Dérive étuvage RA MA	Cible	tolérée à surveiller A	
Dage	Peu collante	Dérive étuvage RA MA	tolérée mais à surveiller A	tolérée à surveiller A	
Rase	Sèche				
	Poussiéreuse				

Séchage 1 : 24 heures

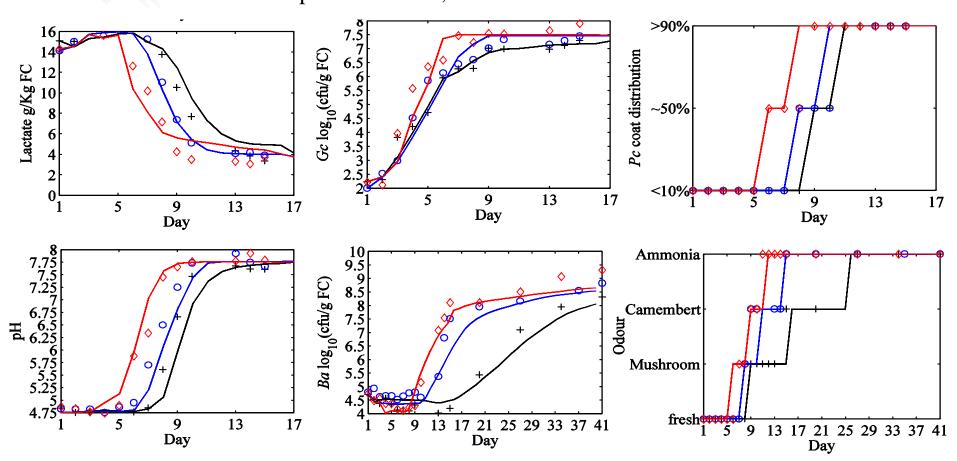
RA: rattrapable, **IRA**: irrattrapable, **MA**: mauvaise acidification, **A**: Avance/cible, **R**: Retard/cible


tolérée : proche de la cible, pas de rétroaction, mais à surveiller le lendemain

D. Contrôle du procédé



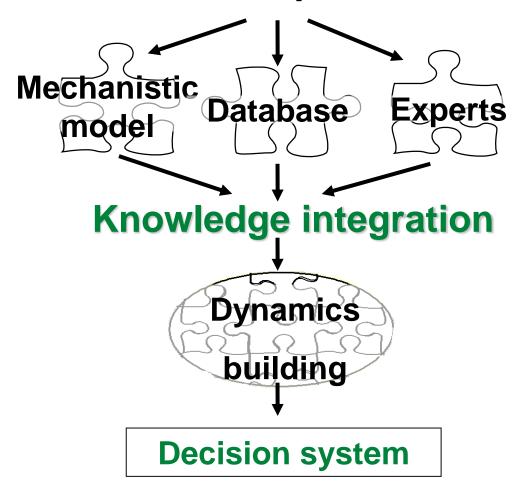
Affinage du fromage de type camembert RA



RBD affinage de fromage

Confrontation des simulations obtenues par le modèle aux essaies expérimentaux pour 3 profils de températures: 8°C, 12°C and 16°C et RH=98%.

Le modèle présente un taux moyen de prédiction de 85%


Conclusion

Le recueil d'expertise pour une meilleure maîtrise des procédés alimentaires :

- Perennisation des savoir-faire
- Qualité
- Innovation

Perspectives : L'intégration des connaissances

Puzzle pieces

Bibliographie psychologie cognitive:

- **Bisseret, Sebillotte, Falzon** (1999) . Techniques pratiques pour l'étude des activités expertes. Toulouse : Octares
- Hoc (1996). Supervision et contrôle de processus : la cognition en situation dynamique. Grenoble : Presse universitaire de Grenoble.
- Leplat (2000). L'analyse psychologique de l'activité ergonomique. Toulouse
 :Octares
- Raufaste (2001).Les mécanismes cognitifs du diagnostic medical, optimisation de l'expertise.Le travail humain. Paris : PUF.
- Rasmussen (1986). Information processing and human-machine interaction.
 New York: North Holland
- Vermersch (1994). L'entretien d'explicitation. Issy-les-moulineaux : ESF