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ABSTRACT

Building in-silico decision making systems is essential
in the food domain, albeit highly difficult. This task
strongly relies on multidisciplinary research and in par-
ticular on advanced techniques from artificial intelli-
gence. The success of such systems depends on how
well they cope with the complex properties of food pro-
cesses, such as the large variety of interacting compo-
nents including those related to human expertise; and
their dynamic, non-linear, multi-scale, uncertain and
non-equilibrium behaviors. Robust stochastic optimiza-
tion techniques, evolutionary computation and in partic-
ular Interactive Evolutionary Computation (IEC) seem
to be a fruitful framework for developing food science
models. A Human-Centered approach to Interactive
Evolutionary Computation is discussed in this paper as
a possible pertinent way to cope with challenges related
to human factors in this context.

FOOD SCIENCE AND COMPLEX SYSTEMS

Food is a major factor for health and public well-being.
It is one of the most important sectors of industry and
deals with chemicals, agriculture, animal feed, food pro-
cessing, trade, retail and consumer sectors. Providing
an adequate food supply to a growing world population
is one of the grand challenges our global society has to
address. Enterprises need to continuously provide safe,
tasty, healthy, affordable, and sustainable food in suf-
ficient volumes. This requires adapting to a range of
factors, such as the increase in human population and
health requirements, and the reduction in crops and live-
stock due to environmental factors and changes in the
socio-political scene (van Mil et al. (2014)). Besides,
there is a need for an integrated vision looking at these
factors from multiple scales and perspectives:

• from emotion and pleasure generated when eating
food to nano-structures of a food emulsion or food
microbial ecosystems,

• from regional organization to nutritional and soci-
ological impact,

• from health considerations to inter-crop culture and
microbial complexities, within the human body and
in relation to food microbial ecosystems.

In these conditions, creativity, pragmatism and opti-
mization methods are crucial to reach breakthrough in-
novations and sustainable solutions. We foresee a huge
opportunity for research in mathematical programming,
integrative models and decision-support tools (Perrot
et al. (2016)) to address the aforementioned challenges.
Any proposed mathematical programming framework,
however, has to deal with the following characteristic
features of food systems:

• The uncertainty and variability (in process, data
and available knowledge) that severely influences
the dynamics and emergence of various properties,

• The heterogeneity of the data, from big volumes
at the genomic scale to scarce samples at a more
macroscopic level (i.e. process scales). For instance
an ecosystem of 9 microorganisms can be charac-
terized using 40,000 genes, and its dynamics with
10 aromatic compounds,

• The complexity of qualitative and quantitative in-
formation, for instance for social and environmental
evaluation, at various scales in space and time,

• The variety of perspectives, types of models, re-
search goals and data produced by conceptually dis-
joint scientific disciplines, ranging from physics and
physiology to sociology and ethics.

Moreover, there is a need to find an appropriate descrip-
tion level, able to express the complexity of an ecosystem
with minimum uncertainty. Building models is essen-
tial, but highly difficult; efficient modeling necessitates
a rigorous iterative process combining computationally
intensive methods, formal reasoning and expertise from
different fields.

THE HUMAN FACTOR

The specifics of food domain bring to focus another ma-
jor player, what can be called the human factor. Al-
though not very evident, most of the computing ap-
proaches rely on human capabilities, for example, to



organize a model and generalize it. They also rely on do-
main experts and an appropriate methodology to handle
their expertise. In fact, at every stage, human expertise
and decision making are highly important for improv-
ing the understanding of food systems, and as such, they
should be integrated in the computation.
There is a long tradition in artificial intelligence (AI)
of involving humans in the computational loop. Expert
systems, for instance, have been specifically designed for
mimicking the decision-making ability of a human ex-
pert. Learning, classification, natural language process-
ing, search and optimization are many facets of this do-
main, all aimed at answering fundamental questions like:
How does the human mind work, and can non-humans
have minds? (Kohavi and Provost (1998), Tonda et al.
(2013)).
Real-world applications of AI are definitely complex,
but not only. The questions asked are themselves com-
plex. In particular, when dealing with optimization, the
evaluation of a complex system state relies on multi-
ple criteria that may be numerous, uncertain, noisy and
subjective. The possible answers are dealing more with
tradeoff and equilibrium stages than with the classical
notion of optimum. Several, and often many, objectives
have to be considered simultaneously.
The vast subject of sustainability, for instance, clearly
needs multi-objective optimization tools. The United
Nations have adopted the following definition on March
20, 1987: a sustainable development is a development
that meets the needs of the present without compro-
mising the ability of future generations to meet their
own needs. This statement has the major advantage to
emphasize management policies where economy is not
the unique concern. However, it definitely requires an
evaluation of a series of criteria, and an optima that rep-
resent compromises between various incompatible aims,
like financial profit and nature preservation.
Evaluating sustainability in practice is extremely dif-
ficult, subjective and scale dependent. Current tech-
niques, such as Life Cycle Analysis (LCA), consist of
creating an inventory of flows from and to nature for a
given system. This inventory is supposed to take into
consideration every input and every output of the sys-
tem. Then, some impact factors are computed according
to international standards (ISO 14000 for environmental
management) and available databases of typical values.
Various global environmental impact factors are then
computed via weightings, in which it is recognized that
a high degree of subjectivity is at play. These quantities
are then used for decision making.
Various critiques can be made to these types of ap-
proaches: a LCA strongly depends on available data,
and databases may become obsolete as new material and
manufacturing methods constantly appear. Addition-
ally, even if LCA is a powerful tool for analyzing mea-
surable aspects of quantifiable systems, some effects (hu-
man, social, psychological) cannot be reduced to num-

Figure 1: The evolutionary loop. User interactions can
occur at any stage including selection/evaluation of in-
dividuals and the genetic operators.

bers and inserted into existing models. Once again, effi-
cient and versatile computer optimizations are desirable
for improving the accuracy of existing approaches, but
at the same time, it seems clear that in this context,
decision making cannot be delegated to machines.

THE HUMANIZED COMPUTATION PER-
SPECTIVE

The idea of a humanized computational intelligence con-
sists of directly embedding the capability of a human in
a computational system, instead of using a representa-
tive model as more classical AI approaches. In other
terms, it aims at dealing with complex problems by
combining human capabilities with autonomous compu-
tations, leveraging the strengths of both sides (Takagi
(1998)).

Interactive Evolution

One of the most advanced techniques in this direc-
tion are interactive evolutionary computation (IEC) ap-
proaches, based on evolutionary algorithms. Evolu-
tionary Algorithms (EAs) are stochastic optimization
heuristics that copy, in a very abstract manner, the
principles of natural evolution that let a population of
individuals be adapted to its environment (Goldberg
(1989)). An EA considers populations of potential so-
lutions exactly like a natural population of individuals
that live, fight, and reproduce, but the natural environ-
ment pressure is replaced by an optimization pressure.
Reproduction (see Fig. 1) consists of generating new
solutions via variation schemes (the genetic operators),
that, by analogy with nature, are called mutation if they
involve one individual, or crossover if they involve two



parent solutions. A fitness function, computed for each
individual, is used to drive the selection process, and is
thus optimized by the EA. More specifically, Interactive
Evolutionary Computation (IEC) is focused on the op-
timization of subjective quantities captured via a user
interface.
Whereas current IEC research has focused on improving
the robustness of the underlying algorithms, much work
is still needed to tackle human-factors in systems where
adaptation between users and systems is likely to occur
(Mackay (2000)). Applications of IEC range from artis-
tic to scientific projects (Takagi (1998), Lutton (2006),
Tonda et al. (2013)). For scientific and engineering ap-
plications, IEC is interesting when the exact form of a
more generalized fitness function is not known or is diffi-
cult to compute, say for producing a visual pattern that
would interest a particular user. Here, the human visual
system, together with the emotional and psychological
responses of the user in question are far superior than
any pattern detection or learning algorithm.

The Visible & Hidden Roles of Humans in IEC

The role of humans in IEC can be characterized by the
evolutionary component at which they operate (Fig. 1),
namely: initialization, evolution, selection, genetic oper-
ators, constraints, local optimization, genome structure
variation and parameters tuning, which may or may not
be desirable from a usability perspective especially for
non-technical users.
The general approach when humans are involved, espe-
cially for parameter tuning, is mostly by trial-and-error
and reducing the number of parameters. Such tasks are
often visible, in that they are facilitated by a user inter-
face. However, there exists a hidden role of humans in
IEC that has often been neglected. Algorithm and sys-
tem designers play a central role in deciding the details
of the fitness function to be optimized and in setting the
default values of system parameters (contributing to the
“black box” effect of IEC systems). Such tasks are in-
fluenced by the previous experience of the designers and
end-user task requirements. Besides this hidden role in
the design stage, there is a major impact of the human
in the loop on the IEC itself. This problem is known
as the “user bottleneck” (Poli and Cagnoni (1997)), i.e.
a human fatigue due to the fact that the user and ma-
chine do not live and react at the same speed. Various
solutions have been considered in order to avoid sys-
tematic and repetitive or tedious interactions, such as:
(i) reducing the size of the population and the number
of generations; (ii) choosing specific models to constrain
the exploration in a-priori interesting areas of the search
space; and (iii) performing an automatic learning (based
on a limited number of characteristic quantities) in order
to assist the user and only present interesting individu-
als of the population, with respect to previous votes or
feedback from the user. These solutions require consid-

erable computational effort.

Example: Guided Search for Agronomy

EvoGraphDice (Boukhelifa et al. (2013)), was designed
to aid the exploration of multidimensional datasets
where 2D projections of combined dimensions are of in-
terest to agronomists. Starting from dimensions whose
values are automatically calculated by a Principal Com-
ponent Analysis (PCA), an IEC progressively builds
non-trivial viewpoints in the form of linear and non-
linear dimension combinations, to help users discover
new interesting views and relationships in their data.
The criteria for evolving new dimensions is not known
a-priori and is partially specified by the user via an in-
teractive interface. Pertinence of views is modelled us-
ing a fitness function that plays the role of a predic-
tor: (i) users select views with meaningful or interest-
ing visual patterns and provide a satisfaction score; (ii)
the system calibrates the fitness function optimized by
the evolutionary algorithm to incorporate user’s input,
and then calculates new views. A learning algorithm
was implemented to provide pertinent projections to the
user based on their past interactions. The evaluation of
EvoGraphDice (Boukhelifa et al. (2015a;b)), followed a
mixed approach where, on the one hand we observed
the utility and effectiveness of the system for the end-
user (user-centered approach); and on the other hand
we analysed the computational behaviour of the system
(algorithm-centered approach). Based on these evalua-
tions, it appears that the interactive evolutionary algo-
rithm, with the help of user feedback, was able to con-
verge quickly to an interesting view when a clear task
was specified (Boukhelifa et al. (2015a)). In the other di-
rection, the IEC allowed users to laterally explore differ-
ent possibilities (Landrin-Schweitzer et al. (2006)),bet-
ter formulate their research questions and build new
hypotheses for further investigation (Boukhelifa et al.
(2015b)).

CONCLUSION: RESEARCH OPPORTUNI-
TIES FOR IEC IN FOOD SCIENCE

Decision making in food science requires methods able
to efficiently cope with experts knowledge. IEC repre-
sents an attractive framework for embedding expertise
and human factors in computational systems. However,
user-driven optimization processes rely on systems that
adapt their behavior based on user feedback, while users
themselves adapt their goals and strategies based on the
solutions proposed by the system. This two way commu-
nication and adaptation presents prospects to conduct
future research. We discuss these below as research op-
portunities aiming to facilitate and support the different
roles humans play in IEC, i.e. in the design, interaction
and evaluation of IEC systems.



• Human-Centered Design: during the design, devel-
opment and evaluation of many of our tools (see
Tonda et al. (2013)), we worked with domain ex-
perts at different levels. For EvoGraphDice, for in-
stance, we largely benefited from having a domain
expert as part of the design and evaluation team.
However, this was carried out in an informal way.
Involving end-users in the design team is a long-
time tradition in the field of Human-Computer in-
teractions (HCI) as part of the user-centered design
methodology. Participatory design, for instance,
could be conducted with IEC end-users to incor-
porate their expertise in food domain at the design
level of the algorithm.

• Interaction and Visualization: often the solutions
proposed by the IEC are puzzling to the end-user.
This is because the inner workings of the evolu-
tionary algorithm and user exploration strategies
that led to the solution are often not available to
the user. This black box effect is challenging to
address as there is a fine balance to find between
the richness of a transparent interface and the sim-
plicity of a more obscure one. Finding the tipping
point requires an understanding of evolving user ex-
pertise in manipulating the system, and the task
requirements. Whereas user-centered design can
help elicit these requirements and tailor tools to
user needs over time, visualization techniques can
make the provenance of views and the system sta-
tus more accessible: there exists rich and varied
interaction techniques to facilitate user feedback in
parallel to developing robust user models that try
to learn from the provided input.

• Multifaceted Evaluation: the evaluation of an IEC
system remains a difficult task as the system adapts
to user preferences but also the user interprets and
adapts to system feedback. Getting a clear un-
derstanding of the subtle mechanisms of this co-
adaptation (Mackay (2000)) is challenging and re-
quires to consider evaluation criteria other than
speed of algorithm convergence and the usability
of the interface. In the context of data exploration,
desirable features can be characterized by lateral
thinking, surprising findings, and the way users
learn how to operate the interactive system and
construct their own way to use it. Our observa-
tion is that the tunable balance between random-
ness and user-guided search provided by IEC seems
to be very efficient for this purpose.
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