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ABSTRACT
Recent publications in the domains of interactive evolution-
ary computation and data visualisation consider an emerg-
ing topic coined Evolutionary Visual Exploration (EVE).
EVE systems combine visual analytics with stochastic opti-
misation to aid the exploration of complex, multidimensional
datasets. In this work we present an experimental analysis of
the behaviour of an EVE system that is dedicated to the vi-
sualisation of multidimensional datasets, which are generally
characterised by a large number of possible views or projec-
tions. EvoGraphDice is an interactive evolutionary system
that progressively evolves a small set of new dimensions, to
provide new viewpoints on the dataset, in the form of lin-
ear and non-linear combinations of the original dimensions.
The criteria for evolving new dimensions are not known a
priori and are partially specified by the user via an interac-
tive interface: (i) The user selects views with meaningful or
interesting visual patterns and provides a satisfaction score.
(ii) The system calibrates a fitness function to take into ac-
count the user input, and then calculates new views, with
the help of an evolutionary engine. In previous work (an ob-
servational study), we showed that EvoGraphDice was able
to facilitate “exploration” tasks, helping users to discover
new interesting views and relationships in their data. Here,
we focus on the system’s “convergence” behaviour, conduct-
ing an experiment with users who have a precise task to
perform. The experimental task is set up as a geometrical
game, and collected data show that EvoGraphDice is able
to “learn” user preferences in a way that helps users fulfill
their task (i.e. converge to desired solutions).

1. INTRODUCTION
Recent work combining visualisation and optimisation [7]

shows a growing interest of the Visual Analytics commu-
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nity toward optimisation and interactive evolutionary algo-
rithms, and of the evolutionary computation community to-
ward visualisation [6, 8, 10].

The purpose of visual exploration is to find meaningful
patterns in the data that can lead to insight [15]. In high-
dimensional datasets, this task becomes challenging as view-
ers may be faced with a large space of alternative views on
their data. The quest for finding an interesting subset of el-
ements, such as data dimensions or projections, is shared by
other research fields. In machine learning and data mining
this issue is often treated as a classification problem where
dimensions refer to features [12]. Formalised as an optimiza-
tion problem (e.g. Evolutionary Computation), interesting
features are selected based on a fitness function [4].

For scientific and engineering applications, Interactive Evo-
lutionary Computation (IEC) is interesting when the exact
form of a more generalised fitness function is not known or
is difficult to compute, say for producing a visual pattern
that would interest a particular user. Here, the human vi-
sual system, together with the emotional and psychological
responses of the user in question can outperform a pattern
detection or learning algorithm. Similarly, Evolutionary Vi-
sual Exploration1 (EVE) relies on the premise that IEC can
help guide users in exploring complex datasets.

EvoGraphDice [3, 4] is an EVE prototype for the explo-
ration of multidimensional datasets: the system proposes
interesting views based on both objective measures, such
as visual patterns in the two-dimensional projections of the
data, and subjective measures corresponding to user satis-
faction with the presented view. EvoGraphDice was built
as an extension of an existing scatterplot matrix inspection
tool. It uses low dimension projection to handle data multi-
dimensionality, and linear and non-linear combinations of
dimensions for an axis of the projection plane to propose
alternative views. User exploration is guided by an Interac-
tive Evolutionary Algorithm (IEA) which can both generate
new views and adapt to user interest (see figure 1).

The paper is organised as follows. Section 2 presents the
main mechanisms of EvoGraphDice. The experimental setup
and analysis are described in section 3. We discuss our main
findings in section 4, before giving a conclusion and future
research in section 5.

1http://www.aviz.fr/Research/EVE



Figure 1: EvoGraphDice prototype showing an exploration session of a synthetic dataset (the spiral game).
Widgets: (a) an overview scatterplot matrix showing the original data set of 5 dimensions (x0..x4) and the
new dimensions (1..5) as suggested by the evolutionary algorithm, (b) main plot view, (c) tool bar for main
plot view, (d) a tool bar with (top to bottom) “favourite” toggle button, “evolve” button, a slider to evaluate
cells and a restart (PCA) button, (e) the selection history tool, (f) the favourite cells window, (g) the selection
query window, (h) IEA main control window, (i) window to limit the search space, and (j) dimension editor.

2. EVOLUTIONARY VISUAL EXPLORATION
In this section we first describe the visual interface of

EvoGraphDice and the main components of the genetic en-
gine we implemented behind the visualization tool. Combin-
ing visual analytics with stochastic optimisation using our
framework (EVE) raises interesting issues related to algo-
rithm convergence, described next, that motivated our ex-
perimental study.

2.1 EvoGraphDice Visual Interface
EvoGraphDice has been built over an existing visualiza-

tion tool (GraphDice [2, 5]) to manage the various projec-
tions of the data. Views are organised in a scatterplot matrix
(SPLOM) of 2D projections, figure 1-a. Users can do brush-
ing and linking using a lasso tool. EvoGraphDice displays
the dimensions proposed by the IEA as additional rows (and
columns) in the SPLOM. The system initially displays di-
mensions returned by a PCA, after which the user can evolve
new dimensions by pressing the “evolve” button, figure 1-d.
The proposed views are displayed in yellow background; the
darker the color the more interesting the view. The system
provides an initial score (1 to 5) for each new view but the
user can adapt this score using the slider in figure 1-d. User

evaluated cells are flagged (using a small black square) to dis-
tinguish them from system evaluated cells. EvoGraphDice
can be initialised at any time using the “restart” button
which resets parameters of the IEA. Users can save views
(figure 1-f) and bring them back into the SPLOM if they
have been replaced during the exploration.

The current population of evolved dimensions is also dis-
played as a table (figure 1-h) where each row corresponds to
a combined dimension described by a mathematical expres-
sion and various components of the fitness function such as
the scagnostics measures defined in section 2.2. The user
can edit an individual (i.e. a combined dimension) using
the “dimension editor” in figure 1-j, or limit the dimension
search space (figure 1-i), which results in a system reset sim-
ilar to precessing the “restart” button. Note that many EA
parameters can be tuned, such as the fitness threshold and
crossover/mutation/replacement rates (see [4]).

A first version of EvoGraphDice [4] was based on an IEA
that only manipulated linear combinations of dimensions.
Recent extensions, described in [3], are (i) a Genetic Pro-
gramming (GP) algorithm allowing the manipulation of non-
linear combinations of dimensions as variable size mathe-
matical formulae, (ii) user assessment of proposed views is
explicitly captured via a slider, (iii) a surrogate function



Figure 2: Nine scagnostics measures from [16].

based on some specific geometric measurements (scagnos-
tics) is used to predict and simplify the interactions of the
user with the IEA, (iv) color highlighting of cells is used to
draw user attention to the most interesting views.

In [3], we validated our general approach of combining
visual analytics with stochastic optimisation to aid data ex-
ploration, by conducting an observational study with ex-
pert users from various domains. Our results showed that
EvoGraphDice can help users quantify qualitative hypothe-
ses and try out different scenarios to dynamically transform
their data. Importantly, it allowed our experts to think lat-
erally, better formulate their research questions and build
new hypotheses for further investigation. Our work demon-
strated that tightly combined visualization and optimisation
techniques yields exciting results in data analysis, and opens
new venues for research. It also highlighted challenges such
as monitoring algorithm convergence which we try to ad-
dress in this paper in more detail.

2.2 User fatigue
Despite efforts to design good user interfaces for IEA, hu-

man interaction raises “user bottleneck”problems [1,11,14].
Among the various possible strategies to deal with this issue,
we choose to use a small population size of suggested dimen-
sions, and to deploy an approximated user model: a surro-
gate function based on a series of geometric measures that
have proven statistical properties and are computable for
moderately large data sets [16]. Scagnostics2 are based on
geometric graphs which are calculated from areas, perime-
ters and lengths of these graphs. They include nine mea-
sures to characterise scatterplots (figure 2) and are useful
for quickly discovering regularities and anomalies in scatter-
plot matrices. The underlying algorithm detects different
types of point distributions including multivariate normal,
log normal, multinomial, sparse, dense, convex and clus-
ters. It does so by binning, detecting outliers and computing
measures based on the following three statistical properties:
shape for convex, skinny and stringy distributions; trend for
monotonic distributions; and density for skewed, clumpy,
outlying, sparse and striated.

2.3 Search Space and Genetic Engine
The space searched by the evolutionary process is the set

of all dimensions that can be built by combining the initial

2Available as a free downloadable package in R from http:
//www.rforge.net/scagnostics/

dimensions with operators and constants, encoded as trees
according to the Genetic Programming (GP) framework [9].
Evolved expressions can be any combination using +, −, ∗,
/, (.)(.), exp and log operators.

A small set of combined dimensions is evolved: if n is
the number of initial dimensions, a population of another n
combined dimensions is evolved. Each time the user clicks
on the “evolve” button, a new generation is computed, and
the user can explicitly evaluate a cell in the SPLOM with a
slider attached to each new view.

Users evaluate cells, while the evolutionary engine manip-
ulates individuals, i.e. new dimensions. A user evaluation of
a dimension is computed by averaging the user evaluations
of all cells that involve the new dimension.

A set of a priori interesting dimensions has been chosen
as a starting point: a PCA analysis is performed [13] on the
original data and the corresponding n linear combinations
form the initial population.

The fitness function, that is optimised by the genetic en-
gine, is a sum of three terms:

1. The surrogate function fsc, that plays the role of
a predictor. It is based on scagnostics measurements
computed for every scatterplot cell yi, xj of each di-
mension yi. The corresponding fitness term is a linear
combination of the highest values of the scagnostics
(SCk(yi, xj)) of each scatterplot cell (yi, xj):

fsc(yi) =
X

k=1..9

wk(max
j

SCk(yi, xj)). (1)

The weights wk that govern the relative importance of
each scagnostic measurement are initialised to a uni-
form weight (1/9). Then, when there are more than
m > n user evaluations recorded (n, the number of
variables), the wk are updated via a simple multilin-
ear regression on the m past interactions (m ≥ n cor-
responds to the length of a “memory” of the system).

2. A complexity term that favours dimensions made of
a small number of variables and simple mathematical
expressions :

fc(yi) =

„
1− nvars(yi)

n

«
× 1

depth(yi)
, (2)

nvars(yi) is the number of original variables involved
in the mathematical expression of yi, and depth(yi) is
the depth of the GP tree representing yi.

3. A user evaluation term, fu(yi), that is an average
of the user evaluation for each cell corresponding to yi

(range of 1 to 5 from “bad” to “excellent”).

Diversity management: for small populations sizes, there
is a major risk of premature convergence if no diversity
preservation mechanism exists. To deal with this issue in
EvoGraphDice each time a new dimension y′

i is generated,
its Euclidean distance to the current population is com-
puted. If y′

i is too close to one of the individuals of the
current population, it is replaced by a random individual.

2.4 Issues of Algorithm Convergence
As we are dealing with a small population of dimensions

evolved during only a few generations (see experimental sec-
tion next), the algorithm cannot be considered as having



converged in the classical sense. Theoretical analysis consid-
ers two main mechanisms that govern the behaviour of EAs:
focus (convergence or exploitation) and diversity (random
search or exploration). In their most classical uses, i.e. com-
putationally expensive optimisation, the exploitation mech-
anism is privileged and the exploration component is used
only to ensure the robustness of the results. In the inter-
active framework where creativity or new feature discovery
are sought, the same mechanisms operate but with a differ-
ent balance: exploration capability seems to have a bigger
impact.

Additionally, talking about convergence for EVE systems
is even more difficult as usually the users themselves do not
clearly know what they are searching for. In previous exper-
imental analysis [3], it has been noticed that the “guided”
exploration ability of EvoGraphDice is exploited in different
ways by experts: some explored, thus it can be said they
focused on the random search ability of the algorithm, while
others exploited with longer runs (>10 generations) thus fo-
cused on guided search/convergence. In both cases, the IEA
provides a unified framework for users that sometimes are
interested in focussed search, e.g. if they know what they
want, or in explorative suggestions if they know less what
they may find.

The experiments described in the next sections have been
designed to evaluate the focused search/exploitation mech-
anisms of EvoGraphDice where the user has a precise and
well defined task to perform.

3. ALGORITHM BEHAVIOUR:
EXPERIMENTAL ANALYSIS

We conducted an experiment to collect data about user in-
teractions and the fitness function. In particular, we wanted
to monitor the IEA’s convergence focusing on (i) the learn-
ing behaviour of the algorithm; and (ii) its ability to adapt
to user focus.

3.1 Experiment Setup and Procedure
We run our experiment with 12 participants (5 female),

ages 23 − 43 (mean 28.5). Participants were researchers
from two different institutions who had limited experience
with SPLOM-based visualizations (only 3 previously used
a SPLOM-based visualization tool). We ran EvoGraphDice
on an HP Z800 workstation PC with a 1900 dual monitor
(1280 x 1024 screen resolution), and on a MacBookAir con-
nected on a 30′′ monitor (same resolution). Each session
with a user lasted 1− 2 hours.

A 5D dataset was synthesised with two enclosed curvi-
linear dependencies between two variables (x0 and x1) and
random data for the rest of the dimensions. Participants
were asked, after a brief introduction to the tool, to evolve
a scatterplot where it is possible to separate the two curves
in figure 3 (left) with a straight line, and were not given
a time limit to complete the task (this task is equivalent
to separating the two convex hulls in figure 3). Two levels
of difficulty for the game were generated, where difficulty
relates to the amount of enclosure between the curves–the
bigger the overlap area between the curves the more difficult
it is to find the solution. Participants started with level 0
and depending on their performance, they also did level 1.
For struggling participants we allowed them to restrict the
search space to dimensions x0 and x1 in the hope of help-

ing them find a solution more quickly. Participants stopped
the game when they found a solution or when they felt the
tool is no longer proposing interesting views (for struggling
users, a minimum exploration time of 20 minutes was always
respected). With the exception of one user, all participants
successfully evolved a view separating the two convex hulls
for level 0 (average time to find a solution was 17 minutes),
but only 6 out of the 11 participants who tried level 1 man-
aged to find a solution (average time 11.5 minutes). We note
that some users needed several tries (i.e. game restarts) in
order to solve the game.

Figure 3: Two different solutions (screenshots of
plots) for the training game problem-level0 (left)
that involve a simple dimension combination (mid-
dle) and a complex formula (right).

3.2 Data Collection
Log data was gathered for further analysis and includes

two types of information related to: (a) user interactions
with the tool such as cell selections and evaluations via the
slider; and (b) genetic engine status at each generation (see
Table 1), such as details about the individuals in each gen-
eration (including their fitness components and scagnostics
scores), the cells these individuals participate in (i.e. the yel-
low cells in figure 1-a); and (c) the overall learned scagnos-
tics weights. A total of 27 log files were collected and further
analysed.

Table 1: Log data capturing information on the GP.
For each generation 9 scagnostics weights, wk.
For each individual generation number,

genome (math. formula),
surrogate function term, fsc,
complexity term, fc,
average user evaluation, fu,
resulting fitness.

For each evaluated cell generation number,
9 scagnostics,
predicted evaluation
( =

P
wk x Cell Scagnostics),

user evaluation.

3.3 Data Analysis

3.3.1 System Evaluation vs. User Evaluation
User scores of evaluated cells (i.e. when the user moves

the slider) have been compared to their “predicted” values,
based on the current scagnostic weights learned at each gen-
eration and the scagnostics values of the corresponding cell
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Figure 4: Average user evaluation of cells versus scagnostics-based prediction over generations for four
successful participants [a–d] for level 0 of the game. The orange curves correspond to user evaluations while
the pink ones represent the predicted values.
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Figure 5: Average user evaluation of cells versus scagnostics-based prediction over generations for two un-
successful participants [a–b] for level 0 of the game. The orange curves correspond to user evaluations while
the pink ones represent the predicted values.

(see equation 1):
P

k=1..9 wk(SCk(yi, xj)). These values are
averaged per generation and are plotted in figure 4 (for suc-
cessful players) and figure 5 (for unsuccessful players) for
level 0 of the game. The predicted values seem to roughly
follow the user evaluations in the majority of cases, indepen-
dently from the output of the game (success or failure). An
exception to this is figure 4-d (generations 17− 23) where a
user decided to rate the cells according to a different crite-
rion (aesthetics) after having obtained the result.

3.3.2 Learning User Strategy Through Scagnostics
A second type of analysis was performed on the scagnos-

tics weights distribution along generations. For comparison
purposes (and since the number of generations per explo-
ration session differ between users), generation values have
been averaged in three bins, corresponding to the start, mid-
dle and end of the game session. We tried to get the same
bin size for all groups when possible, or else the start and
end bins always had the same size. Figures 6 to 9 display
the 9 histograms of various game sessions, for levels 0 and
1, with limited and unlimited search spaces.

For level 0-no restricted space (figure 6), successful ex-
plorations are concentrated around either sparse, and/or a

combination of skinny and stringy distributions (if we focus
on the end generation bins). For the unsuccessful session,
there was no strong pattern, as expected. Also, for sessions
where sparse was a dominant exploration pattern, we can see
a clear increase from start to end generations, e.g. figure 6-c,
e and f.

When restricting the search space for level 0, the solu-
tion to the game was found much quickly than when the
search space was not limited (5 generations as opposed to
on average 23 generations as seen in figure 7-a). The success-
ful exploration strategy was a combined approach between
sparse and stringy. For the unsuccessful exploration session
(figure 7-b), it might show that just ‘skinny’ as the domi-
nant scagnostic might not be enough to reach a solution, or
that the user did not explore enough generations (given the
chosen search strategy, a solution might be just around the
corner).

Again, and for level 1 this time, in figure 8 the unsuccessful
candidate had a random exploration pattern, while focusing
on sparse distributions still leads to a successful exploration
strategy. When limiting the search space (figure 9), the
average number of dimensions ran to get a successful solu-
tion was 24 (slightly higher than for level 0), but in general
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Figure 6: Scagnostics weights over time for successful participants [a–h] and unsuccessful participants [i] for
level 0 of the game without limiting the search space.
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Figure 7: Scagnostics weights over time for successful participants [a] and unsuccessful participants [b] for
level 0 of the game when restricting the search space to dimensions x0 and x1.
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Figure 8: Scagnostics weights over time for successful participants [a] and unsuccessful participants [b] for
level 1 of the game without restricting the search space.
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Figure 9: Scagnostics weights over time for successful participants [a–e] and unsuccessful participants [f–i]
for level 1 of the game when limiting the search space to dimensions x0 and x1.



the same observations regarding successful pattern searches
mentioned above also hold for this game level.

4. DISCUSSION
EvoGraphDice seems to exhibit a learning behaviour con-

trolled by the diversity component which aims at maintain-
ing an exploration capability (section 3.3.1). This effect is
noticeable even in the case of unsuccessful game sessions
(e.g. figure 5-b) and corresponds to an exploitation com-
ponent (focus) of the genetic engine, regardless of user aim.
Analysis of section 3.3.2 shows different exploration patterns
for successful and unsuccessful sessions. The analysis of the
content of the surrogate function, via the observation of the
variation of the learned weights of the scagnostics measure-
ment, highlights a difference in users’ focus of attention (i.e.
sought after pattern). For successful game sessions, there are
clearly two strategies, one tending to “unfold” the curved
shapes by favouring linear scagnostic measurements (e.g.
middle solution in figure 3), the other trying to spread the
figures laterally by favouring sparse scagnostics (e.g. right
solution in figure 3).

The surrogate function that “approximates” the user eval-
uation, is clearly not able to embed the explicit aim of the
game (that is separating the convex hulls of two geometrical
subsets) as it only performs calculations on the whole set of
points of the scatterplot. However, what is clear from the
analysis is that the surrogate function seems to be discrim-
inative enough to allow various search strategies.

5. CONCLUSION AND FUTURE WORK
This work is focussed on the evaluation of the conver-

gence behaviour of the EvoGraphDice system through a user
study having a well specified task, while previous studies [3]
assessed the tool’s exploration and lateral thinking capabil-
ities. The experiments and analysis presented above exhibit
an obvious learning behaviour that seems to facilitate the
algorithm’s convergence toward a satisfying solution, while
still allowing users to adopt various search strategies. The
data we collected for this study have not been fully explored
and future work will involve more in-depth analysis, for ex-
ample examining trends for different GP runs per user explo-
ration session (instead of concatenating all generation runs).
In addition, we would like to re-examine our notion of start-
middle-end of an exploration session to find more meaning-
ful ways to characterise various stages of exploration (e.g.
change of user focus).

Our current formal and informal experimental analysis
will guide our future developments. We will for instance im-
prove the surrogate function calculation in order to detect
more complex visual patterns (beyond those currently de-
tected by Scagnostics, e.g. kurtosis and entropy). A bridg-
ing of EvoGraphDice with existing statistical packages will
also be considered, in order to combine powerful statistical
analysis with flexible and intuitive visual exploration.
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