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Abstract. This contribution studies speciation from the standpoint of evolution-
ary robotics (ER). In ER, the sensory-motor mappings that control an autonomous
agent are designed using a neuro-evolutionary framework. An extension to this
process is presented here, where speciation is incorporated to the evolution pro-
cess in order to obtain a varied set of solutions for the same robotics problem
using a single algorithmic run. Although speciation is common in evolutionary
computation, it has been less explored in behavior-based robotics. When em-
ployed, speciation usually relies on a distance measure that allows different indi-
viduals to be compared. The distance measure is normally computed in objective
or phenotypic space. However, the speciation process presented here is intended
to produce several distinct robot behaviors; hence, speciation is sought in be-
havioral space. Thence, individual neurocontrollers are described using behavior
signatures, which represent the traversed path of the robot within the training en-
vironment and are encoded using a character string. With this representation, be-
havior signatures are compared using the normalized Levenshtein distance metric
(N-GLD). Results indicate that speciation in behavioral space does indeed allow
the ER system to obtain several navigation strategies for a common experimental
setup. This is illustrated by comparing the best individual of each species with
those obtained using the Neuro-Evolution of Augmenting Topologies (NEAT)
method that speciates neural networks in topological space.

1 Introduction

Evolutionary Robotics (ER) [1] is an extension of behavior-based robotics (BBR) [2, 3].
In classic BBR behaviors are hand-designed by a human expert. On the other hand, in
ER the sensory-motor mappings that control the way in which a robot interacts with its
surroundings emerge from an artificial evolutionary process. Consequently, ER encour-
ages robot behaviors to emerge from complex interactions between: 1) the autonomous
agent; 2) the control mechanism; and 3) the physical environment. ER employs evolu-
tionary computation (EC) methods in the design process of artificial neural networks
(ANN) that provide the control mechanism for an autonomous robot. When using ER
techniques, most researches are only interested in finding a single solution for the prob-
lem at hand, e.g. a navigation strategy. However, using evolution to find a single super
individual can have several disadvantages [4]. For instance, a large amount of compu-
tational effort is not exploited because only one solution from the population is used.



Moreover, populations can converge prematurely and solutions may become overfitted
to the training problem instance. A workaround to the previous problems is to em-
ploy diversity preservation methods such as speciation. Speciation allows individuals to
compete within their own species, instead of the entire population. In this way, novel but
perhaps less apt solutions can still propagate their genetic material and populations can
stay in a more heterogeneous state. Therefore, a diverse set of solutions could conceiv-
ably be obtained from a single evolutionary run, even when all individuals are trained
using the same environment in an ER system.

Outline of the proposed approach. This work introduces a behavior-based spe-
ciation method, where the behavior exhibited by each neurocontroller is described by
what are called behavior signatures, which allow different behaviors to be compared.
The technique promotes the emergence of distinct robot behaviors, each following a
different navigation strategy within the same training environment. Behavior signatures
are given as character strings that contain the path followed by the robot within a topo-
logical representation of the environment. As a result, a string similarity measure can be
used to compare behavior signatures, in this case the normalized Levenshtein distance
metric (N-GLD) is proposed [5]. Therefore, speciation can be carried out in behavioral
space, a more natural approach for BBR than using objective or phenotypic space to
speciate, both of which are more prevalent in other EC problem domains; see Figure
1a. The speciation technique is incorporated within the Neuro-Evolution of Augment-
ing Topologies (NEAT) method [6]. NEAT adds ANN complexity in an incremental
manner and evolves both the topology and the connection weights concurrently.

This paper proceeds as follows: Section 2 gives a review on speciation and outlines
related work. Section 4 describes the proposed speciation method. Implementation de-
tails are shown in Section 5. Finally, in Section 6 concluding remarks are given.

2 Speciation and diversity preservation

When a multimodal space of solutions exists, it may be desirable to find as many solu-
tions as possible. To achieve this goal, a common approach within EC is to incorporate
a speciation mechanism with the evolutionary algorithm (EA) of choice.

In more formal terms, a speciating algorithm applys a mechanismD that maximizes
the diversity of individuals within a population P , and also maintains a high mean
population fitness F(P). Thence, an idealized mechanism would imply that,

D(P)−→max {H(P)} ∧max {F(P)} , (1)

where H(P) is the entropy of population P . Some speciation methods are of general
use like fitness sharing [7], while others are domain specific such as symbiosis [8].

Related Work. Speciating methods can be grouped into two classes. The first con-
tains techquies that perform problem decomposition and specialization, what some re-
searchers call “evolutionary divide and conquer” [9]. Some examples include the work
by Moriarti & Mikkulainen [8] and Dunn et al. [9]. The second group performs spe-
ciation in order to find problem solutions that “perform different versions of basi-
cally the same job” [10]. In other words, each indivual represents a complete stand-
alone solution, and each species contains solutions with distinctive properties. Relevant



Fig. 1. a) The top row shows the basic niching technique carried out in fitness space. Next, spe-
ciation based on topological similarities between ANNs (NEAT). Finally, the proposed behavior-
based speciation. b) Two sample behavior signatures generated in the topological map represen-
tation. Each node is labeld, an the path consists of the string of visited nodes by the robot. c)
Training environment used: (1) represents the initial position for behavior signature generation;
(2 - 5) each of the starting positions and headings for the four training epochs. The topological
representation of this environment is the same as in b) using a 4× 4 grid.

examples include the work by Hocaoǧlu & Sanderson [11] and Stanley & Miikku-
lainen [6]. Hocaoǧlu & Sanderson evolve alternative paths in 2D and 3D environments.
However, their problem formulation is given in terms of a deliberative control mech-
anism, as apposed to the BBR approach of ER. Stanley & Miikkulainen introduce the
NEAT method, a specialized GA that uses speciation to obtain alternative ANNs. NEAT
evolves both the topology and connection weights, thus carrying out incremental learn-
ing of network complexity. NEAT has shown an ability to solve hard problems, hence,
it is used as the basis for the proposed ER system.

Neuro-Evolution of Augmenting Topologies. The NEAT method introduces sev-
eral advantages when compared with other neuro-evolution systems. For instance, the
encoding used allows for crossover operations to be carried out between networks with
different topologies. NEAT simulates incremental learning by starting from an initial
topology and incrementally addig new nodes and synapses. Finally, NEAT protects
topological innovations with speciation. To the authors knowledge, NEAT has not been
used in BBR problems, marking the present work as the first such instance.

Speciation in NEAT. Speciation in NEAT groups ANN based on a measure of topo-
logical similarity. The method defines a similarity measure between two ANN chromo-
somes using the number of disjoint genes, excess genes, and connection weight dif-
ferences. Where genes can represent a network node or a synaptic weight. Thence, a
measure of similarity δNEAT is given by

δNEAT =
c1 ·G+ c2 ·D

N
+ c3 ·W , (2)



where G is the number of excess genes, D the number of disjoint genes, W the average
weight difference of matching genes, and cx are weight coefficients, normally set to
c1 = c2 = 1 and c3 = 0.4. Thus, given a similarity threshold δt a new individual a is
added to the first species B where its distance δNEAT to a randomly selected species
member b ∈ B is δNEAT (a, b) < δt. If no such species is found, then a new species A
is created for a. Explicit fitness sharing is used within each species. The adjusted fitness
f ′i for the individual i is calculated according to its distance δ to every other individual
j in the population,

f ′i =
fi∑n

j=1 sh(δ(i, j))
. (3)

Function sh(δ(i, j)) is set to 0 if δ(i, j) ≥ δt and 1 otherwise.
Limitations of Topological Speciation. The goal behind speciation is to produce

a functionally diverse set of solutions. Building complexity with varying topologies
is less interesting if different species do not exhibit an appreciable difference in their
functional response. The speciation mechanism proposed by NEAT can only guarantee
a diverse set of network topologies, not a diverse set of functional solutions. This can
be understood with the concept of competing conventions [12], because two ANNs can
produce the same functional response even when they are topologically different. In
the present work, it is hypothesized that if an appropriate comparative measure can be
defined, then species will develop in different regions of behavior space, see Figure 1.

3 Behavior Based Speciation

In order to be able to speciate in behavior space, an appropriate behavior representation
is necessary along with a proper comparative measure. This work presents a behav-
ior representation based on behavior signatures expressed as character strings. Thus,
similarity measures are taken from string comparison techniques.

Behaviors and Neurocontrollers. The distinction between a behavior and an indi-
vidual in an evolutionary process must be stressed; because they do not represent the
same concept. An individual represents a particular neurocontroller x, while a behavior
is a navigation strategy a induced by the sensory-motor mapping of neurocontroller x
within an environment E , written as x EÃ a. Moreover, due to competing conventions a
many-to-one relationship should be assumed between individuals and behaviors. Con-
sequently, let two individuals x and y induce behaviors x EÃ a and y EÃ a respectively.
The notation implies that the underlying navigation strategy a is shared by both x and
y. Also, it is assumed that each individual neurocontroller x induces one and only one
behavior within E . Furtheremore, a behavior is considered to be a subjective concept,
while its corresponding signature Sa represents an objective characterization of a. It
can be said that Sa is obtained by way of an interpretation process, which is denoted by
ψ.
Definition 1. Let x represent an individual neurocontroller and a the behavior x in-
duces within environment E , written as x EÃ a. Then, the behavior signature Sa repre-
sents a description of behavior a, obtained through a behavior interpretation process
ψ, written as ψ(a) ↪→ Sa.



Indeed, making measurements of specific attributes of a behavior is common, how-
ever the same cannot be trivially done for the behavior itself. The reason for this is that
ψ is an attempt to interpret a behavior as if it had concrete existence, when in fact it
represents an abstract concept. In the present work, ψ is such that Sa represents the
traversed path of the robot within E . It is important to note that the proposed speciation
method works under the assumption that each behavior a is characterized by one and
only one signature Sa.

Figure 1b gives a graphical representation of the proposed behavior signatures. The
environment is represented using a topological map M = (V,E) where V is the set
of nodes in M and E the set of edges. A neurocontroller x, starting from an initial
node v1 ∈ V , will guide the robot across the map generating a path S, represented
by the sequence of nodes visited by the robot S = vi, ..., vj , ..., vn. In order to obtain
a signature S, a controller x navigates the robot for 4000 cycles, and the position of
the robot is updated every 10 cycles. If at a given update cycle t, the node vt that
the robot occupies is different from the node it occupied at the previous update cycle
vt−1, then vt is added to S. In order, to avoid having the same initial nodes in all
behavior signatures that could influence the similarity measures, nodes are added to S
only after an initial stabilizing time set to 500 cycles. The stabilizing time eliminates
nodes from S that all behavior signatures would have as their leading characters due
to the shared starting position and not due to any meaningful similarity. Because S
is a character string, a string similarity measure δ(Sa, Sb) can be applied to compare
different signatures. Therefore, δ(Sa, Sb) defines a distance between behaviors a and b.

N-GLD: Normalized Levenshtein Distance. Before describing the N-GLD met-
ric som preliminary definitions must first be given. The alphabet is Σ, Σ∗ is the set of
strings over Σ, and λ 6∈ Σ is the null string. Here, Σ = V and Σ∗ is the set of possible
paths in M. A string S ∈ Σ∗ is expressed as S = s1, s2...sn, where si ∈ Σ is the ith
symbol of S, and |S| = n the size of the string (the null string has |λ| = 0). The Gener-
alized Levenshtein Distance (GLD), also known as the edit distance, compares strings
by various edit operations, commonly using the deletion, insertion, and substitution of
individual symbols [5]. If v, u ∈ Σ, an elementary edit operation is defined as a pair
(v, u) 6= (λ, λ), and is written as v → u, where |v|, |u| ∈ {0, 1}. The operations λ→ v,
v → u, and u → λ, represent insertions, substitutions and deletions respectively. It is
possible to define the edit transformation TSa,Sb

= T1, T2...Tl as a sequence of edit
operations that transforms Sa into Sb. If a weight function γ(v → u) ≥ 0 assigns a
non-negative weight to each edit operation, then the total weight of TSa,Sb

is

γ(TSa,Sb
) =

l∑

i=1

γ(Ti) , (4)

The GLD is defined as follows:

GLD(Sa, Sb) = min {γ(TSa,Sb
)} . (5)

The GLD is a metric over Σ∗ if :

1. ∀ v, u ∈ Σ ∪ {λ} , γ(v → v) = 0 .
2. γ(v → u) > 0 if v 6= u ∧ γ(v → u) = γ(u→ v).



In order to account for the common situation in which |Sa| 6= |Sb|, a normalized
version of GLD is required. Yuijian and Bo [5] define the normalized GLD δN−GLD

for two strings Sa, Sb ∈ Σ∗ as

δN−GLD(Sa, Sb) =
2 ·GLD(Sa, Sb)

α(|Sa|+ |Sb|) +GLD(Sa, Sb)
, (6)

where α = max {γ(v → λ), γ(λ→ u), v, u ∈ Σ}, and δN−GLD(λ, λ) = 0 .
It was shown in [5] that the δN−GLD has the following properties:

1. It satisfies 0 ≤ δN−GLD(Sa, Sb) ≤ 1 .
2. δN−GLD(Sa, Sb) = 0 if and only if Sa = Sb .
3. It is symmetric, because δN−GLD(Sa, Sb) = δN−GLD(Sb, Sa).
4. It satisfies the triangle inequality, thence, it is a metric over Σ∗ if, ∀v ∈ Σ, γ(v →
λ) = γ(λ → v) = α, and γ is a metric over the set of elementary operations. In
[5] the following weight function is suggested, and is used in the present work :
γ(v, v) = 0, γ(v, u) = 1, and γ(v, λ) = γ(λ, u) = 1 ∀v, u ∈ Σ.

Species Behaviors. Before presenting the experimental setup, another domain spe-
cific concept is defined that will facilitate further discussion of the proposed method.
Definition 2. A population P = {x1, x2...xj ...xN} of N neurocontrollers x, can be
divided into M different species Rk with k = 1...M , such that

P =
⋃M

k=1Rk where Rk ∩Rl = ∅ for k 6= l . (7)

Furthermore, let f(x) represent the fitness value of neurocontroller x within environ-
ment E . Then, the species behaviors of population P within E is given by the multiset
B =

{
a1, ...ai, ...aL

}
of L behaviors, such that ∀ ai ∈ B if x EÃ ai and x ∈ Rk then

f(x) > sup {f(y)| ∀ y ∈ Rk, y 6= x} ∧ f(x) > h , (8)

where h is called the behavior threshold which is set empirically.
Therefore, every ai ∈ B is induced by one and only one neurocontroller x ∈ P , and

every such neurocontroller is the super-individual of its corresponding species. Given
Definition 2, it is possible to observe that species behaviors are contingent on the en-
vironment E that the neurocontrollers interact with. In the general ER framework, E
refers to the training environment employed. An ER system that produces a large B is
said to have found several super-individuals. However, it cannot be assumed that these
behaviors represent distinctively different navigation strategies. Therefore, an objective
evaluation must be performed in order to determine which of the members of B do
indeed represent “different versions of basically the same job”.

4 Experimental setup

This section first describes the Kephera robot, outlines the ER algorithm and gives de-
tails on the training environment and fitness function employed.



The Kephera Robot and Simulator. The Kephera is very common within the ER
comunity, it poseses a simple structure and control mechanism that makes it ideal to
test novel methods. The Kephera has two DC motors act1 and act2 as actuators, and
eight infrared proximity sensors I1, I2, ..., I8. Evolving Neurocontrollers on-line on a
real Kephera robot [1] can be quite cumbersome and problematic. Therefore, much
of the ER research is conducted on a simulated environment. Robot and environment
simulation in the present work is done on the freeware Kephera Simulator version 2.0
[13]. The simulator gives a satisfactory modeling of the physical properties of a real
Kephera robot, and the ability to write any kind of control algorithms in C or C++.

The ER System for Behavior-Based Speciation. Figure 2 is a high-level view of
the algorithm, based on the NEAT 1 [6] method and the Kephera simulator [13]. The
ER system is integrated into the Kephera Simulator where the robot parameters, EA,
and training environment are loaded. The initial population contains an homogeneous
collection of ANN topologies. The minimal topology is a fully connected ANN with
8 input neurons (one for each sensor) and 2 output neurons (for act1 and act2) with
randomly assigned weights. This is followed by the basic NEAT method which is a
straightforward generational GA with fitness proportional selection. The only additional
mechanism is that realted to speciation and fitness adjustment. The basic process of
speciation in NEAT was described in Section 2. The main difference with the proposed
behavior-based speciation is the use of behavior signatures and subsequent similarity
measure based on the N-GLD metric. Signatures are obtained for each ANN placing
the robot in node v1 at a 45◦ heading, see Figure 1c.

Training Environment. The training environment is very similar to the one used in
[1], shown in Figure 1c. It is simple, basically a square room with a “big” obstacle in
the middle. In spite of this, the environment offers a multimodal landscape in behavioral
space where different navigation strategies are possible.

Fitness Evaluation. The type of behavior that simulated evolution should be search-
ing for is one where the robot navigates around the environment exhibiting the following
properties: 1) the robot moves forward in a straight line; 2) the robot moves as fast as
possible; and 3) the robot avoids collisions. For these properties to emerge, fitness is
assigend as in [14], where for an individual neurocontroller x,

f(x) =
1

N ·M
M∑

j=1

N∑

k=1

Vi(1−
√
4vk)(1− ϕk) , (9)

where Vk is the sum of the two motor speeds at time step k. 4vk is the absolute dif-
ference between the two motors. ϕ is the normalized activation value of the infrared
sensor with the highest activation value. Moreover, M is the number of test runs, or
epochs, and N the total number of time steps or cycles within an environment during
an epoch j. The number of epochs is set to M = 4 with the initial position and heading
of the robot for each epoch shown in Figure 1c, while the number of cycles per epoch
is N = 3000. The fitness function f(x) is maximized with better performance.

1 Source code downloaded from the web site of the Neural Networks Research Group of the
University of Texas at Austin: http://www.cs.utexas.edu/ nn/.
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Fig. 2. An overview of the ER system used to evolve alternatives behaviors. First, the Kephera
Simulator loads all the algorithm parameters and acts as the interface with the user. Next, the
minimal topology of the ANNs used for control. Followed by the neuro-evolutionary system,
beginning with the behavior-based speciation process that groups ANNs according to their be-
havior signatures at each generation. The last steps are basic GA processes, with special genetic
operators used by the NEAT method. Finally, a representative Neurocontroller from each species
is obtained, the set of Species Behaviors B.

5 Experimental results

This section describes the results of the proposed speciation method and how it com-
pares with the NEAT method. The parameters employed by each method are the follow-
ing: number of runs =6; population size = 100; generations =50; crossover rate =0.75;
compatibility threshold: δN−GLD = 0.4 , δNEAT = 3; behavior threshold: h = 3.7.
Both methods share all the runtime parameters except for the compatibility threshold
δt, which was set experimentally for N-GLD, and as in [6] for NEAT.

Figure 3 presents three comparative performance curves. All graphs are plotted rel-
ative to the number of generations, and represent averages over the total number of
runs. The plots, from left-to-right are: a) average population and best individual fitness;
b) number of nodes in best solution; and c) number of species; In the first graph, per-
formance is mostly equivalent between both methods. NEAT performs slightly better
in average performace which suggests that solutions are better fitted to the training en-
vironment. In the second, the number of nodes of the best individual shows that the
NEAT method produces more complex individuals. However, these larger individuals
do not yield higher fitness. With regards to the number of species, the NEAT method
produces a lower number of species than does the N-GLD measure. Thus, the proposed
speciation method keeps a more diverse set of solutions.



Fig. 3. Performance plots that compare NEAT and the proposed behavior speciation method with
the N-GLD metric.

Fig. 4. The set of species behaviors B found for each of the compared speciation methods: Top
row, behavior based speciation with N-GLD metric; bottom row NEAT’s topological speciation.

Additionally, Figure 4 presents two sets of species behaviors B, one each for the
NEAT topological measure and the N-GLD measure. Each of the six runs produced a
corresponding B, however only one of them is shown due to the length constraints of
the paper. Nevertheless, the B shown for each are highly representative, and any further
discussion based on these behaviors generalizes well to the other sets of results. The
behavior-based speciation with G-NLD produced species behaviors that are all unique.
Each have a different manner in which they perform navigation within the environment.
Therefore, every behavior represents a qualitatively different solution from the rest.
On the other hand, NEAT’s topology based speciation fails to obtain the same degree
of diversity. In this case, only one of the species behaviors is different from the rest.
Therefore, most NEAT species converge to the very similar navigation strategies. In
sum, behavior-based speciation with was able to find solutions that ”perform different
versions of basically the same job”, while topological speciation fails in this task.

6 Conclusions

In an ER system, obtaining several behaviors could provide a better characterization
of the space of possible solutions because the same tasks can usually be performed
using different behaviors. Thence, a system that is capable of obtaining several solu-
tions from a single evolving population is of interest. The present work describes a



novel behavior-based speciation method that encourages several navigation strategies
to evolve concurrently within a single evolutionary process. Behaviors are compared
based on their behavior signatures, which represent a traversed path across the train-
ing environment. A similarity measure based on string edit distances is proposed, the
N-GLD metric. This measure is incorporated into the NEAT method, substituting, and
subsequently compared with, NEATs own topological based similarity. Results indicate
that the EA was able to produce several different navigation strategies using the pro-
posed behavior-based speciation. The same could not be achieved using NEAT’s topol-
ogy based similarity measure for neurocontrollers. This work presents the first instance
within ER literature where various navigation strategies are evolved concurrently, thus
providing several strategies from which the end user can choose from. Finally, future
work should focus on how to relax the two main assumptions made within the proposed
speciation method, namely: 1) that each neurocontroller induces one and only one be-
havior; and, 2) that each behavior can be instantiated by one and only one signature.
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