
Learning Dynamical Systems Using
Standard Symbolic Regression

Sébastien Gaucel1, Maarten Keijzer2, Evelyne Lutton1, and Alberto Tonda1

1 INRA UMR 782 GMPA,1 Av. Brétignières, 78850, Thiverval-Grignon, France
{sebastien.gaucel,evelyne.lutton,alberto.tonda}@grignon.inra.fr

2 Pegasystems Inc., Utrecht Area, Netherlands
maarten.keijzer@pega.com

Abstract. Symbolic regression has many successful applications in learn-
ing free-form regular equations from data. Trying to apply the same ap-
proach to differential equations is the logical next step: so far, however,
results have not matched the quality obtained with regular equations,
mainly due to additional constraints and dependencies between variables
that make the problem extremely hard to tackle. In this paper we pro-
pose a new approach to dynamic systems learning. Symbolic regression
is used to obtain a set of first-order Eulerian approximations of differ-
ential equations, and mathematical properties of the approximation are
then exploited to reconstruct the original differential equations. Advan-
tages of this technique include the de-coupling of systems of differential
equations, that can now be learned independently; the possibility of ex-
ploiting established techniques for standard symbolic regression, after
trivial operations on the original dataset; and the substantial reduction
of computational effort, when compared to existing ad-hoc solutions for
the same purpose. Experimental results show the efficacy of the proposed
approach on an instance of the Lotka-Volterra model.

Keywords: Differential Equations, Dynamic Systems, Evolutionary Al-
gorithms, Genetic Programming, Symbolic Regression

1 Introduction

In recent years, Genetic Programming (GP) gained popularity as an effective op-
timization technique [1], and its capabilities of automatically uncovering hidden
relationships in datasets and producing rules to control complex systems haves
been proved in several real-world applications [2] [3].

Differential equations are mathematical equations for an unknown function
of one or several variables that relates the values of the function itself and its
derivatives of various orders: they play a prominent role in engineering, physics,
economics, biology, and other disciplines.

The idea of using symbolic regression to learn differential equations is present
since the beginnings of GP [4]: given the great interest towards this topic, several

All authors contributed equally and their names are presented in alphabetical order.

research lines have followed. Babovic and Keijzer [5] propose a dimensionally-
aware GP to learn dynamic systems in hydraulic engineering. Cao et al. [6]
present a GP-based technique where an individual is a set of trees, representing
a system of equations. Coefficients of the equations are optimized via a Genetic
Algorithm, then the system is solved through a numerical integration method
and the resulting equations are finally evaluated against training data. Iba [7]
proposes an improvement over the previous approach, where coefficients are op-
timized through a least mean square technique, and a Runge-Kutta method of
4th order is used to build a solution. Bernardino and Barbos [8] use Grammar-
Based Immune Programming to tackle the problem. It is important to notice
that, while quite effective, all these concepts rely upon the use of ad-hoc individ-
ual construction, and significant computational costs to first solve the candidate
equations and then compare them to experimental data.

We investigate a novel methodology for learning ordinary differential equa-
tions (ODE) through symbolic regression, whose original idea stems from an
invited talk given by Maarten Keijzer during the GECCO conference in 2013
[9]. Given a system of ODEs, we show how the problem can be reduced to find-
ing the first-order approximation of each ODE.We then apply the subsequent
steps:

1. For each equation, standard symbolic regression is used to obtain a small
group of candidate solutions that represent a trade-off between complexity
and fitting;

2. A simple derivation procedure, following the properties of the first-order ap-
proximation of an ODE, is applied to each candidate solution, transforming
them in ODEs;

3. Finally, corresponding equations are coupled in systems and examined with
respect to dynamical behavior and fitting on the original data. The best
system is returned to the user as the solution for the original problem.

Important advantages of our method are the possibility of learning differential
equations using established symbolic regression techniques, instead of devising
ad-hoc individual representations and fitness functions; the greatly reduced com-
putational cost, since the most expensive procedures are performed a posteriori
on a reduced set of candidate solutions; and the possibility of separately learning
each differential equation in a target system, since the first-order approximation
removes dependencies between variables.

Using the Lotka-Volterra model as a case study, we show the applicability
of the proposed methodology through experimental validation. We find that the
described approach is able to regularly find the correct structure of the original
model, even in presence of noise. Results are discussed, and future works outlined.

The rest of the paper is structured as follows: Section 2 recalls a few necessary
concepts related to symbolic regression and differential equations. The proposed
approach is outlined in Section 3. The case study is presented in Section 4, while
the experimental evaluation is described in Section 5. Results are discussed in
Section 6, and finally Section 7 draws the conclusions and prospects future works.

2 Background

2.1 Genetic Programming and symbolic regression

Symbolic regression is an evolutionary technique able to extract free-form equa-
tions that correlate data from a given experimental dataset. The original idea is
presented in [4]. Candidate solutions are encoded as trees, with terminal nodes
corresponding to constants and variables of the problem, while intermediate
nodes encode mathematical functions such as {+,−, ∗, /, ...}. The fitness function
is usually proportional to the absolute or squared error between experimental
data, with parsimony corrections to favor more compact solutions. An example
of an individual for a symbolic regression problem is presented in Figure 1.

*

-

0.2 /

x +

ln

*

f(x) = [0.2 – (x/42)] * ln(x)

Genotype Phenotype Fitness

40 2

x

y

x

y

1 x

Fitness = abs(f(xi) –g(xi))𝑁
𝑖=0

Fig. 1: A candidate solution in a typical symbolic regression problem. The inter-
nal representation (genotype) is a binary tree. The phenotype is the correspond-
ing function, while the fitness to minimize is usually the absolute or squared
error with respect to experimental points.

2.2 Differential equations and first-order approximation

In order to clarify the scope of our work, we briefly summarize a few basic con-
cepts related to differential equations that will be extensively used in the follow-
ing. A differential equation is defined as an equation containing the derivatives of
one or more dependent variables, with respect to one of more independent vari-
ables [10]. We will focus on ordinary differential equations (ODE), that contain
derivatives as a function of a single variable (e.g. the time). A classical example
of a differential equation is the first-order ordinary differential equation :

y′(t) = f(t, y(t)) y(t0) = y0 (1)

where y(t) is a function and y0 is an initial condition.
The (Explicit) Euler method [11] is a first-order numerical procedure for

solving ordinary differential equations with a given initial value: it is the most

basic explicit method for numerical integration of ordinary differential equations.
With reference to Equation 1, we use the finite difference formula to approximate
y′(t):

y′(tn) = lim
∆t→0

y(tn +∆t)− y(tn)

∆t

∼=
y(tn +∆t)− y(tn)

∆t
(2)

Choosing a value ∆t for the size of every step and setting tn = t0 + n ·∆t, one
step of the Euler method from tn to tn+∆t = tn +∆t is:

yn+∆t = yn +∆t · f(tn, yn) (3)

where the value of yn is an approximation of the solution to the ODE at time
tn, so that yn ≈ y(tn). The error per step of this method is proportional to the
square of the step size, while its error at a given time is proportional to the step
size. It is important to notice how the selection of the step size plays a crucial
role in the quality of the results.

A remarkable property of the Euler approximation is the possibility of re-
constructing the initial ODE, under specific conditions. In particular, one can
rewrite Equation 3 as follows:

yn+∆t − yn = F (tn, yn, ∆t) (4)

where F is a function which allows to evaluate yn+∆t for any value ∆t. From
Equation 4 and looking at the derivative according to ∆t around 0, we obtain

lim
∆t→0

yn+∆t − yn
∆t

= lim
∆t→0

F (tn, yn, ∆t)− F (tn, yn, 0)

∆t
(5)

which can be rewritten as

f(t, y(t)) = y′(t) =
∂F (tn, yn, ∆t)

∂∆t

∣∣∣∣
∆t=0

(6)

going back to Equation 1.
In a practical scenario, Equation 4 can be used to iteratively build the approxi-
mate solution of Equation 1. At the opposite, assuming that an analytical form
of the approximate solution of Equation 1 is available, Equation 6 can be used
to obtain function f .

3 Proposed approach

From Equation 6, we see how it is possible to return to the original ODE starting
from the first-order approximation given in Equation 4. It is sufficient to find
the classical function F in Equation 4.

In order to find F , additional data must be computed. Given a standard
dataset with values of y for different values of time t, we need to add information
to each line yn, tn, by computing the values of ∆t and yn + 1: in fact, in a real-
world dataset, it is not given that ∆t = tn+1 − tn will be constant for every n.
Nevertheless, the procedure is trivial: an example is reported in Table 1. Once
the new data are obtained, symbolic regression can be straightforwardly applied
to the new dataset, to learn F .

t y

0 20

1.8 16.1

3.5 13.2

5.4 10.9

7.4 8.8

... ...

=⇒

t y ∆t F = yn+∆t − yn
0 20 0 0
0 20 1.8 -3.9

1.8 16.1 0 0
1.8 16.1 1.7 -2.9

3.5 13.2 0 0
3.5 13.2 1.9 -2.3

5.4 10.9 0 0
5.4 10.9 2.0 -2.1

...

Table 1: An example on how the values of the additional variables (right) can
be easily produced starting from the original dataset (left). In this case, for each
line, we computed the values of ∆t and F to the next point, only.

One of the known issues of symbolic regression and GP in general is the so-
called overfitting : solutions that closely approximate training data often exploit
exclusive features of the dataset, for example by including terms that model the
noise as well. This leads to poor performances on validation sets. Overfitting is
sometimes associated with bloating, that is, the tendency of GP algorithms to
produce bigger and bigger solutions as the evolution goes on. Connections be-
tween overfitting and bloating are still being investigated [12] [13], but empirical
evidence shows how it can be beneficial to add parsimony measurements in the
fitness function or preserve solutions of different complexity, in order to contain
the phenomenon.

While overfitting is always undesired, it is particularly deleterious for the
proposed approach: even if the F found through symbolic regression performed
reasonably well on validation data, when using our procedure to go back to
the original ODE, terms with a limited influence on F could create degenerate
solutions. For this reason, instead of just using the best solution obtained at the
end of the process, we prefer to have a set of candidate equations, each one a
different compromise on a Pareto front between complexity and fitting on data.

Dynamic systems are usually represented by a set of ODEs and our approach
allows the user to run a symbolic regression algorithm independently on each
equation: however, since we prefer to work with a set of candidate solutions for
each equation, we need an extra step to choose the best combination to represent
the original system. Thus, we apply the procedure described in Equation 6 to

every candidate solution of each set; we generate a set of n-uples, where n is the
number of equations in the original system, by permuting solutions in all sets;
we discard degenerate n-uples, showing a behavior dissimilar from the original
data; and finally we choose the n-uple with the least absolute error with regards
to the training data. The whole procedure is summarized in Figure 2.

X X … X

f1

g1

…
z1

f1

g2

…
z1

f1

g1

…
z2

f1

g3

…
z1

f1

g1

…
z3

fn

gm

…
zk

fn

gm

…
zk-1

fn

gm

…
z3

f2

g2

…
z2

…
fn

gm

…
z2

fn

gm

…
z1

f4

gm-2

…
z1

Step I

Step II

Step III

z1

z2

…
zk

f1

f2

…
fn

g1

g2

…
gm

F Symbolic
Regression

… F1 F2 … Fn

G1 G2 … Gn

Z1 Z2 … Zn

G Symbolic
Regression

Z Symbolic
Regression

Fig. 2: Summary of the proposed approach. In Step I, standard symbolic regres-
sion is executed independently on each equation of the original dynamic system:
each run returns a set of candidate solutions of variable size, representing differ-
ent compromises between complexity and fitting on training data. During Step
II, the obtained sets are transformed into sets of ODEs, following our method-
ology, and then permuted. Finally, in Step III, the resulting set of systems of
ODEs is pruned of degenerate equations, the remaining candidate solutions are
sorted by fitting on the original data, and the best solution is returned to the
user.

4 Case study

In order to attest the viability of our approach, we choose the Lotka-Volterra
model [14] as a case study. This model, also known as predator-prey equations, is
a system composed of two first-order, non-linear, differential equations frequently
used to describe the dynamics of biological systems in which two species interact,
one as a predator and the other as prey. The equations have been extensively
used in biology and other fields, such as economic theory [15]. Their form is:

{
dx
dt = x(α− βy)
dy
dt = −y(γ − δx)

(7)

where x is the number of prey, y is the number of predators, t represents
time, dxdt and dy

dt represent the growth rates of the two populations over time. α,
β, γ and δ are parameters that describe the interaction between the two species.

We focus on a particular configuration of the Lotka-Volterra model, where the
parameters’ values have been chosen so that no population goes extinct, leading
to periodic solutions: α = 0.04, β = 0.0005, γ = 0.2 and δ = 0.004. Initial
populations were taken as x0 = y0 = 20. A plot of the chosen configuration is
reported in Figure 3.

Fig. 3: Plots of the Lotka-Volterra model with parameters used in the exper-
iments. On the left, the variation of the two population with respect to time
(x in black, y in blue/light grey). On the right, the state plane with x on the
horizontal axis and y on the vertical axis.

Following Equation 4, we are then interested in finding the two functions F
and G, first-order approximations of the first and second differential equation of
the Lotka-Volterra model, respectively:

xn+∆t − xn = F (∆t, xn, yn) (8)

yn+∆t − yn = G(∆t, xn, yn) (9)

A major feature of the proposed approach is the ability to learn the two
functions in two separate and independent runs of the symbolic regression algo-
rithm. Indeed, the reciprocal dependency of the Lotka-Volterra system has been
removed.

5 Experimental results

Since one of the main advantages of the proposed approach is the possibility
of exploiting existing tools for standard symbolic regression, for our study we

choose Eureqa Formulize4 [1], considered a state-of-the-art software in the field.
Eureqa has one feature of particular interest for our purpose: instead of returning
a single solution per run, it presents the user a group of solutions that represent
a Pareto front for the objectives of fitting and complexity: see Figure 5 for an
example. In Eureqa, each symbol that can appear in a GP tree is associated with
a weight, and the complexity of a candidate solution is simply the sum of all
weights of terms appearing in it; fitting is computed with respect to the squared
error with regards to the training data. It must be noted that, in principle, any
GP-based technique able to preserve individuals of different complexity in the
final population could be used for our methodology.

Each dataset is modified following the procedure described in Section 3: we
use 200 points for the training set. We are interested in exploring the influence
of noise and regularity of sampling on the quality of the final results, so for each
experiment we use a first dataset sampled every 2 s, and a second one, where
every point of data is sampled between 1.5 and 2.5 s from the previous one,
following a uniform probability.

Eureqa is configured to employ its Basic set of functions {+,-,*,/,negation}
and terminal symbols {integer constant, float constant, variable}. In
each experiment Eureqa is run once to stagnation, that is, until the index for
the maturity of the population hits the threshold value of 90%. On the ma-
chine used for the experiments, a laptop with an Intel i5-2430M CPU (2 cores,
2 threads per core) at 2.40 GHz and 4 GB of RAM, running to stagnation takes
15-20 minutes, and around 1010 total fitness evaluations. After each run, Eureqa
typically returns about 20 solutions on its Pareto front.

5.1 Noise-free data

In the simplest scenario, we use datasets with no noise added. The first run,
with data regularly sampled, returns 20 candidate solutions for F and 20 candi-
date solutions for G. Each equation is transformed into an ODE, following our
proposed approach. The resulting 400 systems are then pruned of degenerate
solutions, that is, solutions that converge towards a point in the x, y plane (see
Figure 4 for an example). The remaining systems of ODEs are finally sorted by
fitting on the original unmodified training data. The same procedure is followed
for the dataset with irregular sampling. This time, 21 candidate solutions are
produced for F and 25 for G. The best ODE systems are:

{
dx
dt = 0.04114x− 0.0004946xy
dy
dt = 0.00367xy − 0.1861y

{
dx
dt = 0.04116x− 0.0004924xy
dy
dt = 0.003599xy − 0.1826y

(10)

with the result for regular sampling on the left, and the result for irregular
sampling on the right. Both show the same form of the original Lotka-Volterra
model, and a remarkable approximation of the parameters’ values. As a compari-
son, in Figure 4 the two systems found with the proposed approach are compared

4 http://formulize.nutonian.com/

to the systems obtained by simply coupling the best fitting-wise candidate solu-
tions produced in each run.

(a) Regular sampling, noise-free (b) Irregular sampling, noise-free

Fig. 4: Side-by-side comparison on the noise-free dataset, of the best system
found through the proposed approach (left), and the system obtained by pairing
the two fitting-wise best solutions of each run (right). It is easy to notice how
simply pairing the best candidate solutions leads to degenerate forms or to a
lowest fitting on the original training data.

5.2 Absolute noise

In a second trial, random noise (selected from the interval (−5, 5) with uniform
probability) is added to the x and y outputs of the model. On the regularly
sampled dataset, Eureqa finds 17 candidate solutions for F and 20 for G. On
the irregularly sampled dataset, 13 solutions for F and 19 for G are obtained.
The best resulting systems are:{

dx
dt = 0.03992x− 0.0005548xy
dy
dt = 0.003525xy − 0.1916y

{
dx
dt = 0.03946x− 0.0005354xy
dy
dt = 0.003662xy − 0.1948y

(11)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

5.3 Noise 5%

In the third experimental run we add random noise proportional to the output
value, ranging from -5% to +5% with uniform probability. On the regularly
sampled dataset, Eureqa returns 16 candidate solutions for F and 15 for G. On
the irregularly sampled dataset, we obtain 16 candidate solutions for F and 16
for G. The best resulting systems are:{

dx
dt = 0.03947x− 0.0004883xy
dy
dt = 0.003706xy − 0.1902y

{
dx
dt = 0.03743x− 0.0004522xy
dy
dt = 0.003707xy − 0.1916y

(12)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

5.4 Noise 10%

In the last experiment, we add random noise proportional to the output value,
ranging from -10% to +10% with uniform probability. On the regularly sampled
dataset, 23 candidate solutions for F and 20 for G are obtained. On the irregu-
larly sampled dataset, Eureqa finds 17 candidate solutions for F and 18 for G.
The best systems are:

{
dx
dt = 0.0362x− 0.0004797xy
dy
dt = 0.003306xy − 0.1841y

{
dx
dt = 0.03874x− 0.0004959xy
dy
dt = 0.003587xy − 0.1898y

(13)

with the result for regular sampling on the left, and the result for irregular
sampling on the right.

6 Results discussion

The proposed approach is able to find the correct model for the Lotka-Volterra
function during each run, even if the parameters (α, β, γ, δ) might slightly
differ, especially when dealing with noise. Remarkably, the irregularity of the
sampling for the training set does not seem to influence the final outcome; while
the presence of noise predictably returns results of lower quality.

From the experimental evaluation, we can see how Eureqa consistently re-
turns a set of candidate solutions in the order of 101: since there are only two
differential equations in the model, the search space for coupling the candidate
solutions and assessing the results in the second step of our process explores
a search space of 102. However, when dealing with huge systems of differen-
tial equations, the complexity quickly explodes: if the GP routinely returns n
solutions, the search space of possible systems of m equations would become
O(nm). Thus, it would be beneficial to reduce the number of viable equations in
each set before the coupling process. For example, all equations that, after the
derivation process from Equation 6, are reduced to a constant, can be dismissed.
This subset, however, includes only 1-2 candidate solutions per set: other meth-
ods to prune the Pareto front from uninteresting models should be explored.
From the experimental results, we observe how most of the exact forms for the
Lotka-Volterra equations always lie in the middle part of the Pareto front fit-
ting/complexity provided by Eureqa (see Figure 5). It would be interesting to
investigate whether this property can be generalized to all problems: in that
case, the extremes of the Pareto front could be excluded; also, from the Pareto
fronts, it looks that often the correct solution shows the biggest improvement
with regards to the previous one. These considerations could be included in a
heuristic coupling to reduce the number of associations.

7 Conclusions and future works

In this paper, we presented a GP-based methodology to learn ordinary differen-
tial equations starting from experimental data. The basic idea is reducing the

(a) Noise-free dataset, regular sampling: Pareto fronts
for F (left) and G (right).

(b) Noise-free dataset, irregular sampling: Pareto
fronts for F (left) and G (right).

(c) Dataset with absolute noise, regular sampling:
Pareto fronts for F (left) and G (right).

(d) Dataset with absolute noise, irregular sampling:
Pareto fronts for F (left) and G (right).

(e) Dataset with 5% noise, regular sampling: Pareto
fronts for F (left) and G (right).

(f) Dataset with 5% noise, irregular sampling: Pareto
fronts for F (left) and G (right).

Fig. 5: Pareto fronts of the solutions found by Eureqa during some of the exper-
iments. The individual with the correct form of the Lotka-Volterra function is
highlighted in red, and it is noticeable how it almost always lies in the middle of
the Pareto front, often showing the biggest improvement over the previous step.

problem to finding Euler’s first-order approximation of an ODE, that is, a regu-
lar equation. Once the starting dataset is modified accordingly, we can apply a
standard symbolic regression technique, obtaining a group of candidate solutions
that represent a trade-off between complexity and fitting to data. Through an
inverse procedure to reconstruct an ODE starting from its first-order approxi-
mation, used on the whole group of candidate solutions, we acquire a group of
ODEs. Finally, by coupling the ODEs obtained, discarding degenerate solutions,
and sorting the remaining ones by fitting on the training data, we are able to
find a system of ODEs that solves the initial problem.

From the preliminary experiments, it is clear that the coupling step might
lead to a combinatorial explosion for the systems to evaluate. Future works
will explore an automated coupling of candidate solutions, using theoretical and
heuristic measurements to return the best set of solutions. We are currently
working on the application of the proposed methodology to a real-world problem
for the modelling of processes in the food industry.

Acknowledgments

The authors would like to thank Luuk van Dijk of SpaceX for his interesting
ideas and insightful discussions.

References

1. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
science 324(5923) (2009) 81–85

2. Pickardt, C., Branke, J., Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Generating
dispatching rules for semiconductor manufacturing to minimize weighted tardiness.
In: Simulation Conference (WSC), Proceedings of the 2010 Winter, IEEE (2010)
2504–2515

3. Soule, T., Heckendorn, R.B.: A practical platform for on-line genetic programming
for robotics. In: Genetic Programming Theory and Practice X. Springer (2013)
15–29

4. Koza, J.R.: Genetic Programming: vol. 1, On the programming of computers by
means of natural selection. Volume 1. MIT press (1992)

5. Babovic, V., Keijzer, M., Aguilera, D.R., Harrington, J.: An evolutionary approach
to knowledge induction: Genetic programming in hydraulic engineering. In: Pro-
ceedings of the World Water and Environmental Resources Congress. Volume 111.
(2001) 64–64

6. Cao, H., Kang, L., Chen, Y., Yu, J.: Evolutionary modeling of systems of ordi-
nary differential equations with genetic programming. Genetic Programming and
Evolvable Machines 1(4) (2000) 309–337

7. Iba, H.: Inference of differential equation models by genetic programming. Infor-
mation Sciences 178(23) (2008) 4453–4468

8. Bernardino, H.S., Barbosa, H.J.: Inferring systems of ordinary differential equa-
tions via grammar-based immune programming. In Lio, P., Nicosia, G., Stibor,
T., eds.: Artificial Immune Systems. Volume 6825 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2011) 198–211

9. Keijzer, M.: Inducing differential / flow equations. Invited talk to the GECCO
conference (July 2013)

10. Zill, D.G.: A First Course in Differential Equations: With Modeling Applications.
Cengage Learning (2008)

11. Euler, L.: Institutionum calculi integralis. Volume 1. imp. Acad. imp. Saènt. (1768)
12. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional

complexity in genetic programming. In: Proceedings of the 12th annual conference
on Genetic and evolutionary computation, ACM (2010) 877–884

13. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11(3-4) (2010) 339–
363

14. Lotka, A.J.: Contribution to the theory of periodic reactions. The Journal of
Physical Chemistry 14(3) (1910) 271–274

15. Goodwin, R.M.: A growth cycle. Socialism, capitalism and economic growth (1967)
54–58

