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Abstract—We present and analyze the behavior of an evolution-
ary algorithm designed to estimate the parameters of a complex
organ behavior model. The model is adaptable to account for
patient’s specificities. The aim is to finely tune the model tobe
accurately adapted to various real patient datasets. It canthen
be embedded, for example, in high fidelity simulations of the
human physiology. We present here an application focused on
respiration modeling.

The algorithm is automatic and adaptive. A compound fitness
function has been designed to take into account for various
quantities that have to be minimized. The algorithm efficiency is
experimentally analyzed on several real test-cases: i) three patient
datasets have been acquired with the “breath hold” protocol, and
ii) two datasets corresponds to 4D CT scans. Its performanceis
compared with two traditional methods (downhill simplex and
conjugate gradient descent), a random search and a basic real-
valued genetic algorithm. The results show that our evolutionary
scheme provides more significantly stable and accurate results.

Index Terms—Evolutionary computation, inverse problems,
medical simulation, adaptive algorithm.

I. I NTRODUCTION

High fidelity simulations of the human physiology require
complex bio-mechanical models. Such models need also to
be adaptable to account for patient’s specificities. They can
be used in various medical contexts, e.g. reducing motion
artifacts in positron emission tomography (PET) and cone-
beam computed tomography (CBCT) to improve the image
quantification [1], [2], accurate dose calculation in radiother-
apy treatment planning [3], and high fidelity computer-based
training simulators [4]. The calibration and parametrization
of the models are therefore critical to preserve realism and
numerical accuracy. For training simulators, parameters are,
however, often manually tuned using trial and error. This task
is time consuming and it is not possible to ascertain that the
results are optimal. Throughout the paper, we will consider
patient specific respiration modeling with the deformationof
the diaphragm and liver as the application example [5]. For
each patient, 15 parameters need to be finely tuned. The
parametrization of the model is considered as an inverse
problem. It corresponds to fitting an analytic model with
15 parameters to experimental data. An optimization technique
is deployed to solve the problem. Our approach makes use of

F. Vidal is with the School of Computer Science, Bangor University, Dean
Street, Bangor LL57 1UT, UK (e-mail: f.vidal@bangor.ac.uk).

P.-F. Villard is with LORIA, University of Lorraine, France(e-mail: pierre-
frederic.villard@univ-lorraine.fr).
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an ad-hoc evolutionary algorithm (EA) that is able to suc-
cessfully explore a search space with 15 dimensions (15-D).
We choose an evolutionary framework because i) EAs can
be used when little is known about the function to optimize,
e.g. when no derivative is known, ii) this function does not
need to be very smooth, iii) EAs can work with any search
space, and iv) EAs are less likely to stop at local optima than
classical deterministic optimisation methods. Our objective is
to propose a fully automatic and adaptive methodology that
leads to significantly better tuning. Our approach is generic
and can be generalized to other models when gold truth is
available and the discrepancies between the model outputs and
gold truth can be numerically assessed.

Section II briefly presents related work. The analytic model
of respiration is described in Section III. Details about the
evolutionary algorithm are provided in Section IV. In Sec-
tion V, the performance of the algorithm is analyzed and
compared with the performance of other methods. Section VI
presents a discussion about the limitations of our approach.
Some conclusions are finally presented in Section VII.

II. RELATED WORK

A. Optimization Based on Artificial Evolution

Artificial Evolution is the generic name of a large set
of techniques that rely on the computer simulation of nat-
ural evolution mechanisms. Since the pioneering works of
A. Fraser, H.-J. Bremermann, and after them, J. Holland and
I. Rechenberg, Artificial Darwinism techniques have progres-
sively gained a major importance in the domain of stochastic
optimization and artificial intelligence [6].

Their basic idea is to copy, in a very rough manner, the
principles of natural evolution, which let a population be
adapted to its environment. According to Darwin’s theory,
adaptation is based on a small set of very simple mecha-
nisms: random variations, and survival/reproduction of the
fittest individuals. Computer scientists have transposed this
scheme into optimization algorithms. Their major advantage
is to make only a few assumptions on the function to be
optimized (there is no need to have a continuous or derivable
function for instance). In short, Evolutionary Optimization
considers a population of potential solutions exactly as a
population of real individuals who lives, fights and reproduces
in a natural environment. The pressure of this environment
is replaced by an “optimization” pressure: the function to be
optimized is considered as a measurement of the adaptation
of the individual to its environment. In this way, individuals
that reproduce are the best ones with respect to the problem
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to be solved. The reproduction consists in generating new
solutions using a variation scheme (the genetic operators)that,
by analogy to nature, is called mutation if it involves one
individual, or crossover if it involves several individuals.

Evolutionary optimization techniques are particularly well
suited to complex problems, where classical methods fail,
e.g. due to the irregularity of the function or to the complex-
ity of the search space. The versatility of the evolutionary
framework has produced a variety of different optimization
techniques suited for various purposes (multi-objective,in-
teractive, cooperative) aimed at exploring different search
spaces (discrete, combinatorial, continuous, tree-based, graph-
based, grammar-based, constrained, limited or infinite). The
major reason of this success is the tunable combination of
oriented and random search mechanisms embedded in an
evolutionary algorithm: it allows injectinga priori incomplete
information in the genetic operators, while letting some other
more unpredictable components be randomly searched.

Success stories in various application domains prove the
power of these techniques as long as they rely on this
“partial” randomness ability: the most successful applications
are often based on hybridization of classical and evolutionary
techniques. In such cases evolution is used as an “orchestra
conductor”, that combinesa priori information, and classical
“local” optimizers in the evolution loop.

Considering evolutionary optimization as a “black box”
is not a good strategy in general because one may lose an
opportunity to adapt to the problem. Adapting the evolu-
tionary mechanisms to the specificities of the problem usu-
ally improves the efficiency of the algorithms and reduces
its computation time. In particularly difficult problems itis
always helpful to compare evolutionary approaches to a pure
random optimization to evaluate the improvement due to the
“intelligence” set in the genetic operators. This is what we
do in Section V. In our context, the random search algorithm
generates a given number of sets of 15 random parameters [7].
The set of parameters that provides the lowest fitness is
extracted and corresponds to the solution of the optimization
problem.

B. Medical Applications of Artificial Evolution

The use of evolutionary techniques in medicine is not a
recent trend: J.T. Alander clearly shows the growth of interest
for this topic since 1990 in the EA community [8]. In recent
reviews, S.L. Smith and S. Cagnoni [9], [10] identified five
main trends in this domain:

• medical imaging and signal processing (segmentation,
registration, change detection, correction, denoising, 3D
reconstruction)

• medical data and patient records mining
• clinical expert systems and knowledge-based expert sys-

tems
• therapy (tests, implants tuning)
• modeling and simulation

It is worth to note that these various applications take advan-
tage of the flexibility of the evolutionary scheme, and rely

on many variants of it (cooperation, multi-objective, agent-
based approaches). It is also possible in many cases to control
the trade-off between computational cost and precision of the
results via a simple parameter tuning.

The work presented here is related to the first and last items
of the trend list presented above. In the literature, model fitting
usually relies on generic models, such as deformable image
models in 2D [11], [12], and their extensions in 3D [13], [14].
Similar work on 3D surface registration [15] is also dealing
with generic models for segmentation purposes.

Once again for a segmentation task, Heimannet al. address
the problem of liver surface modeling [16]. They use statistical
shape models combined with a freely deformable, energy-
based snake model, and were able to obtain an average surface
distance of about 1.6 mm in comparison to manual reference
segmentations.

Here, we are relying on an accurate respiration model (see
Section III) that necessitates the simultaneous fitting of two
surface models, for the diaphragm and the liver. In this paper,
the evolutionary engine that has been developed is an attempt
to deal with these two objectives by linear combination,
with weights that adjust dynamically to balance the relative
importance of the two objectives (see Section IV-B). To our
best knowledge this problem has never been tackled using
evolutionary computing.

C. Respiration Models

Respiratory models can be used in various contexts. The
method depends on the application that is targeted. In radio-
therapy, deformable models have to be accurate and focused
on the targeted anatomical structures (e.g. tumor or organsat
risk). Such models are generally based on continuous laws
of mechanics, and equations are resolved using the finite-
element technique [17]. In computer graphics animation, the
reality is not the focus. It is rather the impression of realism.
Therefore many details and organs should be modeled. In [18],
diaphragm, ribs, intercostal muscles and the external skinare
modeled and the deformation is achieved by using the mass-
spring technique [19]. In medical simulation, the realism as
well as the precision are needed to teach the users the real
conditions of an operation. However the key challenge is often
the computing time, e.g. both the visual and haptic renderings
require a high refresh rate. In [20], the method is entirely based
on geometrical constraints and the viscera are only modeled
using a single envelope that wraps all the organs. We propose
here a method that takes into account the motion of each organ
due to the respiration using a geometrical method based on
mechanical-based parameters.

III. R ESPIRATION MODEL

A. Anatomy and Physiology Analysis

Respiration is a complex process that mainly involves two
muscles: the diaphragm and the intercostal muscles [21].
Respiration has also an indirect influence on all the organs of
the abdominal cavity, in particular the liver. It is attached to
the diaphragm by the falciform ligament, and hereby follows
its deformation and motion. The diaphragm is composed of
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two parts: i) the tendon where the lungs and the heart lie, and
ii) the muscle part that contracts and relaxes. The diaphragm
is attached to the lower ribs and to the spine. In our case, the
patient is lying on his/her back. We can therefore assume that
the influence of the intercostal muscle is negligible.

B. Soft-Tissue Deformation

We will mainly focus here on i) the liver, which is the treated
organ, and ii) the diaphragm, which is the active muscle as
previously seen. We choose to compute the deformation using
the generalized ChainMail extension [22]. The main advantage
of this model is its small computing time. Instead of computing
the deformation field based on time integration of the forcesas
other physically-based methods [23], it only uses geometrical
equations that are quickly computed. It also preserves the use
of parameters that have links with bio-mechanical approaches:
the compression (Si), the stretching (Stri) and the shearing
(Shi) wherei designates the concerned organ.

To decompose the diaphragm into two parts as pointed out
in Section III-A, we choose the Cartesian equation of a plane
(a.x+ b.y + c.z + d = 0). As boundary conditions, we chose
to impose a null displacement when the diaphragm is close to
the ribs (defined by a distanceDribs) and to impose a uniform
3D force to the whole tendon part (defined by(Fx, Fy, Fz)).
The muscle part should deform. This deformation is governed
here by the muscle intrinsic elasticity. The muscle stretches
from the point attached to the ribs to the moving tendon.

The liver attachments to the diaphragm are modeled by a
distance (Ddiaph) determining which points directly follow
the diaphragm. This rigid link simulates the compression of
the liver by the diaphragm during the respiration process.
The other parts of the liver deforms following the ChainMail
algorithm.

C. Parameter Analysis

Various parameters have been extracted from the model
previously described (see Fig. 1). These parameters are unique
to each patient and need to be individually customized. There
are bio-mechanical parameters, anatomy-based geometrical
constrains and respiration pattern information. More details
on these parameters can be found in [7].

D. Model Evaluation

To optimize the model parameters we need datasets of
different patients but also metrics to evaluate the accuracy of
the respiration model. The simulation always starts at the real
inspiration state (GeometryGI

R) extracted from the real data.
The aim is to reach the real expiration state (GeometryGE

R)
also extracted from the real data. In the 4D CT scan case
(GeometryGt

R), going through intermediate statest is also
achievable. The metrics assesses the accuracy of a simulated
geometryGt

S compared to the ground truth geometry extracted
at the same time stept.

To compute the difference between two geometries, we
choose to analyze for each mesh vertex the point-to-surface
distance according to [24]. It is based on a distance measure
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Fig. 1. List of the respiration model parameters.

d (p,G′) between a pointp belonging to a surfaceG and a
surfaceG′ as follows:

d (p,G′) = min
p′∈G′

‖p− p′‖ (1)

In this application, the root mean square error
(ERMS (Gt
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t
R)) defined by Eq. (2) is used.
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IV. OPTIMIZATION ALGORITHM

An evolutionary algorithm is used to finely tune the pa-
rameters of the deformable model. The core of the genetic
engine has been written in C++ using templates. It makes the
approach generic, so that it can be used for other optimization
problems. However, for each specific optimization problem,it
is necessary to implement the corresponding genotype (e.g.the
search space), some of the genetic operators (e.g. mutation
and crossover), as well as the fitness function. This section
describes in detail how the EA has been implemented.

A. Genotype

Fifteen parameters in total have been identified in Sec-
tions III-B and III-C and are illustrated in Fig. 1. The evo-
lutionary algorithm explores this 15-D search space. Each
parameter corresponds to a real number, whose boundary
values are known. The genome of individuals is therefore made
of 15 floating point numbers.

B. Adaptive Fitness Function

A metric (ERMS (M0,M1)) is presented in Section III-D
to evaluate the discrepancies between two polygon meshes
M0 andM1. It is therefore possible to quantify the difference
between the mesh(Gt

S(i)) simulated using the deformable
model with the parameters corresponding to Individuali, and
the real mesh(Gt

R) extracted from the patient’s dataset at
statet. For each individual, two metrics are computed (one
for the diaphragm, and one for the liver). These values can
be used to define the fitness function (fitness) corresponding
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to i. The optimization consists in minimizingfitness. The
simplest function is:

fitness(i) = αERMS

(

Gt
S(i, diaph), G

t
R(diaph)

)

+

(1− α)ERMS

(

Gt
S(i, liver), G

t
R(liver)

)

(3)

with 0 ≤ α ≤ 1 to give more or less weight to the diaphragm
or the liver. Selecting the value ofα is not trivial because the
numerical quantity of the error for the diaphragm and the liver
can be significantly different. If the same weight is applied
to both tissue error measurement (i.e.α is equal to 0.5), the
predominant quantity will then have more influence on the
optimization process. We would actually expect instead the
importance of both tissues to be the same during the mini-
mization. In an application such as the real-time simulation of
liver puncture, a higher level of fidelity is required for theliver
than the diaphragm. Scaling factors on errors are introduced
to give the same relative weight to the diaphragm and liver.
Eq. 3 becomes:

fitness(i) =
α

Ediaph
RMS

ERMS

(

Gt
S(i, diaph), G

t
R(diaph)

)

+

(1 − α)

E liver
RMS

ERMS

(

Gt
S(i, liver), G

t
R(liver)

)

(4)

with E liver
RMS and Ediaph

RMS the error metrics of the best indi-
vidual provided by the previous generation for the liver and
diaphragm respectively. For each iteration of the evolution
loop, these metrics are updated. For practical reasons,α is
rescaled so that the sumα

E
diaph

RMS

+ (1−α)

Eliver
RMS

is equal to one.

C. Genetic Engine

An elitist generational genetic approach is used (see Fig. 2).
For each optimization loop performed by the genetic engine,
a new population based on the previous generation is cre-
ated. The population size is made constant. Each gene of
an individual is initialized using an uniform distributionto
randomly chose a value within its range of validity. During
the optimization loop, a genetic operator is randomly chosen
to create a new individual. Genetic operators are: i)elitism, ii)
mutation, iii) crossover, and iv)new blood. They are described
in detail below. Each operator is assigned a probability of

Elitism

Population

(N)

Population

(N+1)

Tournament

Selection

Mutation

Crossover

New blood

W%

X%

Y%

Z%

Ranking

Extract

Solution
Stopping

Criteria

Fig. 2. Evolutionary loop.

occurrence,W , X , Y , andZ respectively. The sum of the
operators’ probability is100%. Some operators (e.g. the mu-
tation and the crossover) require one or several individuals
of the previous generation to be randomly chosen for the
reproduction (i.e. the creation of a new individual based on
the chosen individual(s)). This process is performed by the
selectionoperator. The optimization stops when a stopping
criteria is reached.

1) Tournament Selection:During the evolution, individuals
are selected using tournaments. For each selection,n individu-
als are randomly chosen, without any bias. The best individual
amongst then chosen ones is the individual who is selected.

2) Elitism: W% best individuals of the previous generation
are kept in the new population. In practice, even ifW is equal
to 0%, the best individual is kept. In this case, if nothing better
is found, the best individual is not lost.

3) Mutation: X% of the new individuals are created by
mutating individuals of the previous generation. It mimics
mutations in a genomic sequence that are observed in molec-
ular biology and genetics. For each mutation, an individual
is selected using the selection operator. The genotype of the
selected individual is copied into the genotype of the new
individual. The numerical value of each gene is then slightly
altered to introduce spontaneous and random changes. The
range of possible random changes is controlled by the value
σ. In classical implementations, this value is fixed. However
theoretical studies have shown that a variable, adaptive orself-
adaptive mutation is beneficial in optimization [25]. Adaptive
mutation is actually a scheme that has been made experimen-
tally evident in natural population (see for instance [26] about
stress mutation in bacteria populations). Here, we have chosen
to use an adaptive strategy forσ, in the style of stress mutation.
The adaptation rule produces greaterσ for “bad individuals”
(i.e. large fitness) and smaller ones for “good individual”
(small fitness). The idea is to favor large exploration around
bad individuals, whilst performing fine tuning in the vicinity
of good individuals.σ is then controlled depending on the
fitness value. It makes use of a scaled and stretched cosine
function:

σ(f) =



















σmin, f < fitmin

σmax, f > fitmax

σmin + (σmax − σmin)×
cos

(

π×
f−fitmin

fitmax−fitmin

)

+1.0

2.0 , otherwise

(5)

f corresponds to the fitness of the individual who will un-
dergo a mutation.σ(f) smoothly varies between the smaller
(fitmin) and the larger(fitmax) fitness thresholds respec-
tively. If f is smaller thanfitmin, σ is then σmin; if the
individual’s fitness is greater thanfitmax, σ is then σmax

(with σmin andσmax two constant values set by the user).
Mutation is performed via the addition of a shiftoffset to

the genome’s value, whose value is:

offset =
range

2
× σ(Fitness(i))× k (6)

with range the interval size of the valid values of the genomes,
andσ(Fitness(i)) the amount of mutation corresponding to
the fitness of Individuali, and k a random number in the
interval [−1, 1].
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4) Blend Crossover:Y% of the new individuals are created
using BLX (for blend crossover) [27]. For each crossover
operation, two individuals(i1 and i2) are selected using the
selection operator. Each component (or chromosome) of the
genome of the new individual will be given by a random
combination of the corresponding chromosome ofi1 and i2
as follows:

C = kC1 + (1− k)C2 (7)

with C the numerical value of the chromosome of the new
individual,C1 the numerical value ofi1’s chromosome,C2 the
numerical value ofi2’s chromosome, andk a random number
between 0 and 1. For each chromosome, a newk value is
chosen.

5) New Blood: Z% of individuals are replaced by new
random individuals. Such individuals are created using the
same method as during the initialization. This operator allows
“new blood” to continually enter the population. It corresponds
to a “pure random search” component and maintains a minimal
diversity level in the population.

6) Stopping Criteria:Stagnation is the stopping criteria that
has been chosen, i.e. the optimization process is stopped when
artificial evolution does not improve the result. In practice,
when s successive evolution loops provide exactly the same
best individual, the optimization process is stopped, and this
individual is the solution to the optimization problem.

V. RESULTS AND VALIDATION

This section shows the performance of the evolutionary
algorithm in term of accuracy. The results are compared
with the outputs of: i) a pure random search to evaluate
the improvement provided by the genetic operators, ii) a
basic real-valued genetic algorithm (GA) used as a black
box evolutionary optimization to assess the efficiency of our
new genetic operators, and iii) more traditional methods –
Downhill simplex method [28] and Powell’s conjugate gra-
dient descent method [29] – for further comparisons. For each
tested case, every stochastic optimization process has been
repeated 15 times. For each optimization process, the errors
were recorded and taken into account during the statisticaltests
presented in this section. It allows us to ascertain the effec-
tiveness and usefulness of the evolutionary algorithm, i.e. to
demonstrate that it outperforms the brute force algorithm,the
black box EA, and the classic methods.

A. Input Data

Abdominal images with respiration information are rou-
tinely acquired during radiotherapy treatment planning when
knowledge of the tumor displacement is required to perform
the dose calculations. Five patient specific datasets have been
selected (see Table I). Three datasets (Patients A, B and C)
have been acquired with the “breath hold” protocol, i.e. with
only two time steps corresponding to the inhale and exhale
states. The patients are asked to hold their breath following
the “ABC” protocol [30]. Two datasets (Patients D and E)
correspond to 4D CT scans with ten time steps each. The
data was acquired over the respiratory cycle while the patient

Name Image size Spacing [mm3] Protocol
Patient A 512×512×136 1.08×1.08×2.5 Breath hold
Patient B 512×512×75 0.98×0.98×5 Breath hold
Patient C 512×512×139 1.17×1.17×2 Breath hold
Patient D 512×512×141 0.98×0.98×2 4D CT scan
Patient E 512×512×287 0.71×0.71×1 4D CT scan

TABLE I
PATIENT DATASET PROPERTIES.

breathes normally. For Patients A, B and C, a single optimiza-
tion problem each needs to be solved. For patients with 4D
CT scans, one optimization problem per time step needs to be
solved. Note that for such patients, the values presented inthis
section correspond to average values over the 10 time steps.

Every CT scan has been segmented to extract the organs that
are required by the simulation model. Medical expert collabo-
rators have manually segmented the data using a graphic tablet.
The contouring process has been performed using ITKSnap1.
Polygon meshes were then exported after using the Marching
Cube algorithm [31]. Meshes were decimated and smoothed to
have about 2,000 vertices per organ. The manual segmentation
process of a CT scan takes on average 2 hours per liver and
3 hours per diaphragm. Fig. 3 shows an input medical image
with the manual segmentation of Patient B’s diaphragm. In
total 26 3D CT scans were segmented.

(a) Axial view. (b) Sagittal view.

(c) 3D view. (d) Coronal view.

Fig. 3. Diaphragm manual segmentation (here in white).

B. Evolutionary Algorithm Parameters

Table II provides a summary of the algorithm’s parameters.
Two different sizes of population (50 and 200) are used to
assess the stability of the algorithm.α is set to 33% to
give more weight to the liver than the diaphragm, without
neglecting the diaphragm.

C. Performance Comparison

Box plots have been produced for each patient. Fig. 4
presents the results for Patient B as an illustration. Figures for

1http://www.itksnap.org/ (last accessed: 31/05/2012)
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population size (n) 50 and 200
α 33%

tournament size 5% of the population size
elitism (W ) 9%

mutation probability (X) 55%
crossover probability (Y ) 35%
new blood probability (Z) 1%

σmin 0.001
σmax 0.2

stopping criteria (s) 10

TABLE II
EVOLUTIONARY ALGORITHM PARAMETERS.

Patient A Patient B Patient C Patient D Patient E
Ad hocEA 15093 5933 8320 6753 11493

Pure random search 15093 5933 8320 6753 11493
Basic real-valued GA 26053 16107 37253 13928 ∞

Downhill simplex 1135 3012 965 690 3010
Conjugate gradient descent 4351 7298 2907 4390 17867

TABLE III
AVERAGE NUMBER OF FITNESS EVALUATIONS.

other patients present the same features. It shows the errors for
both the diaphragm and the liver after optimization using the
different methods. A population of 200 individuals provides
relatively stable results with theAd hocEA. This population
size has therefore been used for further statistical analysis with
other methods. Note that for each patient care is given to use
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the same amount of computing time for the random search
than ourad-hocevolutionary algorithm (see Table III for the
numerical values). In one case (Patient E), the basic real-
valued genetic algorithm fails to converge in an acceptable
time.

Fig. 5 presents the evolution of the diaphragm weight
(α/Ediaph

RMS ) in the fitness function of Patient A (note that
the weight of the liver is complimentary and it corresponds
to 1 − α/Ediaph

RMS . The weights are updated for each iteration
of the evolution loop (see Section IV-B). It shows that the
final weight are consistent amongst the 15 runs. For each
run, the shape of the curve is similar. The same phenomena
are observed for every patient. It is therefore acceptable to
use the “evolved” fitness function for comparison with other
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optimization methods when applicable.
Table IV shows the average root mean square error (ERMS)

of the liver and diaphragm for each patient and for each
optimization technique. It also presents the result of a non-
parametric statistical hypothesis test – the Wilcoxon signed-
rank test – that is used to compare the performance of our
Ad hoc EA with other methods. The size of the samples
is 15. If the value of the Wilcoxon signed-rank test (W)
is negative, then theAd hoc EA performs better than the
other algorithm. IfW is close to 0, then both algorithms
are performing similarly. The results show that only our
evolutionary algorithm can minimize successfully both the
error of the liver and diaphragm. The only positiveW value
has been obtained for Patient A’s diaphragm using the gradient
descent method. However the corresponding value for the liver
was negative. Classic optimization methods fail to explorethe
15-D search space to minimize the two error values. This is
particularly true for the downhill simplex method. The basic
real-valued genetic algorithm is very slow and fails to converge
in some cases (see Patient E in Table III). In our application,
artificial evolution can effectively explore a large searchspace
without a priori knowledge.

Table V presents the resulting parameters found by our
method for the 15 optimization runs of each patient. The
average value and the standard deviation are given for each
parameter. Some parameters found over 15 runs are relatively
close (e.g. the diaphragm plane (a, b, c andd)) whilst others
may significantly differ (e.g.Dribs andStrl).

VI. D ISCUSSION

The comparison with pure random search provides a good
assessment of the added value of the genetic engine, i.e. the
improvement due to the random search oriented by the genetic
operators over a “blind” random search. The pure random
search used the “evolved” fitness function for comparison.
It represents a disadvantage for the evolutionary approach. It
is difficult to evaluate the algorithmic cost of the adaptation
of the fitness function in the evolutionary algorithm. It is
therefore not considered in the comparisons displayed in Fig. 4
and Tables III and IV. Despite this structural disadvantage,
the evolutionary approach surpasses the random search. For
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Patient A Patient B Patient C Patient D Patient E
ERMS W ERMS W ERMS W ERMS W ERMS W

Diaph 2.05 N.A. 4.53 N.A. 2.06 N.A. 3.63 N.A. 8.84 N.A.Ad hocEA
Liver 2.95 N.A. 2.42 N.A. 2.85 N.A. 2.16 N.A. 4.43 N.A.
Diaph 2.27 -96 4.77 -84 2.17 -102 4.06 -93 9.30 -45Pure random search
Liver 3.18 -88 3.02 -118 2.94 -120 2.24 -42 4.87 -34
Diaph 2.21 -102 4.58 -18 2.10 -76 3.81 -12 N.A. N.A.Basic real-valued GA
Liver 3.13 -44 2.69 -120 2.88 -78 2.45 -35 N.A. N.A.
Diaph 3.67 -120 7.15 -120 9.65 -120 5.22 -119 9.95 -68Downhill simplex
Liver 21.89 -120 6.55 -120 13.04 -120 8.39 -120 12.72 -120
Diaph 2.00 96 5.49 -120 2.33 -120 5.33 -112 9.91 -33Conjugate gradient descent
Liver 5.96 -120 6.55 -120 5.47 -120 3.55 -109 6.41 -50

TABLE IV
PERFORMANCE COMPARISON OF THEAd hocEVOLUTIONARY ALGORITHM , PURE RANDOM SEARCH, BASIC REAL-VALUED GENETIC ALGORITHM,

DOWNHILL SIMPLEX , AND CONJUGATE GRADIENT DESCENT METHODS. ERMS IS THE AVERAGE ROOT MEAN SQUARE ERROR IN MILLIMETERS.W IS

WILCOXON SIGNED-RANK TEST BETWEEN THEAd hocEA AND THE OTHER METHODS.

Patient A Patient B Patient C Patient D Patient E
a 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1
b 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1
c -0.9 ± 0.0 -0.9 ± 0.0 -0.9 ± 0.0 -0.9 ± 0.0 0.9 ± 0.0
d 114.1 ± 7.8 113.7 ± 9.2 110.8 ± 13.5 117.3 ± 10.1 -99.5 ± 14.8
Cd 0.4 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.4 ± 0.2
Strd 5.1 ± 1.3 5.2 ± 1.8 5.6 ± 1.9 5.2 ± 2.1 5.5 ± 1.7
Shd 4.7 ± 1.7 3.9 ± 2.0 4.9 ± 2.0 5.0 ± 2.4 4.5 ± 1.9
Fx 0.6 ± 0.6 3.9 ± 0.4 0.6 ± 0.1 2.0 ± 2.3 0.3 ± 2.7
Fy 3.5 ± 0.2 1.8 ± 0.7 6.2 ± 0.7 -2.4 ± 2.0 -1.3 ± 2.8
Fz -5.8 ± 1.0 -8.1 ± 0.5 -7.9 ± 0.4 1.3 ± 1.8 4.2 ± 3.9

Dribs 19.7 ± 14.2 15.9 ± 13.6 19.9 ± 5.1 11.3 ± 7.8 11.7 ± 10.6
Cl 0.5 ± 0.1 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2
Strl 8.2 ± 6.8 5.9 ± 3.7 16.7 ± 5.5 5.2 ± 2.0 4.9 ± 1.9
Shl 1.5 ± 1.7 4.3 ± 2.6 5.9 ± 1.9 4.6 ± 2.4 2.6 ± 1.6

Ddiaph 3.3 ± 0.7 1.3 ± 0.7 0.7 ± 0.3 4.1 ± 2.2 4.0 ± 0.7

TABLE V
PARAMETERS AFTER OPTIMIZATION USING THEAd hocEA.

a given amount of computation time, the best results are
obtained using our evolutionary algorithm.

Our genetic engine is also more efficient than the basic
real-valued genetic algorithm used as a black box optimizer.
Our method provides more accurate results using less com-
putational power. Our algorithm also outperforms the classic
optimization methods that were used for comparison purposes.

The diaphragm errors are larger than liver errors for Pa-
tients B, D and E. This is due to the fact that the spatial or
time resolution of the initial datasets was lower than in the
other test cases. For Patient B, the slice thickness is 5 mm,
i.e. much larger than the diaphragm thickness (less than 2 mm).
Patients D and E make use of 4D CT data. In such cases, the
inaccuracies are due to the motion artifact (known for blurring
tissue edges). For Patients B, D and E, the reconstructed
surface of the diaphragm is then over-smoothed. The qualityof
the geometrical models is then less accurate. The diaphragm
is a relatively thin tissue. Inaccuracies are attenuated for the
liver as it is a much larger organ than the diaphragm.

Let’s analyze the value of parameters presented in Table V.
The plane coefficients (a andb) are very close to zero. It was
to be expected as it roughly corresponds to a transverse plane.
The force (Fx, Fy, Fz) is mainly orthogonal to this plane. The
ChainMail parameters are very high for both organs. This
is due to the large deformations that occur: the contraction
and relaxation of diaphragm muscle as well as the soft-tissue
behavior of the liver. Finally, the attachment distance is higher
from the diaphragm to the ribs (Dribs) than from the liver to

the diaphragm (Ddiaph). This is becauseDdiaph mimics a very
thin ligament attaching the liver to the diaphragm.

Finally, Fig. 6 shows 3D plots of surface meshes for all the
patients. The printed color depends on a lookup table (LUT)
that corresponds to the localized error. Its range varies from
blue for no error to red for the maximum error. The motion
is fairly well compensated using our genetic algorithm.

Patient A Patient B Patient C Patient D Patient E

Fig. 6. 3D plots of surface meshes with localized errors. Thefirst row
shows the initial difference map between real inhale and real exhale states.
The second row shows the difference between real exhale and simulated exhale
with our genetic algorithm.

VII. C ONCLUSION AND FUTURE WORK

We have presented an artificial evolution strategy to finely
tune the parameters of a multidimensional model of respi-
ration with soft tissue deformations. Its efficiency has been
validated using five datasets of real patients (that is 23 different
optimization problems in total). The advantage of artificial
evolution over the downhill simplex, the conjugate gradient
descent, the purely random search, and a black box basic real-
valued genetic algorithm has also been demonstrated. Results
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obtained using our artificial evolution framework were both
more accurate and more stable.

The proposed evolutionary optimization is adaptive in two
ways: i) mutation is adapted based on fitness, and ii) the weight
the two-objectives compound fitness is automatically balanced
along calculations.

We also demonstrated that this compound fitness function
effectively takes into account various properties of the model,
e.g. minimizing several error values for the liver and the
diaphragm. The approach can be generalized to other models
when gold truth is available and the discrepancies between the
model outputs and gold truth can be numerically assessed.

The current solution that is to balance the different objec-
tives in a single fitness function can be revisited. We will
investigate other composition strategies (e.g. multiplicative
instead of additive). Other evolutionary approaches will also be
considered. A cooperative-coevolutionary approach [32] can
be used as the problem we presented here includes most of the
features that have been identified to be difficult to solve using
single-population evolutionary algorithms but it is efficiently
addressable using cooperative-coevolution:

• the search space is complex (e.g. 15-D)
• the problem can be split (e.g. minimizing the error for

both the liver and the diaphragm)
• there is a strong interdependence between the components

of the solution (e.g. the diaphragm is influencing the liver)

Also a Classical multi-objective evolutionary approach like
the famous NSGA-II [33] will be also considered for dealing
with multiple objectives. Since these methods are able to
perform an optimization without setting any priority between
the objectives, they provide a set of potential compromises
between the various objectives, the Pareto set. To be applicable
in our context it is necessary to select a single acceptable
solution from the Pareto set at the end of the process. The
superiority of such a strategy in our context is not obvious,as
the time spent to obtain a good approximation of the whole
Pareto set may be better used to perform calculations focused
on a single compound and well chosen objective.
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