
Is Global Sensitivity Analysis
Useful to Evolutionary Computation? ∗

Thomas Chabin, Alberto Tonda, Evelyne Lutton
UMR 782 GMPA, INRA

1 Av. Lucien Brétignères
78850 Thiverval-Grignon, FRANCE

{thomas.chabin,alberto.tonda,evelyne.lutton}@grignon.inra.it

ABSTRACT
Global Sensitivity Analysis (GSA) studies how uncertainty
in the inputs of a system influences uncertainty in its out-
puts. GSA is extensively used by experts to gather informa-
tion about the behavior of models, represented as a function
receiving some inputs or parameters and delivering one or
several outputs, through computationally-intensive stochas-
tic sampling of a parameters space. Some studies propose
to make use of the considerable quantity of data acquired in
this way to optimize the model parameters, often resorting
to Evolutionary Algorithms (EAs): intuitively, a probabilis-
tic analysis can prove useful to a stochastic optimization
technique. Nevertheless, efficiently exploiting information
gathered from GSA might not be so straightforward. In
this paper, we present two counterexamples to prove how
naively combining GSA and EA can bring about negative
outcomes. Experimental results substantiate our claim, and
suggest that GSA information should be thoroughly exam-
ined before deciding how to tackle the optimization of a
target model.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

Keywords
Sensitivity analysis, global sensitivity analysis, evolutionary
computation, EASEA, cma-es, real-valued optimization

1. INTRODUCTION
Sensitivity analysis (SA) is the study of how the uncer-

tainty in the output of a mathematical function can be ap-
portioned to different sources of uncertainty in its inputs

∗This work has been funded by the French National Agency
for research (ANR), under the grant ANR-11-EMMA-
0017, EASEA-Cloud Emergence project 2011, http://www.
agence-nationale-recherche.fr/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’15, July 11-15, 2015, Madrid, Spain.
Copyright 2015 ACM TBA ...$15.00.

[16]. In general, SA can be applied to any function f such
as:

f : Rn → Rp (1)

In practice, this technique is widely exploited by the mod-
eling community, to analyze the behavior of models with
respect to their parameters, and to later plan new experi-
ments to reduce the uncertainty on the most sensitive pa-
rameters. Indeed, a model can be defined as a function
f : Xl, Pn → Ym, whose objective is to simulate a real phys-
ical phenomena. Knowing the initial conditions represented
by the vector Xl, the model produces the final conditions of
the studied phenomena, Ym. In real-world cases, the param-
eters of the function Pn are not known with precision but
rather defined by an range value of uncertainty. Many SA
tools perform a stochastic sampling of considerable magni-
tude in the parameters’ space, and then exploit statistical
techniques to obtain information from this large quantity of
data.

It is easy to see the potential utility of data collected
through SA for an optimization of the model’s parameters:
not only SA provides a fine-grained sampling of a search
space, but it also conveys useful information about how each
parameter influences each output. This holds true especially
for evolutionary optimization techniques, that are based on a
biased stochastic sampling of the search space. Re-utilizing
the extensive amount of computation performed for a SA to
improve the performance of an evolutionary algorithm (EA)
targeting the same search space, sounds not only sensible,
but also extremely appealing. Not surprisingly, literature
already shows approaches that exploit the synergy between
SA and EAs [4]. However, making use of the information
conveyed by SA might not be as straightforward as it seems.

In this paper, we propose two case studies, specifically de-
signed to deceive an EA exploiting SA data to optimize their
values. Experimental results show that even a state-of-the-
art EA is unable to find the optimal parameter configuration
for the problems, if biased by the information provided by
SA; on the contrary, the same algorithm routinely converges
on the global optimum if no aprioristic knowledge is given,
thus proving that a naive use of SA information might ac-
tually be harmful to the optimization process.

The rest of the paper is organized as follows: section 2
briefly introduces the basic concepts of SA, and shows how
other attempts have been made to combine this technique
with evolutionary computation. Section 3 discusses one of
these combination strategies. Two counterexamples and the
related experimental results are illustrated in section 4, while

the implications are discussed in section 5. Finally, section
6 concludes the paper.

2. BACKGROUND
In the following, a few basic concepts of SA are recalled,

with a particular focus on the analysis of joint variation of
parameter interactions; subsequently, previous works at the
interface between SA and EAs are listed.

2.1 Sensitivity Analysis: Global and Local
SA is a technique used to understand how variation in

the output of a function can be apportioned qualitatively
or quantitatively to different uncertain input sources. SA
techniques can be broadly classified as local or global. Lo-
cal sensitivity analysis (LSA) is the simpler approach, where
only one function variable is perturbed at a time, while the
remaining are fixed to a nominal value. Different studies
have shown that limiting the analysis to local sensitivities
might deliver unreliable results [17] [20]. Thus, global sensi-
tivity analysis (GSA) [16] that examines the joint variation
of variable interactions, seems to be better suited for com-
plex, nonlinear models.

2.2 Global Sensitivity Analysis
One of the most common approaches to GSA has been

developed by Sobol [18], to provide the impact of each indi-
vidual decision variable and its interactions with other vari-
ables on performance objectives, using sensitivity indices.
GSA is mainly used for two goals: factor prioritizing, de-
ciding which variable uncertainty to work on, in order to
reduce the uncertainty of the output the most; and factor
fixing, highlighting which variables can be fixed to an arbi-
trary value without influencing much the output.

Each of the following types of indices takes values between
0 and 1, and represents a proportion of influence.

First-order sensitivity indices are used for the factor prior-
ity problem. A first-order index is associated to each param-
eter, representing the direct influence of the uncertainty of
that parameter onto the variance of an output. A first-order
index is defined by the following formula:

Si =
V [E(Y |Xi)]

V (Y)

where Xi is the input i on which the index is calculated, Y
is the output, and Si is the first-order index on i. The idea
is to calculate the variance of the conditional expectation
of Y knowing Xi, fixed at every possible value within the
uncertainty range of Xi, divided by the variance of Y . Fix-
ing to its true value the variable associated to the highest
first-order index, would lead to the greatest reduction in the
variance of the output.

Higher-orders sensitivity indices can also be computed.
For example, indices of order 3 can be attributed to every
triplet of parameters: such indices represent how much a
triplet is directly responsible for the variance in the output,
and are computed with the following formula:

Sijk =
V [E(Y |Xi, Xj , Xk)]

V (Y)

where Xi, Xj , Xk are the parameters on which index Sijk

is calculated, while Y is the output. The sum of every n-
order index is always equal to 1. It must be noted that the
computation of higher-order indices is expensive, as there are

`
n
k

´
of such indices for k parameters, and they are seldom

used in practice. As such, they will not be considered in this
paper.

Total-effect sensitivity indices are used for the factor-fixing
problem. A total-effect index is attributed to each parame-
ter, and is interpreted as the sum of all n-order indices in-
volving the considered parameter. A total effect index STi

represents how much the uncertainty of a parameter, com-
bined with every other uncertainty, is responsible for the
output variance. It is defined by the following formula :

STi = 1− V [E(Y |X∼i)]

V (Y)

where X∼i = X1, X2, ..., Xi−1, Xi+1, ...Xn, the set of all pa-
rameters except Xi, Y the output. Therefore, if a parameter
has a total effects index near zero, the uncertainty on this pa-
rameter has nearly no influence on the output variance. For
this reason, this parameter can be fixed to an arbitrary value
inside his interval of uncertainty without affecting much the
variance of the output.

2.3 Sensitivity Analysis and Optimization
On one hand, SA produces a considerable amount of infor-

mation, that could be interpreted as a sampling of a search
space of parameters. On the other hand, since SA is aim-
ing at finding the parameters whose variation influences the
output of a function (or a model) the most, the entire pro-
cess can be seen as an optimization problem. It is therefore
not surprising that several attempts have been performed to
combine SA with optimization tools, especially those featur-
ing a stochastic sampling of the search space.

A considerable number of research lines exploit LSA to
perform what is termed robust optimization [2], a set of tech-
niques which seek a certain amount of robustness against un-
certainty, seen as variability in the value of the parameters
of the problem or its solution. Some work, like [1] also pro-
pose a multi-objective strategy to assess the identifiability
and LSA of the parameters of a system.

In [19], EAs are used to find the worst possible parameter
settings for a model, maximizing the distance between ex-
perimental data and model predictions. The results are then
exploited to evaluate the influence of each parameter on the
outputs. While surely interesting, this approach lacks the
statistical support of global SA, providing the user with a
general impression of the most influential parameters.

Another research line, presented in two technical reports
[14] [13], aims at using the points sampled by a CMA-ES
algorithm[8] during the optimization process as the basis
for a SA, through a de-biasing of the sampling. In prac-
tice, weights are used on the sampling points, on the basis
of the covariance matrix’ determinant at each generation,
to express their bias with respect to a completely random
process. While surely interesting, this methodology raises
several theoretical questions that will need to be thoroughly
analyzed before its widespread application.

In [4], the authors use GSA measurements to reduce the
problem’s dimensionality, first optimizing the values of a
sub-set of the most sensitive parameters, and then restarting
the evolution from the solutions found in this way, finally
optimizing the remaining values.

3. ADAPTIVE DIMENSIONALITY REDUC-
TION BASED ON GSA

The idea of using progressive refinements techniques to
perform a search in large dimension spaces appeared as at-
tractive since a long time. This very simple idea is at the
origin, for instance, of the messy genetic algorithm scheme
proposed by Goldberg 25 years ago [5] : “Nature did not
start with strings of length two million (an estimate of the
number of genes in Homo sapiens) and try to make man.
Instead, simple life forms gave way to more complex life
forms, with the building blocks learned at earlier times used
and reused to good effect along the way.” Messy GAs rely
on a variable length bit-string representation of the search
space made of a list of couples (locus, allele value) specifying
the value of a bit at a given place of the genome. In this
way some genes may be over-specified (several possible val-
ues) while other may be under-specified (no affected value).
Fitness calculation is then performed after an additionnal
stage relying on various rules for inferring uncomplete string
values. This scheme has been extended in various ways in-
cluding continuous search spaces [15, 9]. It implements a
self-adaptive progressive refinement, where the selection of
primary, “heavy” parameters, is let to evolution.

Adaptive schemes (in the sense of“non-self-adaptive”) may
also be considered in this context, the critical point being
an a priori knowledge of an importance prioritization of the
parameters. Sensitivity analysis may then represent an at-
tractive solution to deal with parameters importance order-
ing. The idea is to identify non-influent parameters, via a
SA of the fitness function with respect to each variable of
the search space. A straightforward strategy for dimension-
ality reduction is then to ignore non-influent parameters in
a first optimization stage, like in [4].

4. EXPERIMENTAL ANALYSIS
We have built two counterexamples for testing the lim-

its of dimensionality reduction based on GSA. They have
been designed in the same spirit as deceptive functions [7,
6]: global informations that may be collected through a sta-
tistical analysis of some features (building blocks statistics
in the case of deceptiveness “a la Goldberg”) yields puzzling
information to the algorithm. Other interpretations may
also stem from theoretical studies regarding the influence of
local regularity features [10, 12]: global optima are located
in very irregular areas, while attractive local optima are lo-
cated inside smooth areas. Statistical features are not able
to capture local irregularities and are thus yielding erroneous
information to the algorithm [11].

4.1 Isolating a relevant subset of parameters
The tested optimization strategy rely on the following

statement (factor fixing approach, see section 2.2): a low
total effect index indicates a non-influent parameter that
can be arbitrarily fixed with only few impact on the fitness
function.

To decide which parameters are non-influential, a thresh-
old is arbitrarily fixed (a low value in the range [0, 1]): pa-
rameters that have a total sensitivity index below this thresh-
old are considered non-influential.

4.2 Algorithms
Two strategies have been considered :

• Approach 1 performs an optimization of the influential

parameters only. Non-influential parameters are fixed
to the middle of their interval of uncertainty.

• Approach 2 is based on [4]. Non-influential parame-
ters are optimized in a first stage, like in Approach 1,
whose best point is injected in the initial population
of a second optimization using all parameters.

Two Evolution Strategies have been tested, the CMA-ES
and an explicit population based EA, programmed thanks
to the EASEA package1 [3].

4.2.1 CMA-ES
The Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [8] is a popular EA, widely used for many real-world op-
timization problems. It is known for his robustness and com-
putational efficiency. For Approach 2, CMA-ES is restarted
as follows:

• The mean point is initialised to the the best set of in-
fluential parameters found during the first stage, while
the values of non-influential parameters are set to the
middle of their interval of uncertainty.

• The standard deviation for each influential parame-
ter is kept to the value obtained at the last genera-
tion of the first stage, and the standard deviation for
non-influential parameters is set to 0.3× (rangemax −
rangemin).

4.2.2 EA
The second algorithm used in our test is a classical EA

programmed in EASEA [3]. For Approach 2, the initial
population of the second stage is seeded with the content
of the last generation of the first stage. The non-influential
parameters who were fixed at the middle of their interval of
uncertainty (or search space) are attributed a random value
in their range of uncertainty.

4.3 Counterexample I
For the first counterexample, the idea is to build a func-

tion for which a non-influential parameter remains impor-
tant for the precise location of a global optimum. This
can be achieved with functions having simultaneously waves
along some axes (corresponding to influential “shapes”) and
thin peaks along other axes. The result is that the projec-
tion of the fitness function on the subspace of non-influential
parameters provides an averaged viewpoint on the fitness
landscape that erases high, thin peaks. This behaviour is
achieved by the following bi-dimensional function (Figure
1):

fit1(k1, k2) = g(k1, 1.33,−1, 0.18)+g(k2, 7.98, 1, 0.0005)+h(k1)

where g is a Gaussian:

g(k, a, b, c) = a× exp(− (k − b)2

2c2
)

and k1, k2 ∈
ˆ
− 1; 1

˜
.

To facilitate optimization along parameter k1, a small
gradient, h(k1) is added to the fitness: from k1 = −1 to
k1 = 0.0005, h(k1) goes from 0 to 0.1, and from k1 = 0.0005
to k1 = 1, h(k1) goes from 0.1 to 0.

1http://easea.unistra.fr

Figure 1: Counterexample I. The peak is positioned
in correspondence of k2 = 0.0005. Line k2 = 0 is
actually at the bottom of the peak.

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ot

al
 S

en
si

tiv
ity

 in
de

x
va

lu
e

Total effect indices
First order indices

Figure 2: Sensitivity analysis for Counterexample I.
Parameter k1 is shown to be much more influential
than parameter k2.

Figure 3: Comparison of optimization runs on k1
and k2, respectively, for Counterexample I using a
classical EA. The statistics report an average on 100
runs, the median is displayed in bold and first- and
third- quartile with thinner lines of the same color.

A global sensitivity analysis, whose results are presented
in Fig. 2 reads that k1 is influent whereas k2 is not, since
the total effect index of k2 is far lower that the total effect
index of k1.

In a first test, the function is optimized on parameter k1
alone, and the result is compared to an optimization on pa-
rameter k2 only. Since k1 seems to bear all influence whereas
k2 appears to be non-influential, it is naively expected that
the optimization on k1 will find a better value than the op-
timization on k2. Using the EA with parameters reported
in 1, we obtain the results reported in Figure 3 (statistics
on 100 runs). In this case, optimizing on the non-influential
parameter is unexpectedly a better option than optimizing
on the supposedly most influential parameter.

Population size µ = 200
Offsprings size λ = 180
Number of generations 35
Tournament selection Size = 2
BLX-α Crossover p = 1.

Log normal self adaptive mutation p = 1. τ =
√

2
Number of Runs 100

Table 1: EA parameter setting for Counterexample
I

The same conclusions are reached using the CMA-ES with
the settings reported in Table 2. Statistics for 100 runs are
displayed in Figure 4.

4.4 Counterexample II
The behaviour shown in Counterexample I may be coun-

terbalanced by a restart strategy, such as Approach 2 de-

Figure 4: Comparison of optimizations on k1 and k2,
respectively, for Counterexample I using CMA-ES.

Figure 5: Counterexample II. There are two thin
peaks, a very thin one corresponding to a local opti-
mum is located at (−0.5, 0.5) and a larger one, global
optimum at (0.5, 0.5).

Population size 10
Number of generations 632
Number of Runs 100

Table 2: Parameter settings for the CMA-ES in
Counterexample I.

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x

va
lu

e

Total effect indices
First order indices

Figure 6: Sensitivity analysis of Counterexample II.
It is evident how the total effect index for k1 is much
higher than the same index computed for k2.

scribed in section 4.2. With Counterexample II, we will see
that the optimization process using GSA information may
still be deceived, even using restarts. The function to opti-
mize in Counterexample II is defined as follows:

fit2(k1, k2) = g(k1, 10.9, 0.5, 0.25) + g(k1, 11,−0.5, 0.25)

+ g(k2, 1, 0.5, 0.25) + g2d(k1, k2, 100, 0.5, 0.01, 0.5, 0.01)

+ g2d(k1, k2, 50,−0.5, 0.0025, 0.5, 0.0025)

where

• g is a Gaussian:

g(k, a, b, c) = a× exp(− (k − b)2

2c2
)

• g2d is a 2D Gaussian:

g2d(k1, k2, a, b, c, d, e) = a×exp(−(
(k1− b)2

2× c2
+

(k2− d)2

2× e2
))

• k1, k2 ∈
ˆ
− 1; 1

˜
This fitness function is displayed in Fig. 5, where 2 optima

are visible: a local optimum, located at (k1 = −0.5; k2 =
0.5), and a global optimum, located at (k1 = 0.5; k2 = 0.5).
A GSA on Counterexample II (See Figure 6), shows that k1
can be considered as an influential parameter and k2 as a
non-influential one.

A progressive refinement (Approach 2) is compared to
a plain optimization (full search space) using a classical
EA, with the parameter settings reported in Table 3. Over

Figure 7: Statistics of 100 runs on Counterexample
II with a classical EA.

100 runs, the full search always finds the global optimum
whereas the restart strategy Approach 2 always get stuck
on the local optimum (Figure 7).

Population size µ = 2000
Offsprings size λ = 1800
Number of generations full search : 250

Approach 2 : 50 then 200
Tournament selection Size = 2
BLX-α Crossover p = 1.

Log normal self p = 1. τ =
√

2
adaptive mutation
Number of Runs 100

Table 3: EA parameter setting for the optimization,
full search space and Approach 2, for Counterexam-
ple II.

The first-stage optimization concentrates the population
around the line k1 = −0.5, which prevents the second stage
from finding the global peak positioned at k1 = 0.5.

The same set of experiments has been performed using the
CMA-ES with two parameter settings: a first one letting
the CMA-ES self-tune its population size, the second one
using a larger population size with the idea of artificially
maintaining diversity. See Table 4 for the details.

Figures 8 and 9 display the statistics over 100 runs for the
CMA-ES. It is noticeable that, using a population of 250 in-
dividuals, the strategy is trapped on the local optimum even
when using a search on all parameters. When the CMA-ES
self-tunes its population size, and thus runs using a very
small number of individuals, this effect is still very frequent
for the full search. In both cases, it is again obvious that
Approach 2 provides deceiving information to the algorithm,
and delays or even prevents it from converging.

Figure 8: Statistics of 100 runs on Counterexample
II with CMA-ES and a population size of 6. The
grey area corresponds to the superposition of the
blue and the yellow areas. This illustrates the fact
that CMA-ES is able to sometimes find the global
optimum using Approach 2 also. In the most fre-
quent scenario however, both algorithms fall into
the local optimum.

Figure 9: Statistics of 100 runs on Counterexample
II with CMA-ES and a population size of 250

Population size 6 250
Number of generations 75033 1800
Number of Runs 100 100

Table 4: Parameter setting for the two runs of CMA-
ES on Counterexample II. Number of generations
are tuned to allocate the same number of computa-
tions for each experiment.

5. DISCUSSION
The two previous counterexamples shed light on the fact

that sensitivity analysis may deliver misleading information
to the optimization process. A possible explanation is that
GSA is based on a statistical analysis over a given parameter
range. In this way it provides an averaged viewpoint on each
parameter, and it is clear that averaging may hide many
fine details that are important for optimization purposes.
Another problem is due to the fact that the results of a
GSA may drastically vary with the choice of the parameter
range. It often happens that a parameter is influent on some
subspace and not on another. Fig 10 illustrates this effect
for Counterexample I: when k1, k2 ∈

ˆ
− 1; 1

˜
, k1 is the

parameter that has almost all the influence, whereas k2 is
almost non-influential. But on other areas, results can be
the opposite: for instance if k1, k2 ∈

ˆ
− 0.1; 0.1

˜
, k1 is

regarded as non-influential, while k2 becomes predominant.
The question of an efficient use of GSA inside an optimiza-

tion procedure is raised: GSA is, in itself, extremely time
consuming, and this cost has not been taken into account
in the previous experiments. It seems obvious that GSA,
based on a stochastic sampling of the full search space or of
an area of it, consumes a computation time that may some-
times better be spent to perform the search itself. Addition-
ally, using the averaged information provided by GSA may
hidden some interesting irregular areas where optima may be
found. Finally, adaptive refinement methods like approach
2 proposed in this paper, or the one proposed in [4], need
to identify a non-negligible subset of non-influential param-
eters, which is not always the case, especially for complex
optimization problems. More progressive strategies may be
imagined, but once again with the risk related to an assess-
ment of the relative importance of parameters averaged over
a given area.

6. CONCLUSIONS
GSA is a technique able to deliver information on how the

uncertainty in the inputs of a system might influence uncer-
tainty in its outputs. Since this data is acquired through
a stochastic sampling of the search space, several research
lines exploited the intuitive synergy between GSA and EAs,
using the information to reduce the dimensionality of the
search space, or to choose the variables on which to opti-
mize first.

In this paper, we presented two case studies, specifically
designed to provide deceiving information to sensitivity anal-
ysis used during an optimization process. As a result, stochas-
tic optimization biased by this information has been exper-
imentally proven unable to reach the global optimum on
both problems. A simple progressive refinement optimiza-
tion scheme based on parameter prioritization such as in [4]
may work on some functions, but there is a risk of falling

into a local optimum, from which escaping might prove to be
hard. Parameter prioritization might work better for multi-
objective problems, thanks to a better diversity preserva-
tion mechanism necessary for a correct sampling of Pareto
Fronts.

LSA remains interesting, and for instance local Sobol in-
dices may be useful for tuning mutations, in the same spirit
as what has been developed in [11], but with an associ-
ated computational cost that should always be taken into
account.

7. REFERENCES
[1] Barichard, V., Hao, J.K.: Resolution d’un probleme

d’analyse de sensibilite par un algorithme
d’optimisation multiobjectif. In: 5eme conference
francophone de Modelisation et SIMulation (MOSIM
2004), Nantes. pp. 59–66 (2004)

[2] Beyer, H.G., Sendhoff, B.: Robust optimization–a
comprehensive survey. Computer methods in applied
mechanics and engineering 196(33), 3190–3218 (2007)

[3] Collet, P., Lutton, E., Schoenauer, M., Louchet, J.:
Take it easea. In: Parallel Problem Solving from
Nature PPSN VI. pp. 891–901. Springer (2000)

[4] Fu, G., Kapelan, Z., Reed, P.: Reducing the
complexity of multiobjective water distribution system
optimization through global sensitivity analysis.
Journal of Water Resources Planning and
Management 138(3), 196–207 (2011)

[5] Goldberg, D., Korb, B., Deb, K.: Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems 3(5), 493–530 (1989)

[6] Goldberg, D.: Genetic algorithms and walsh fuctions:
II. Deception and its analysis. Complex Systems 3(2),
153–171 (April 1989)

[7] Goldberg, D.: Genetic algorithms and walsh functions:
I. A gentle introduction. Complex Systems 3(2),
129–152 (April 1989)

[8] Hansen, N., Ostermeier, A.: Completely derandomized
self-adaptation in evolution strategies. Evolutionary
computation 9(2), 159–195 (2001)

[9] Kargupta, H.: The gene expression messy genetic
algorithm. In: International Conference on
Evolutionary Computation. pp. 814–819 (1996)

[10] Leblanc, B., Lutton, E.: Bitwise regularity and
ga-hardness. In: ICEC 98, May 5-9, Anchorage,
Alaska (1998)

[11] Lutton, E., Lévy Véhel, J.: Pointwise regularity of
fitness landscapes and the performance of a simple es.
In: CEC’06. Vancouver, Canada (July, 16-21 2006)

[12] Lutton, E., Véhel, J.L.: Hölder functions and
deception of genetic algorithms. IEEE transactions on
Evolutionary computation 2(2), 56–72 (July 1998)

[13] Müller, C., Paul, G., Sbalzarini, I.: Sensitivities for
free: Cma-es based sensitivity analysis. Tech. rep.,
ETH Zurich (2011)

[14] Paul, G., Müller, C., Sbalzarini, I.: Sensitivity analysis
from evolutionary algorithm search paths. Tech. rep.,
ETH Zurich (2011)

[15] Rajeev, S., Krishnamoorthy, C.: Genetic
algorithms-based methodologies for design
optimization of trusses. Journal of Structural
Engineering 123(3), 350–358 (1997)

Figure 10: Various sensitivity analyses on three sub-spaces for Counterexample I: parameters influences vary
a lot !

[16] Saltelli, A., Ratto, M., Andres, T., Campolongo, F.,
Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.:
Global Sensitivity analysis, The Primer. John Wiley &
Sons (2008)

[17] Saltelli, A., Annoni, P.: How to avoid a perfunctory
sensitivity analysis. Environmental Modelling &
Software 25(12), 1508–1517 (2010)

[18] Sobol, I.M.: Global sensitivity indices for nonlinear
mathematical models and their monte carlo estimates.
Mathematics and computers in simulation 55(1-3),
271–280 (2001)

[19] Stonedahl, F., Wilensky, U.: Evolutionary robustness
checking in the artificial anasazi model. In: AAAI Fall
Symposium: Complex Adaptive Systems (2010)

[20] Tang, Y., Reed, P., Wagener, T., Van Werkhoven, K.,
et al.: Comparing sensitivity analysis methods to
advance lumped watershed model identification and
evaluation. Hydrology and Earth System Sciences
Discussions 11(2), 793–817 (2007)

