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Artificial Evolution Strategy for PET Reconstruction
Franck P. Vidal, Yoann L. Pavia, Jean-Marie Rocchisani, Jean Louchet, and Évelyne Lutton

Abstract—This paper shows new resutls of our artificial
evolution algorithm for positron emission tomography (PET)
reconstruction. This imaging technique produces datasets cor-
responding to the concentration of positron emitters within the
patient. Fully three-dimensional (3D) tomographic reconstruction
requires high computing power and leads to many challenges.
Our aim is to produce high quality datasets in a time that is clin-
ically acceptable. Our method is based on a co-evolution strategy
called the “Fly algorithm”. Each fly represents a point in space
and mimics a positron emitter. Each fly position is progressively
optimised using evolutionary computing to closely match the data
measured by the imaging system. The performance of each fly
is assessed based on its positive or negative contribution to the
performance of the whole population. The final population of
flies approximates the radioactivity concentration. This approach
has shown promising results on numerical phantom models.
The size of objects and their relative concentrations can be
calculated in two-dimensional (2D) space. In 3D, complex shapes
can be reconstructed. In this paper, we demonstrate the ability
of the algorithm to fidely reconstruct more anatomically realistic
volumes.

Index Terms—Evolutionary computation, inverse problems,
adaptive algorithm, Nuclear medicine, Positron emission tomog-
raphy, Reconstruction algorithms.

I. INTRODUCTION

The core principle in nuclear medicine is to administer a
radioactive substance called tracer to patients. It is absorbed
by tissue in proportion to a physiological process. In oncology,
it is the growth of tumour cells. The reconstruction allows the
recovery of the 3D distribution of the tracer through the body
(see Fig. 1(a)). There are two kinds of tomographic modality
in nuclear medicine:

• Single-photon emission computed tomography (SPECT)
makes use of gamma emitters, i.e. photons, as a radio-
tracer.

• PET makes use of positron emitters. This is the modality
that we will consider in this article.

Fig. 1(b) illustrate the PET acquisition process. After in-
teractions, a positron combines with an electron. It generally
produces two photons of 511 kiloelectron volt (keV) emitted
in opposite directions. They are detected in ‘coincidence’
(i.e. almost at the same time). The line between the detectors
that have been activated for a given pair of photons is called
line of response (LOR).
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(a) PET-CT scan of a patient with lung
cancer and showing hilar lymph nodes.

(b) Schema of a PET acquisition
process.

Fig. 1. PET imaging.

Fig. 2. Analytic reconstruction.

Section II presents background materials about tomography
reconstruction using standard methods and preliminary results
obtained using our cooperative coevolution strategy. Section III
details the evolutionary algorithm that we developed for
positron emission tomography reconstruction. New results and
conclusions are presented in Section IV and V respectively.

II. BACKGROUND

A. Tomography Reconstruction

An overview of reconstruction methods in nuclear medicine
can be found in [1]. They are often divided in two classes.

1) Analytical methods: They are based on a continuous
modelling and the reconstruction process consists of the
inversion of measurement equations (see Fig. 2). The most
frequently used is the filtered back-projection (FBP) algo-
rithm [2].

These reconstruction methods inverse the Radon transform.
The projection data consists of the observed data. It is what is
known and it corresponds to the Radon transform (or forward-
projection) of the real activity. The real activity is unknown
and the tomography reconstruction aims at recovering the
activity. It is performed by using the Inverse Radon transform
(or back-projection) to create an estimated activity map from
the projections.

2) Iterative statistical methods: They are based on iterative
correction algorithms (see Fig. 3) [3].

Iterative methods are relatively easy to model:
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Fig. 3. Iterative method model.

• the reconstruction starts using an initial estimate of the
image (generally a constant image),

• projection data is computed from this image,
• the estimated projections are compared with the measured

projections,
• corrections are made to update the estimated image, and
• the algorithm iterates until a convergence thhreshold –

between the estimated and measured projection sets –
has been reached.

There are different ways to implement these iterative meth-
ods. The main differences are about the computation of the
projections, how the physics corrections (scattering, random,
attenuation, etc.) are applied, and how the error corrections
are applied in the estimated projections.

The maximum-likelihood expectation-maximisation (ML-
EM) [4] and ordered subset expectation-maximisation (OS-
EM) [5] are the most widely used techniques PET. They are
iterative methods. ML-EM assumes Poisson noise is present
in the measured data. It does not produce the artefacts seen
in classic FBP reconstructions, and it has a better signal-
to-noise ratio in region of low concentration. However, the
algorithm is known to converge rather slowly. OS-EM has
been proposed to speed-up convergence of the expectation-
maximisation (EM) algorithm and it has become the reference
reconstruction method. Its principle is to reduce the amount
of projections used at each iteration of the EM algorithm by
subdividing the projections in K sub-groups. The projections
of a sub-group are uniformly distributed around the volume to
reconstruct.

ML-EM and its derivative, OS-EM are gold standard re-
construction techniques in nuclear medicine. These reference
reconstruction methods, however, suffer from factors that limit
the quantitative analysis of their results, hence limit their
exploitation during the treatment planning process and during
treatment monitoring.

Prior to the reconstruction, the LOR data is often rebinned
into a sinogram [6], [7]. This intermediate data representation
corresponds to projection data that can be used by conventional
tomographic reconstruction codes. A broad overview of recon-
struction methods using projection data in nuclear medicine
can be found in [7], [8]. Using sinograms in PET introduces
drawbacks (such as sampling, difficulties to take advantages
of physics and geometrical properties of the imaging system,
etc.) and, therefore, a new approach dedicated to PET is
required to directly use the list-mode data. Other limiting
factors include the use of noisy, large and complex datasets,
complex physical phenomena (such as Compton scattering and
gamma attenuation for example), and the movement of patients
(including the motion of internal structures due to respiration).

It is possible to take them into account to attenuate the artefacts
that they generate in reconstructed images, e.g. by ‘cleaning’
sinograms or writing dedicated correction algorithms for list-
mode data, and this has been an active field of research
for quite some time. However, these technologies are not
readily available in the clinic, mainly because of the heavy
computational power that they require and/or the difficulty of
modelling all these corrections in standard algorithms.

B. Evolutionary reconstruction

The algorithm that we present here follows the iterative
algorithm paradigm. Image reconstruction in tomography is
an inverse problem that is ill-posed: a solution does not
necessarily exist (e.g. in extreme cases of excessive noise), and
the solution may not be unique. This problem can be solved
as an optimisation problem, and on such cases, evolutionary
algorithms (EAs) have been proven efficient in general, and
in particular in medical imaging [9], [10], [11]. An EA is a
stochastic optimisation tool that relies on Darwin’s principles
to mimic complex natural behaviours [12]. In particular, it
makes use of ‘genetic operators’ based on the biological
mechanisms of natural evolution (e.g. reproduction, mutation,
recombination, and selection). The candidate solutions to the
problem to be solved by optimisation are called ‘individuals’.
Individuals are grouped into a population. The population
evolves using the repeated application of the genetic operators.
The adequacy of an individual ‘to live’ in its environment is
measured using a ‘fitness function’ (also called ‘cost func-
tion’). After convergence, the ‘best’ individual is extracted. It
corresponds to the solution of the optimisation problem.

In preliminary studies, we introduced a cooperative co-
evolution strategy (or “Parisian evolution”) called “fly algo-
rithm” [13]. Cooperative-coevolution approaches rely on a
formulation of the optimisation problem as a collection of
interdependent subproblems. The population is thus made of
simpler items, parts of a full solution, that “cooperate” to build
the searched optimum. A Parisian EA (see Fig. 4) generally
contains all the usual components of an EA, plus 2 levels of
fitness:

• Global fitness computed on the whole population. It may
be the sum (or a complex combination) of local fitnesses.

• Local fitness computed on each individual to assess
their own contribution to the global solution. The local
fitness of an individual may be defined as its marginal
contribution to the global fitness.

Contrary to traditional EAs, the Fly algorithm embeds the
searched solution within the whole population, letting each
individual be only a part of the solution. The validity of this
approach has been first demonstrated for SPECT reconstruc-
tion [14]. The searched distribution of radionuclides is mod-
elled as a sample set of 3D points, the population of “flies”.
For SPECT, each fly emits γ-photons. Using a cooperative co-
evolution scheme to optimise the position of radionuclides, the
population of flies evolves so that the data estimated from flies
matches measured data. The final population approximates
the radioactivity concentration (see Fig. 5 for an example in
SPECT).
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Fig. 4. Parisian approach principles.

TABLE I
FWHM IN MM ESTIMATED FROM FIG. 6.

FWHM in
Fig. 6(a)

(reference)

FWHM in
Fig. 6(b) (fly

reconstruction)
Absolute difference

1 19 18 1
2 49 48 1
3 19 18 1
4 49 47 2
5 19 17 2

The approach has been extended to the more complicated
case of PET reconstruction [15]. It showed promising results
in relatively simple test cases in fully-3D LOR space [16],
[17], [18], [19]. The size and relative concentration of objects
can be retrieved (see Fig. 6 for an example in PET). Full width
at half maximum (FWHM) is measured to quantify errors in
Fig. 6 (see Table I). The error is smaller that the size of
crystals, which is 4.5 mm (see Section IV for details about
the simulated system geometry). Fig. 7 shows that complex
shapes can also be reconstructed in fully-3D.

III. MATERIAL AND METHODS

As illustrated by the flow chart of our Fly algorithm for
PET (see Fig. 8), the evolutionary scheme for tomography
reconstruction follows the iterative paradigm (see Fig. 3). The
steps of the iterative method, as of Fig. 3, can be described as
follows:

A. Initial guess

Each individual, or fly, corresponds to a 3D point. Initially,
the flies’ position is randomly generated in the volume within
the scanner. Iterative reconstruction methods generally make
use of a constant volume as an initial estimate of the vol-
ume (see Fig. 9(a)). However, to speed-up the reconstruction
process, a volume is first reconstructed using a fast analytical
algorithm, the simple back-projection, that we implemented
on the graphics card using OpenGL. The algorithm consists in
back-projecting each LOR into the volume space. Pixels along
the path of a LOR are updated uniformly, i.e. without taking
into account photon attenuation. This operation is fast and

(a) Reference image:
acquired SPECT pro-
jections of a bone
scan.

(b) Reconstructed
data: projections of
the reconstructed
slices.

Fig. 5. Fly reconstruction in SPECT [14].
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(b) Reconstructed data.
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(c) profile: through the 1st line of cylinders.
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(d) profile: through the 2st line of cylinders.

Fig. 6. PET reconstruction using the Fly algorithm: 9 cylinders having
2 different radii (1 cm and 2.5 cm) and 5 different radioactivity concentrations
(C1 = 114,590 count/ml, C2 = 2C1, C3 = 3C1, etc.) [17], [19].
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Fig. 7. Simulation performed using the dragon model from The Stanford 3D
Scanning Repository, http://graphics.stanford.edu/data/3Dscanrep/. The object
is uniformly filled with radiotracers (top row). The reconstructed radiotracer
distribution is displayed using volume rendering (bottom row).

provides the evolutionary algorithm with an initial guess of the
volume (see Fig. 9(c)). For each voxel of the initial estimate,
a given number of flies is uniformly distributed depending on
the voxel intensity (see Fig. 9(b)).

B. Compute projections

Each fly mimics a radioactive emitter, i.e. n stochastic
simulations of annihilation events are performed to compute
the fly’s illumination pattern. For each annihilation event, a
photon is emitted in a random direction. A second photon
is then emitted in the opposite direction. If both photons
are almost simultaneously detected by the scanner according
to a coincidence time window, the corresponding LOR is
recorded. The scanner properties (e.g. detector blocks and
crystals positions) are modelled, and each fly is producing
an adjustable number of annihilation events (see Fig. 10).
Each fly keeps a record of its simulated LORs. Therefore
the result of these simulations consists of a list, per fly,
of pairs of detector identification numbers that correspond
to LORs. These lists are aggregated to form the population
total illumination pattern, which should closely match the
data recorded by the PET scanner. They correspond to sparse
matrices containing coincidence data.

C. Compare

The global fitness function used during the selection op-
eration measures the discrepancies between the simulated
projections and the real projections (see [19] for details about
our specific genetic operators and the fitness metric). The
City block distance between the two sparse matrices has been
chosen as it provides a good compromise between accuracy
and speed. The aims of the evolutionary algorithm is to
minimise the global fitness function, i.e. the distance between
these two sets of data. The smaller the distance is, the closer
the reconstructed data will be to the real radioactive activity.

Fig. 8. Flow chart of the PET reconstruction using the Fly algorithm.

D. Correct for differences

The optimisation of the radioactive emitter positions is
performed using genetic operations instead of the EM method.
The population of flies evolves so that the population total
pattern matches measured data. We chose to implement a
“steady state” evolutionary strategy, in which at each loop one
individual (fly) has to be eliminated and replaced with a new
fly. The fly to be killed is randomly chosen by the “selection”
operator, with a bias towards killing “bad” individuals. On

http://graphics.stanford.edu/data/3Dscanrep/
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(a) Uniform distribu-
tion of the flies.

(b) Initialisation of
the flies’ position us-
ing Fig. 9(c)

(c) Image
reconstructed
using the simple
back projection
algorithm.

Fig. 9. Initial estimates of the reconstructed image used in Fig. 6.

Fig. 10. Using a geometry corresponding to the GE Discovery
TM

PET-
CT 690 scanner: in red crystals, last created fly’s LOR in purple lines, fly’s
positions in coloured dots.

the other hand, if the new fly is to be created by mutation
of another fly, this fly is randomly chosen by the “selection”
operator, with a bias towards reproducing “good” individuals.
The selection operator makes use of the local fitness, i.e. the
individual fitness of flies. Classical selection operators are
ranking, roulette wheel and tournament.

When we were addressing the SPECT problem, we showed
that if we defined the fitness of a fly as a bonus-based
function then it gave an important bias to the algorithm with a
tendency of the smaller objects to disappear [14]. This is why
we then introduced marginal evaluation (Fm(i)) to assess a
given fly (i). It is based on the leave-one-out cross-validation
method. We use a similar approach in PET:

Fm(i) = dist (pop, input)− dist (pop− {i} , input) (1)

with Fm(i) the marginal fitness of Fly i, dist (A,B) the City
block distance between two sparse matrices A and B, pop is
the set of LORs simulated by the whole population, input is
the set of LORs extracted from the input data, and pop− {i}
is the set of LORs simulated by the whole population without
Fly i. The fitness of a given fly will only be positive when
the global cost is lower (better) in presence rather than in the
absence of this fly.

In our algorithm, as each fly’s fitness is the value of its
(negative or positive) contribution to the quality of the whole
population, we managed to simplify and speed up the selection

(a) Hot sphere, reference image. (b) Hot sphere, reconstructed data.

(c) Jaszczak cold sphere, reference
image.

(d) Jaszczak cold sphere, recon-
structed data.

Fig. 11. 2D tomographic reconstruction of Jaszczak-inspired sphere phan-
toms using the Fly algorithm dedicated to PET.

process by using a fixed fitness threshold. Any “bad” fly (its
fitness is negative) is a candidate for death, and any “good” fly
(its fitness is positive) is a candidate for mutation. When a fly
is killed, its LORs are removed from the total set of simulated
LORs. When a new fly is created, its LORs are added. This
process needs to be fast to be able to decrease the number of
bad flies and increase the number of good flies as much as
possible.

When the number of flies with a negative fitness decreases,
the threshold selection fails to provide flies to be killed in
an acceptable time. It also means that the reconstruction is
optimum at the current resolution. If the resolution is not
acceptable, then a mitosis operator is triggered to gradually
increase the population size. Each fly is split into two new
flies to double the population size. One of the two flies is
then mutated.

E. Stopping criteria

The algorithm iterates until convergence of the estimated
data with the measured data. After convergence the spacial
concentration of flies will correspond to an estimate of the
radionuclide concentration.

IV. RESULTS

In [15], [16], we showed the ability of the early version of
the algorithm (i.e. without taking advantage of some specific
genetic operators we designed in [17], [19]) to reconstruct
simple 2D objects at low resolution. In [19], results at higher
resolution were presented.
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(a) Jaszczak hot rodes, reference
image.

(b) Jaszczak hot rodes, recon-
structed data.

(c) Jaszczak cold rodes, reference
image.

(d) Jaszczak cold rodes, recon-
structed data.

Fig. 12. 2D tomographic reconstructions of Jaszczak-inspired rode phantoms using the Fly algorithm.

(a) Cardiac example, reference im-
age.

(b) Cardiac example, reconstructed
data.

(c) Hoffman phantom, reference
image.

(d) Hoffman phantom,
reconstructed data.

Fig. 13. 2D tomographic reconstructions of more anatomically-realistic phantoms using Fly algorithm.

This section presents new results, obtained using our spe-
cific genetic operators, with more sophisticated numerical
phantoms of growing complexity. The pixel intensity is pro-
portional to the concentration of radio-tracers.

We initially focus on the 2D case to validate qualitative
results of the algorithm. No attenuation and no scattering are
taken into account. A 2D scanner has been simulated. Its
diameter is 85 cm, and the crystal width is 4.5 mm. The
scanner is made of 72 blocks of 8 crystals each. Images
in Figures 11 to 13 show raw data (i.e. no low-pass filter
is applied to smooth the images) of the reference objects
that have been used to generate input data, as well as the
corresponding slices reconstructed using the fly algorithm. The
pixel size is about 1.7×1.7 mm2. A series of four tests inspired
of the Standard Jaszczak phantom have been used: hot and
cold spheres first (see Fig. 11), then hot and cold rodes (see
Fig. 12). Fig. 13 illustrates the fifth and sixth tests. They make
used of more anatomically realistic models: a slice through the
chest, and the Hoffman phantom (brain).

The fully-3D reconstruction of an object with a complex
shape is presented in Fig. 7 and in [19]. However, only a
low-resolution has been used. We now have implemented a
realistic geometry based on an actual clinical PET scanner
corresponding to GE Discovery

TM
PET-CT 690 (see Fig. 14).

It is made of 13824 Cerium-doped Lutetium Yttrium Orthosil-
icate (LYSO) crystals organised in 64 sectors. Each sector
contains 4 modules of a 9×6 crystals array. The crystal
dimensions are 4.2×25×6.3 mm3. The final geometry is a

(a) 24 rings of crystals in the ax-
ial direction subdivided in modules
(green) and r-sectors (red). Spheri-
cal sources in turquoise (1st source)
and blue (2nd source)

(b) View of a r-sector (red) made
of 4 modules (green). Each module
contains 9× 1× 6 crystals (blue).

Fig. 14. Simulation of the GE Discovery
TM

PET-CT 690 using Gate.

cylinder with a ring diameter and axial field of view of 81 cm
and 157 mm respectively. It is modelled using Gate, a validated
medical physics simulation platform [20] dedicated to emis-
sion tomography in nuclear medicine. It is developed by the
OpenGATE collaboration1 and seats on the top of Geant4 [21].
The latter is a widely used open-source platform for nuclear
physics simulation. It is developed by European Organization
for Nuclear Research (CERN). The level of physics realism
can be controlled. For example, in our initial test presented

1http://opengatecollaboration.healthgrid.org

http://opengatecollaboration.healthgrid.org
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(a) Good flies
(marginal fitness
> 0).

(b) Every fly (any
marginal fitness)

(c) Bad flies
(marginal fitness
≤ 0).

Fig. 15. Cloud of flies during the reconstruction.

(a) Reconstructed data.
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(b) Profile through the recon-
structed sphere.

Fig. 16. PET reconstruction using the Fly algorithm.

here, Compton scattering is disabled and both “PhotoElectric”
and “ElectronIonisation” are enabled to detect interactions in
crystals. The aim is to generate realistic data in controlled
test cases of increasing complexity. Two spherical radioactive
sources of 1 megabecquerel (MBq) activity are included (see
Fig. 14(a)). The first one is located at the centre of the PET
system and its radius is 10 mm. The second one, whose radius
is 5 mm, is shifted by 10 centimetres in each direction. It
is therefore outside the field of view. Random coincidences
(single photons of two different annihilations generating a
LOR) are recorded and correspond to an additive noise to
the data. The aim is to assess the robustness of the algorithm.
About 1.3e6 LOR in total have been recorded. Fig. 15 shows
the cloud of flies at a given step in the reconstruction. As
expected, only the sphere that is in the field of view of the
scanner has been reconstructed. Fig. 16 shows the middle slice
of the reconstructed volume and a profile corresponding to its
middle line. The diameter of the reconstructed sphere is about
20 mm, which is relatively accurate.

V. CONCLUSION

This paper presented new results of positron emission
tomographic reconstruction using a specific cooperative co-
evolution scheme based on the fly algorithm. It demonstrated
the ability of the algorithm to reconstruct images using in-
put data that corresponds to standard phantom models (the
Standard Jaszczak phantom) and anatomically realistic models
(cardiac and brain). However, the reconstruction of hot regions
seems better than the reconstruction of cold areas; this needs
to be addressed, e.g. by adding a regularisation step in the iter-
ative process. It also showed that realistic models implemented
in Gate can be used.

A comparison study with traditional reconstruction tools,
such as OS-EM, will be conducted. More realistic physics

processes will be progressively added. Further work will
therefore include the correction of such phenomena in the
modelled system matrix, e.g. photon attenuation and Compton
scattering.
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