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Abstract

This paper presents an adaptive approach to improve the infection

algorithm that we have used to solve the dense stereo matching prob-

lem. The algorithm presented in this paper incorporates two different

epidemic automata along a single execution of the infection algorithm.

The new algorithm attempts to provide a general behavior of guessing

the best correspondence between a pair of images. Our aim is to pro-

vide with a new strategy inspired of evolutionary computation, which

combines the behaviors of both automata into a single correspondence

problem. The new algorithm will decide which automata will be used

based on transmition of information and mutation, as well as the at-

tributes, texture and geometry, of the input images. This article gives

details about how are coded the rules used in the infection algorithm.

Finally, we show experiments with a real stereo pair, as well as with a

standard test bed to show how the infection algorithm works.

keywords: Image matching, Stereo-vision, Infection algorithm,

Evolutionary computation.
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1 Introduction

Artificial life is devoted to the endeavor of understanding the general prin-

ciples that govern the living state. The field of artificial life covers a wide

range of disciplines such as: biology, physics, robotics and computer science

to mention but a few. One of the first difficulties when studying artificial

life is that there is no generally accepted definition of life. Moreover, an an-

alytical approach to the study of life is impossible. If we attempt to study a

living system through a gradual decomposition of its parts; we observe that

the initial property of interest is not present anymore. Thus, there appears

to be no elementary living thing: life seems to be a property of a collection of

components but not a property of the components themselves. On the other

hand, classical scientific fields have proved that the traditional approach of

gradual decomposition of the whole is useful in modeling the physical reality.

The aim of this paper is to show that the problem of matching the contents

of a stereoscopic system could be approached from an artificial life stand-

point. Stereo matching is one of the most active research areas in computer

vision. It consists in determining which pair of pixels projected on at least

two images, belongs to the same physical 3D point. The correspondence

problem has been approached using sparse, quasi-dense, and dense stereo

matching algorithms. Sparse matching has been normally based on sparse

points of interest to achieve a 3D reconstruction. Unfortunately, most mod-

eling and visualization applications need dense or quasi-dense reconstruction

rather than sparse point clouds. In order to improve the quality of image

reconstruction researchers have turn to the dense surface reconstruction ap-
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proach.

The correspondence problem has been one of the main subjects in com-

puter vision and is clear that these matching tasks are to be solved by

computer algorithms. Currently, there is no general solution to the prob-

lem and it is also clear that successful matching by computer can have a

large impact on computer vision. The matching problem has been consid-

ered the hardest and most significant problem in computational stereo. The

difficulty is related to the inherent ambiguities being produced during the

image acquisition concerning the stereo pair; for example: geometry, noise,

lack of texture, occlusions, and saturation. Geometry concerns the shapes

and spatial relationships between images and the scene. Noise refers to the

inevitable variations of luminosity, which produces errors on the image for-

mation due to a number of sources such as quantization, dark current noise

or electrical processing. Texture refers to the properties that represent the

surface or structure of an object. Thus, lack of texture refers to the problem

of unambiguously describing those surfaces or objects with similar intensity

on gray values. Occlusions can be understood as those areas that appear

in only one of the two images due to the camera movement. Occlusion is

the cause of complicated problems in stereo matching, especially when there

are narrow objects with large disparity and optical illusion in the scene.

Saturation refers to the problem of quantization beyond the dynamic range

in which the image sensor normally works. Dense stereo matching is con-

sidered an ill-posed problem. Traditional dense stereo methods are limited

to specific pre-calibrated camera geometries and closely spaced viewpoints.

Dense stereo disparity is a simplification of the problem in which the pair
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is considered to be rectified and the images are taken on a linear path with

the optical axis perpendicular to the camera displacement. In this way, the

problem of matching two images is evaluated indirectly through a univalued

function in disparity space that best describes the shape of the surfaces in

the scene. There is one more problem with the approach of studying dense

stereo matching using the specific case of dense stereo disparity. In general

the quality of the solution is directly related to the contents of the image

pair. In other words, the quality of the algorithms depends on the test im-

ages. In our previous work we have presented a novel matching algorithm

based on concepts from artificial life and epidemics that we called infection

algorithm.

The goal of this work is to show that the quality of the algorithm is

comparable to the state-of-the-art published in computer vision literature.

We decided to test our algorithm with the test images provided at the Mid-

dlebury stereo vision web page [11]. However, we would like to mention

that the problem is very difficult to solve and the comparison is image de-

pendent. Moreover, the natural vision system is an example of a system

in which the visual experience is a product of a collection of components

but not a property of the components. The infection algorithm presented

in [8] uses an epidemic automaton that propagates the pixel matches as an

infection over the whole image with the purpose of matching the contents of

two images. It searches the correspondences between real stereo images fol-

lowing a Susceptible-Exposed-Infected-Recovered (SEIR) model that leads

to a fast labeling. SEIR epidemics refer to diseases with incubation periods

and latent infection. The purpose of the algorithm is to show that a set of
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local rules working over a spatial lattice could achieve the correspondence of

two images using a guessing process. The algorithm provides the rendering

of 3D information allowing the visualization of the same scene from novel

viewpoints. Those new viewpoints are obviously different from the initial

photographs. In our past work, we had four different epidemic automata

in order to observe and analyze the behavior of the matching process. The

best results that we have obtained were those related to the case of 47% and

99%. The first case represents geometrically a good image with a moder-

ate percentage of computational effort saving. The second case represents

a high percentage of automatically allocated pixels producing an excellent

percentage of computational effort saving, with an acceptable image quality.

Our current work aims at improving the results based on a new algorithm

that uses concepts from epidemic process in which transmition of informa-

tion and mutation is incorporated. We want to combine the best of both

epidemic automata in order to obtain a high computational effort saving,

with an excellent image quality. Thus, we are proposing to use knowledge

based on geometry and texture in order to decide during the algorithm,

which epidemic automata is better based on the neighborhood information.

The benefit of the new algorithm will be shown in section 3, through a

comparison with previous results. The new algorithm uses, as well as the

previous, local information such as the Zero Normalized Cross Correlation

(ZNCC), geometric constraints (epipolar geometry, orientation), and a set

of rules applied within the neighborhood. Our algorithm manages global

information, which is encapsulated through the epidemic cellular automa-

ton and the information about texture and edges in order to decide which
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automata is more appropriate to apply.

This paper is organized as follows. The next section describes the nature

of the correspondence problem. Section 2 introduces the new algorithm

giving emphasis to the explanation on how the transmition of information

was applied to decide between two epidemic automata. Finally, the section

3 shows the results of the algorithm illustrating the behavior, performance,

and quality of the evolutionary infection algorithm.
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Canny Left Image

Figure 1: Relationships between each lattice used by the infection algo-
rithm. A pixel in the left image is related to the right image using a cellular
automaton, canny image and virtual image during the correspondence pro-
cess. The blue color represents the Sick (Explored) state and the black color
represents the Healthy (Not-Explored) state.

1.1 Problem Statement

Computational stereo studies how to recover the three dimensional charac-

teristics of a scene from multiple images taken from different viewpoints.
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A major problem in computational stereo is how to find the corresponding

points between a pair of images, which is known as the correspondence prob-

lem or stereo matching. The images are taken by a moving camera in which

a unique three-dimensional physical point is projected into a unique pair

of image points. A pair of points should match each other in both images.

A correlation measure can be used as a similarity criterion between image

windows of fixed size. The input is a stereo pair of images, Il (left) and

Ir (right). The correlation metric is used by an algorithm that performs a

search process in which the correlation gives the measure used to identify the

corresponding pixels on both images. In this work the infection algorithm

attempts to maximize the similarity criterion within a search region. Let

pl with image coordinates (x, y), and pr with image coordinates (x′, y′), be

pixels in the left and right image, 2W + 1 the width (in pixels) of the corre-

lation window, (Il(x, y)) and (Ir(x′, y′)) are the mean values of the images

in the windows centered on pl and pr, R(pl) the search region in the right

image associated with pl, and φ(Il, Ir) a function of both image windows.

The φ function is defined as the Zero-mean Normalized Cross-Correlation

(ZNCC) in order to match the contents of both images.

φ(Il, Ir) =
P

i,j∈[−W,W ][AB]qP
i,j∈[−W,W ] A2

P
i,j∈[−W,W ] B2]

A = (Il(x + i, y + j)− Il(x, y))

B = (Ir(x′ + i, y′ + j)− Ir(x′, y′))

(1)

However, stereo matching has many complex aspects that turn intractable

the problem. In order to solve the problem a number of constraints and as-
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sumptions are exploited which take into account occlusions, lack of texture,

saturation, and field of view. Figure 1 shows two images taken at the Evo-

Visión laboratory that we used in the experiments. The movement between

the images is a translation with a small rotation along the x, y and z axes

respectively: Tx = 4.91 mm, Ty = 114.17 mm, Tz = 69.95 mm, Rx = 0.84◦,

Ry = 0.16◦, Rz = 0.55◦. Figure 1 shows also five lattices that we have used

in the evolutionary infection algorithm. The first two lattices correspond to

the images acquired by the stereo rig. The third lattice is used by the epi-

demic cellular automaton in order to process the information that is being

computed. The fourth lattice corresponds to the reprojected image, while

the fifth lattice (Canny image) is used as a database in which we save infor-

mation related to contours and texture. In this work, we are interested in

providing a quantitative result to measure the benefit of using the infection

algorithm. We decide to apply our method to the problem of dense two-

frame stereo matching. For a comprehensive discussion on the problem, we

refer the reader to the survey by Scharstein and Szeliski [11]. We perform

our experiments on the benchmark Middlebury database. This database

includes 4 stereo pairs, named Tsukuba, Venus, Teddy and Cones. It is im-

portant to mention that the Middlebury test is limited to specific camera

geometries and closely spaced viewpoints. Dense stereo disparity is a simpli-

fication of the problem in which the pair is considered to be rectified and the

images are taken on a linear path with the optical axis perpendicular to the

camera displacement. In this way, the problem of matching is evaluated in-

directly through a univalued function in disparity space that best describes

the shape of the surfaces in the scene. The performance of the infection
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algorithm has been evaluated according to the proposed methodology by

Scharstein and Szeliski, in which the quality is measured by percentages of

bad matching. The error is computed as the percentage of pixels far from

the true disparity by more than 1 pixel.

2 Infection Algorithm with an Evolutionary ap-

proach

The infection algorithm is based on the concept of natural virus for searching

the correspondences between real stereo images. The purpose is to find all

existing corresponding points in stereo images while saving the maximum

number of calculations and maintaining the quality of the reconstructed

data. The motivation to use what we called infection algorithm is based

on the following: when we observe a scene, we do not observe everything

in front of us. Instead, we focus our attention in some regions which keeps

our interest on the scene. As a result, it’s not necessary to analyze each

part of the scene in detail. Thus, we pretend to “guess” some parts of the

scene through a process of propagation based on artificial epidemics with

the purpose of saving computational time.

The search process of the infection algorithm is based on a set of transi-

tion rules which are coded as an epidemic cellular automaton. These tran-

sition rules allow the development of global behaviors. The mathematical

description of the infection algorithm is presented in [9]. Nevertheless, this

paper introduces the idea of evolution within the infection algorithm using

the concepts of inheritance (transmition of information between individual



2 INFECTION ALGORITHM WITH AN EVOLUTIONARY APPROACH11

cells) and mutation in order to achieve a balance between exploration and

exploitation. As we could see in the paper, the idea of evolution is rather

different from the traditional genetic algorithms. Concepts like an evolving

population are not included in the evolutionary infection algorithm. In-

stead, we incorporate aspects such as inheritance and mutation to develop

a dynamical matching process. Inheritance is understood here in the sense

of information sharing and transmition between individual cells. Thus, a

group of cells will decide which of two automata will be applied based on

the probability of success computed from local neighborhood using contour

and texture information. In order to introduce the new algorithm let us

define some notations:

Definition 1 Cellular automata: A cellular automaton is a continuous

map G : SL → SL which commutes with σi (1 ≤ i ≤ d).

This definition, however, is not useful for computations. Therefore we con-

sider an alternate characterization. Given S a finite set, and d-dimensional

shift space SL, consider a finite set of transformations, N ⊆ L. Given a

function f : SN → S, called a local rule, the global cellular automaton map

is given by

Gf (c)v = f(cv + N)

where v ∈ L, c ∈ SZ , and v + N consists of the set of translates of v by

elements in N .

Definition 2 Epidemic cellular automata: Our epidemic cellular au-
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Figure 2: Pseudo-code for the evolutionary infection algorithm.

tomaton can be formally introduced as a quadruple E = (S, d, N, f) where

S = 5 is a finite set composed of 4 states and the wild card (∗), d = 2 a

positive integer, N ⊂ Zd a finite set, and fi : SN → S an arbitrary set of

(local) functions, where i = {1, . . . , 14}. The global function Gf : SL → SL

is defined by Gf (c)v = f(cv + N). Also, it is useful to mention that S is

defined by the following sets:

• S = {α1, ϕ2, β3, ε0, ∗} a finite alphabet,
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• Sf = {α1, β3} is the set of final output states,

• S0 = {ε0} is called the initial input state.

Our epidemic cellular automata have 4 states that are defined as follows:

Let α1 be the Explored (Sick) state, that represents the cells that have been

infected by the virus (it refers to the pixels that have been computed in

order to find their matches). ε0 be the Not-Explored (Healthy) state, that

represents the cells which have not been infected by the virus (it refers to the

pixels which remain in the initial state). β3 be the Automatically Allocated

(Immune) state, that represents the cells which cannot be infected by the

virus. This state represents the cells which are immune to the disease (it

refers to the pixels which have been confirmed by the algorithm in order to

automatically allocate a pixel match). ϕ2 be the Proposed (Infected) state,

that represents the cells which have acquired the virus with a probability of

recovering from the disease (it refers to the pixels which have been guessed

by the algorithm in order to decide later the better match based on local

information).

In previous work, we defined four different epidemic cellular automata

from which we detect two epidemic graphs that provide singular results in

our experiments, see Figure 3. One epidemic cellular automaton produces a

47% of effort saving while the other a 99% of effort saving. These automata

use a set of transformations expressed by a set of rules grouped within a

single graph. Each automaton transforms a pattern of discrete values over

a spatial lattice. A whole different behavior is achieved by changing the

relationships between the four states using the same set of rules. Each
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rule represents a relationship which produces a transition based on local

information. These rules are used by the epidemic graph to control the

global behavior of the algorithm. In fact, the evolution of cellular automata

is governed typically not by a function expressed in closed-form, but by

a “rule table” consisting of a list of the discrete states that occur in an

automaton together with the values to which these states are to be mapped

in one iteration of the algorithm.

α1

R 1R 2
R 3 R 4

R 5
R 6R 7 R 8

R 9R 10R 12

R 11

R 14

R 13ϕ2 β3

ε0   ε0

ϕ2 β3

α1

R 1R 2
R 3 R 4

R 5
R 6

R 7

R 8

R 9

R 10

R 12

R 11

R 14

R 13

a)  Epidemic Graph used to obtain 

47% of computational savings

b)  Epidemic Graph used to obtain 

99% of computational savings

Figure 3: Evolutionary epidemic graphs used in the infection algorithm.

The goal of the search process is to achieve a good balance between two

rather different epidemic cellular automata in order to combine the benefit

of each automaton. Hence, our algorithm not only finds a match within the

stereo pair, but it provides an efficient and general process using geometric

and texture information. It is efficient because the final image combines

the best of each partial image within the same amount of time. It is also

general because the algorithm could be used with any pair of images with

little additional effort to adapt it.
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Our algorithm attempts to provide a remarkable balance between the

exploration and exploitation of the matching process. Two cellular automata

were selected because each one provides a particular characteristic from

the exploration and exploitation standpoint. The 47% epidemic cellular

automaton, we called A, provides a strategy which exploits the best solution.

Here, best solution refers to areas where matching is easier to find. The 99%

epidemic cellular automaton, we called B, provides a strategy which explores

the search space when the matching is hard to achieve.

The pseudo-code for the evolutionary infection algorithm is depicted in

Figure 2. The first step consists in calibrating both cameras. Knowing the

calibration for each camera it is possible to compute the spatial relationship

between two cameras. Then, two sets of rules that correspond to 47% and

99% are coded in order to decide which set of rules will be used during the

execution of the algorithm. The sets of rules contain information about the

configuration of the pixels in the neighborhood. Next, we built a lattice

with the contour and texture information, that we called canny left image.

Thus, we iterate the algorithm as long as the number of pixels with immune

and sick states is different between time t and t + 1. Each pixel is evaluated

according to a decision that is made based on three criteria as follows:

1. The decision of using A or B is weighted considering the current eval-

uated pixels in the neighborhood. In this way, inheritance or trans-

mition of information is incorporated within the algorithm through

the combination of the set of rules that correspond to 47% and 99%

automata. Each cell propagates to its neighbors which of both au-
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tomata is better to be applied in order to achieve a balance between

exploration and exploitation.

2. The decision is also made based on the current local information (tex-

ture and contour). Thus, environmental adaptation is contemplated

as a driving force in the dynamical matching process.

3. A probability of mutation which could change the decision of using

A or B is computed. This provides the system with the capability of

stochastically adapting the dynamic search process. This probability

criterion depends on the local information of the neighborhood in order

to decide which set of rules to use in the matching process. If the local

information represents an image contour there is more probability to

use A than B. Otherwise, the probability of mutation is really smaller.

Thus, while the number of immune and sick cells do not change between

time t and t + 1, the algorithm searches for the set of rules which better

match the constraints. An action is then activated which produces a path

and sequence around the initial cells. When the algorithm needs to execute

a rule to evaluate a pixel, it calculates the corresponding epipolar line us-

ing the fundamental matrix information. The correlation window is defined

and centered with respect to the epipolar line when the search process is

started. This search process provides a nice balance between exploration

and exploitation. The exploration process occurs when the epidemic cel-

lular automata analyzes the neighborhood around the current cell in order

to decide where is a good match. Once we find a good match a process

of exploitation occurs in order to guess as many point matches as possible.
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Our algorithm does not only execute the matching process, but it also takes

advantage of the geometric and texture information in order to achieve a bal-

ance between the results of the 47% and 99% epidemic cellular automata.

This allows a better result in texture quality, as well as the geometrical

shape, and also saving computational effort. The Figure 3 shows the two

epidemics graphs 47% and 99%, in which we can appreciate that the differ-

ences between both graphs are made by changing the relationships between

the four states. Each relationship is represented as a transition based on a

local rule, which as a set is able to control the global behavior of the algo-

rithm. Next section explains how each rule works according to the above

classification.

2.1 Transitions of our epidemic automata

Each epidemic graph has 14 transition rules that we divide in three classes:

basic rules, initial structure rules, and complex structure rules. Each rule

could be represented as a predicate that encapsulates an action allowing a

change of state on the current cell based on their neighborhood informa-

tion. The basic rules relate the obvious information between the initial and

explored states. The initial structure rules consider only the spatial set of

relationships between the close neighborhoods. The complex structure rules

consider the spatial set of relationships between the close neighborhood, and

also those within the external neighborhood. The transitions of our epidemic

automata are based on a set of rules, see Figure 4. These rules are coded

according to a neighborhood that is shown in Figure 5. The basic rules

correspond to rules 1 and 2. The initial structure is formed by the rules
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R1: CC( α1 )  ---> ACCION( α1 )

R2: CC( ε0 )   LU( ε0 )   CU( ε0 )    RU( ε0 )    LR( ε0 )   RR( ε0 )    LD( ε0 )   CD( ε0 )   RD( ε0 ) ---> ACCION( ε0  )^ ^ ^ ^ ^ ^ ^ ^
R3: CC( ε0 )   LR( ε0 )   RR( ε0 )    LD( ε0 )    CD( ε0 )   RD( α1 ) ---> ACCION( α1  )^ ^ ^ ^ ^
R4: CC( ε0 )   CU( ε0 )   RU( α1 )   RR( α1 )    CD( ε0 )  ---> ACCION( α1  )^ ^ ^ ^
R5: CC( ε0 )   LU( α1 )   CU( ε0 )   LR( α1 )    CD( ε0 )  ---> ACCION( α1  )^ ^ ^ ^

R7: CC( ε0 )   EXP( 3 )   EXT( 3 )   ---> ACCION( α1  )^ ^

R6: CC( ε0 )   LU( α1 )   CU( α1 )    RU( α1 )   LR( ε0 )   RR( ε0 ) ---> ACCION( α1  )^ ^ ^ ^ ^

R8: CC( ε0 )   EXP( 3 )   AUT( 3 )   ---> ACCION( α1  )^ ^

R11: CC( ε0 )   EXP( 3 )  ---> ACCION( ϕ2  )^

R9: CC( ε0 )   CU( ε0 )   LR( α1 )    RR( ε0)  LD( α1 )   CD( ϕ2 ) ---> ACCION( α1  )^ ^ ^ ^ ^
R10: CC( ε0 )   CU( ε0 )   LR( ε0 )    RR( α1)  CD( ϕ2 )   RD( α1 ) ---> ACCION( α1  )^ ^ ^ ^ ^

R12: CC( ε0 )  PROP( 3 )  ---> ACCION( α1  )^
R13: CC( ϕ2  )  EXP( 3 )  ---> ACCION( β3 )^
R14: CC( ϕ2  )  PROP( 3 )  ---> ACCION( α1  )^

ACCION( ): This function provides the output state of the rule.

EXP( ): This function represents the number of explored pixels in the close neighborhood.

PROP( ): This  function represents the number of proposed pixels in the close neighborhood.  

AUT( ): This  function represents the number of automatically allocated pixels in the close and 

              external neighborhoods.  

EXT( ): This  function represents the number of automatically allocated pixels in the  

              external neighborhood.  

LU( ), CU( ), RU( ), LR( ), RR( ), LD( ), CD( ) and RD( ): These functions evaluate the corresponding  location   

   in the neighborhood.

Figure 4: This table summarizes the fourteen rules that we have used in the
infection algorithm.

CC

LU CU RU

LR RR

LD CD RD

LU (Left Up)

CU (Col Up)

RU (Right Up)

LR (Left Row)

RR (Right Row)

LD (Left Down)

CD (Col Down)

CC (Central Cell)

RD (Right Down)

EN EN EN

ENENEN

EN EN ENEN

EN

EN

EN

EN

EN

EN

CC

CN CN CN

CN CN

CN CN CN

EN EN EN

ENENEN

EN EN ENEN

EN

EN

EN

EN

EN

EN EN (External Neighborhood)

or

CN

- AUT

- EXP

- PROP

CN (Close Neighborhood) EN
- AUT

- EXT

Figure 5: This figure shows the layout of the neighborhood used by the
cellular automata.
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3,4,5 and 6. Finally, the complex structure rules correspond to the rest of

the rules. The basic and initial structure rules until this moment have not

been changed, they remain without changes. The rest of the rules are easily

modified in order to produce different behaviors and a certain percentage of

computational effort saving. The fourteen epidemic rules related to the case

of 47% are explained as follows.

• Rules 1 and 2. The epidemic transitions of these rules represent

two obvious actions. First, if it lacks information in the close neigh-

borhood, then no change is made in the current cell. Second, if the

central cell was already sick (Explored), then no change is produced

in the current cell.

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 6: Rule 1. Central cell state does not change if the pixel is already
evaluated.

• Rules 3,4,5 and 6. The infection algorithm begins the process with

the nucleus of infection around the whole image. The purpose of creat-

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 7: Rule 2. Central cell state does not change if there is a lack of
information in the neighborhood.
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Rule 3:

Rule 4:

Rule 5:

Rule 6:

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 8: Transition of rules 3, 4, 5 and 6. These four rules create the initial
structure for the propagation.

ing an initial structure in the matching process is to explore the search

space in such a way that the information is distributed in several pro-

cesses. Thus, the propagation of the matching is realized in a higher

number of directions from the central cell. We use these rules only

during the beginning of the process.

• Rules 7 and 8. These rules assure the evaluation of the pixels in a

region where exist Immune (Automatically Allocated) individuals, see

Figure 9. The figure of the rule 8 is similar to 7. The main purpose

of these rules is to control the quantity of immune individuals within

a set of regions.

• Rules 9 and 10. These transition rules avoid the linear propagation

of Infected (Proposed) individuals. Rules 9 and 10 take into account

the information of the close neighborhood and one cell of the external
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>=3

>=3

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 9: Rule 7. This epidemic transition indicates that it is necessary to
have at least three Sick (Explored) individuals on the close neighborhood and
at least three Immune (Automatically allocated) individuals on the external
neighborhood in order to change the central cell.

>=3

>=3

= o ∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 10: Rule 8. This epidemic transition indicates that it is necessary at
least three Sick (Explored) pixels in the close neighborhood and at least three
Immune pixels in the whole neighborhood in order to change the central cell.

neighborhood.

• Rule 11. This rule generates the Infected (Proposed) individuals in

order to obtain later a higher number of the Immune (Automatically

Allocated) individuals. If the central cell is on Healthy state (Not-

Explored) and there are at least three Sick individuals (Explored) in

the close neighborhood, then, the central cell is Infected (Proposed).

• Rules 12 and 14. The reason of these transitions is to control the

Infected (Proposed) individuals. If we have at least three Infected

(Proposed) individuals in the close neighborhood, the central cell is

evaluated.
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Rule 9:

Rule 10:

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 11: Rules 9 and 10. These rules avoid the linear propagation of the
Infected (Proposed) pixels.

>=3

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 12: Rule 11. This epidemic transition rule represents the quantity of
Infected (Proposed) individuals in order to obtain the Immune (Automati-
cally Allocated) individuals. In this case, if there are three Sick (Explored)
individuals in the close neighborhood, then the central cell changes to an
Infected (Proposed) state.

>=3

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 13: Rule 12. This transition controls the Infected (Proposed) indi-
viduals within a region. It requires at least, three Infected (Proposed) pixels
around the central cell.

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)
>=3

Figure 14: Rule 14. This epidemic transition controls the Infected (Pro-
posed) individuals in different small regions of the image. If the central cell
is in an Infected (Proposed) state, then, the central cell is evaluated.
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>=3

∗ 

States:

ε0 = 0... Healthy Individuals (Not-Explored) 

β3 = 3... Immune Individuals (Automatically)

Variable:
= 5 ... Wildcard

ϕ2 = 2... Infected Individuals (Proposed)

α1 = 1... Sick Individuals (Explored)

Figure 15: Rule 13. This transition indicates when the Infected (Proposed)
individuals will change to Immune (Automatically Allocated) individuals.

• Rule 13. This rule is one of the most important epidemic transition

rules because it indicates the computational effort saving of individual

pixels during the matching process. Rule 13 can be summarized as

follows: if the central cell is Infected (Proposed) and there are at least

three Sick (Explored) individuals in the close neighborhood; then, we

guess automatically the corresponding pixel in the right image without

any computation. The number of Sick (Explored) individuals can be

changed according to the desired percentage of computational savings.

3 Experimental Results

We have tested the infection algorithm with an evolutionary approach on a

real stereo pair of images. The infection algorithm was implemented under

the Linux operating system on an Intel Pentium 4 at 2.0Ghz with 256Mb

of RAM. We have used libraries programmed in C++, designed specially

for computer vision, called V xL (Vision x Libraries). The runtime of the

evolutionary infection algorithm with 99% operations saving is about 2:16

minutes compared with 17:18 minutes of a traditional exhaustive search

algorithm. That means, the time saving is about 87% compared with the
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Figure 16: Results of different experiments in which the rules were changed
to contrast the epidemic cellular automata.

Figure 17: Evolution of the epidemic cellular automata to solve the dense
correspondence matching.
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exhaustive search. We have proposed to improve the results obtained by the

infection algorithm through the implementation of an evolutionary approach

using inheritance and mutation operations. The idea was to combine the

best of both epidemic automata 47% and 99%, in order to obtain a high

computational effort saving together with an excellent image quality. We

used knowledge based on geometry and texture in order to decide during

the correspondence process, which epidemic automaton is better to apply

during the evolution of the algorithm. Figure 16 shows a set of experiments

where the epidemic cellular automaton was changed in order to modify the

behavior of the algorithm and to obtain a better virtual image. Figure 16a

is the result of obtaining 47% of computational effort savings, while Figure

16b is the result of obtaining 70% of computational effort savings and Figure

16c shows the result to obtain 99% of computational effort savings. Figure

16d presents the result that we obtain with the new algorithm. Clearly,

the final image shows how the algorithm combines both epidemic cellular

automata. We observe that the geometry is preserved with a nice texture

reconstruction. We also observe that the new algorithm spends about the

same time employed by the 70% epidemic cellular automaton with a slightly

better texture result. Figure 17a shows the behavior of the evolutionary

infection algorithm that corresponds to the final result of Figure 16d. Figure

17b describes the behavior of the two epidemic cellular automata during the

execution of the correspondence process.

We decide to test the infection algorithm with the standard test bed

used in the computer vision community [11]. Scharstein and Szeliski have

set up test data along with ground truth available at their website to use
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Tsukuba Venus
Infection Algorithm Bō BT̄ BD Bō BT̄ BD

Original 8.90 10.5 41.6 5.33 6.42 42.5
1st Interp. 7.95(24) 9.54(23) 28.9(24) 4.41(21) 5.53(21) 31.7(23)

Teddy Cones
Bō BT̄ BD Bō BT̄ BD

Original 19.0 25.3 45.6 15.2 21.9 39.3
1st Interp. 17.7(23) 25.1(23) 44.4(24) 14.3(24) 21.3(23) 38.0(24)

Table 1: Our result on the Middlebury database. The numbers represent
the percentage of “bad” pixels computed over different regions ( Bō, BT̄

and BD ) and the number in braces represents the algorithm ranking in the
Middlebury stereo vision web page.

it as test bed for quantitative evaluation and comparison of different stereo

algorithms. They use two quality measures, RMS error (Root-Mean-Square)

and percentage of bad matching pixels. These metrics are based on known

ground truth data in order to evaluate the performance of a stereo algorithm.

The following quality metric is used to represent the percentage of “bad”

pixels in three common problem areas for stereo algorithms: Bō, bad pixels

in non-occluded areas; BT̄, bad pixels in textureless areas and BD, bad pixels

in areas near depth discontinuities.

B =
1
N

∑
(| dC(x, y)− dT (x, y) |> δd), (2)

where B represent the total matching error and it is used for Bō, BT̄

and BD depending on the area to be analyzed. N is the total pixels of the

area, dC(x, y) is the disparity map values, dT (x, y) is the ground truth map

values and δd is a disparity error tolerance used as 1.0. Note that this metric

was designed to measure algorithms from a correctly matched standpoint.

In general, the results of the algorithms available for comparison use
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sub-pixel resolution and a global approach to minimize the disparity. The

original images can be obtained in grayscale and color versions. We use

the grayscale images even if this represents a drawback with respect to the

final result. Figure 18 shows on the first column the four left images used

as benchmark, as well as the compute disparity maps obtained with the

infection algorithm. Because we try to compute the best possible disparity

map we apply a 0% saving in order to be consistent with the benchmark.

The results are visually comparable to other algorithms that make similar

assumptions: grayscale image, window based approach, and pixel resolution

[15, 2, 12]. In fact the infection algorithm is officially in the Middlebury

database ranked at the bottom of the chart where other algorithms with

similar assumptions are classified. In order to improve the test results we

decide to enhance the quality of the input image with an interpolation ap-

proach [6]. According to Table 1 the statistics represent the percentage of

“bad” pixels over different image regions using the infection algorithm with

original and first interpolated images. Original images are the result of the

infection algorithm with 0% of savings, while first interpolated images are

the result of using the interpolation approach with 0% of savings. The data

used to evaluate the stereo algorithm in Table 1 were collected for all un-

occluded image pixels (column Bō), also for all unoccluded pixels in the

untextured regions (column BT̄), and finally for all unoccluded image pixels

close to a disparity discontinuity (column BD). In this way, we obtain the

new disparity images shown in Figure 19 together with the ground truth.

These results show that the same algorithm could be ameliorated if the reso-

lution of the original images is improved with a first interpolation technique
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[6]. We provide the results to illustrate the quality of the results that can be

achieved with the infection algorithm. However, as we have exposed in the

introduction the infection algorithm was realized to explore the field of ar-

tificial life using the correspondence problem. Therefore, the final judgment

should be made also from the standpoint of the ALife community. Note,

that the aim of the infection algorithm is to show the factibility of obtaining

coherent disparities after a high number of guess pixels. In the near future,

we expect to use the Evolutionary Infection Algorithm in the search of novel

vantage viewpoints.

4 Conclusion

This paper has shown that the problems of dense stereo matching and dense

stereo disparity could be approached from an artificial life standpoint. We

believe that the complexity of the problem reported in this research and

its solution should be considered as a rich source of ideas in the artificial

life community. A comparison with a standard test bed provides enough

confidence that this kind of approaches can be considered as part of the

state-of-the-art. The best algorithms use knowledge currently not used in

our implementation. This point provides a clue for future research in which

some hybrid approaches could be proposed by other researchers in the ALife

community.
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a) Tsukuba left image. b) Our result.

c) Venus left image. d) Our result.

e) Teddy left image. f) Our result.

g) Cones left image. h) Our result.

Figure 18: These four pair of images were obtained from the Middlebury
stereo matching web page.
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a) Our improved image. b) Ground truth.

c) Our improved image. d) Ground truth.

e) Our improved image. f) Ground truth.

g) Our improved image. h) Ground truth.

Figure 19: The final computed disparity maps are shown to illustrate the
quality of the infection algorithm.


