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ABSTRACT

This paper describes a speciation method that allows an evolution-

ary process to learn several robot behaviors using a single execu-

tion. Species are created in behavioral space in order to promote

the discovery of different strategies that can solve the same naviga-

tion problem. Candidate neurocontrollers are grouped into species

based on their corresponding behavior signature, which represents

the traversed path of the robot within the environment. Behav-

ior signatures are encoded using character strings and are com-

pared using the string edit distance. The proposed approach is bet-

ter suited for an evolutionary robotics problem than speciating in

objective or topological space. Experimental comparison with the

NEAT method confirms the usefulness of the proposal.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms

Theory, Algorithms

1. INTRODUCTION
In evolutionary robotics (ER) [3] a robot’s perception-action loop

is determined by a control mechanism that is artificially evolved.

Behaviors emerge from the interactions of a situated agent with

the environment. In ER, neural networks are used for robot con-

trol and an evolutionary algorithm (EA) is used to design and/or

train the best possible NN to solve a given task. This work ex-

tends the single-solution approach by incorporating speciation into

the evolutionary process. Through speciation the ER system is able

to find different strategies for a single navigation problem; see [5].

When a search space is multimodal EAs employ speciation in or-

der to find as many fitness peeks as possible. Speciation meth-

ods can be divided into two main groups. In one, EAs attempt to

decompose a problem and generate specialized solutions for sub-

problems. In the other, EAs attempt to find problem solutions that

“perform different versions of basically the same job”. A notewor-

thy example of the latter group is the NEAT method [4], a speciat-

ing GA for neuro-evolution. NEAT allows for crossover operations

between networks with different topologies. Also, NEAT simu-

lates incremental learning by starting from an initial topology and

incrementally adding nodes and synapses, and protects topologi-

cal innovations through speciation. However, building complexity

with varying topologies is of less interest if different species do
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Figure 1: a) The top row shows speciation carried out in fit-

ness space. Next, speciation based on NN topology. Finally,

behavior-based speciation. b) Two sample behavior signatures.

Each node is labeled, an the path consists of the string of vis-

ited nodes. c) Training environment: (1) represents the initial

position for behavior signature generation; (2 - 5) each of the

starting positions and headings for the training epochs. The

topological map of this environment is the same as in b).

not exhibit a different functional response. The NEAT method can

only guarantee a diverse set of network topologies not a diverse set

of input-output mappings because two NNs can produce the same

functional response even if they are topologically different. In the

current work, it is hypothesized that if an appropriate comparative

measure can be defined, then species will develop in different re-

gions of behavior space, see Figure 1a.

2. BEHAVIOR-BASED SPECIATION
Speciation in behavioral space requires: 1) a behavior represen-

tation, and 2) a similarity measure. In this work, behaviors are

represented through signatures expressed as character strings, and

are compared using the string edit distance. In order to compre-

hend the speciation process the distinction between a behavior and

an individual must be stressed. An individual is a neurocontroller

x, while a behavior is the navigation strategy a induced by the

sensory-motor mapping of x within an environment E , written as

x
E
 a. A behavior is a subjective concept, while Sa represents

an objective characterization of a. Sa is obtained by way of an

interpretation process denoted by ψ.

Definition 1: Let x represent an individual neurocontroller and

a the behavior induced by x within environment E , written as x
E
 

a. Then, the behavior signature Sa represents a description of
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Figure 2: The ER system used to evolve several behaviors.

behavior a, obtained through a behavior interpretation process

ψ, written as ψ(a) →֒ Sa.

Two examples of signatures are shown in Figure 1b. The en-

vironment is represented using a topological map where V is the

set of nodes. A neurocontroller x, starting from an initial node

v1 ∈ V , will guide the robot across the map generating a path S
represented by the sequence of visited nodes S = vi, ..., vn.

N-GLD: Normalized Levenshtein distance. The Generalized

Levenshtein Distance (GLD), also known as the edit distance, com-

pares strings by various edit operations. Given an alphabet Σ and

v, u ∈ Σ, the operations λ → v, v → u, and u → λ, represent

insertions, substitutions and deletions respectively. It is possible

to define the edit transformation TSa,Sb
= T1, T2...Tl as a se-

quence of edit operations that transforms Sa into Sb. If a function

γ(v → u) ≥ 0 assigns a non-negative weight to each edit opera-

tion, then the total weight of TSa,Sb
is computed by γ(TSa,Sb

) =
Pl

i=1
γ(Ti). The GLD, which is a metric under certain conditions

[6], is defined as GLD(Sa, Sb) = min {γ(TSa,Sb
)}. To account

for the common situation in which |Sa| 6= |Sb|, the normalized

GLD δN−GLD for two strings Sa, Sb ∈ Σ∗ is given by

δN−GLD(Sa, Sb) =
2 ·GLD(Sa, Sb)

α(|Sa| + |Sb|) +GLD(Sa, Sb)
, (1)

where α = max {γ(v → λ), γ(λ→ u), v, u ∈ Σ} [6].

Species behaviors: A population P = {x1, x2...xj ...xN} of N
neurocontrollers x, can be divided into M different species Rk,

P =
SM

k=1
Rk where Rk ∩Rl = ∅ for k 6= l . (2)

Furthermore, let f(x) represent the fitness value of neurocontroller

xwithin environment E . Then, the species behaviors of population

P within E is given by the multiset B =
˘

a1, ...ai, ...aL
¯

of L

behaviors, such that ∀ ai ∈ B if x
E
 ai and x ∈ Rk then

f(x) > sup {f(y)| ∀ y ∈ Rk, y 6= x} ∧ f(x) > h , (3)

where h is called the behavior threshold, set empirically.

The ER system. Figure 2 is a high-level view of ER system, in-

tegrated into the Kephera Simulator [1], where the parameters, EA,

and training environment are loaded. The initial population con-

tains an homogeneous collection of NN topologies. The minimal

topology is a fully connected NN with 8 input neurons (sensors)

and 2 output neurons (actuators). This is followed by the basic

NEAT method which is a straightforward generational GA with fit-

ness proportional selection. Species formation proceeds as follows.

Given a similarity threshold γ a new individual x is added to the

Figure 3: Performance plots (left-to-right): a) average and best

fitness; b) number of nodes in best; and c) number of species.

Figure 4: Species behaviors for each method.

first speciesB where its signature’s distance to a randomly selected

species member y ∈ B is δN−GLD(x, y) < γ. If no such species

is found, then a new species A is created for x. Signatures are ob-

tained for each NN placing the robot in node v1 (Figure 1c). The

training environment is similar to the one in [2], it offers a multi-

modal landscape in behavioral space. Fitness encourages behaviors

where the robot navigates by: 1) moving forward in a straight line;

2) moving as fast as possible; and 3) avoiding collisions.

3. EXPERIMENTAL RESULTS
The EA parameters: # runs = 6; population size = 100; genera-

tions = 50; compatibility threshold: γN−GLD = 0.4 , γNEAT = 3;

behavior threshold: h = 3.7. Figure 3 has three performance

curves, all are plotted relative to the number of generations and rep-

resent the averages over all runs. In the first graph performance is

mostly equivalent. The second graph shows that NEAT produces

more complex individuals. In the last graph, N-GLD generates

more species; populations tend to be highly diverse. Figure 4 shows

five species behaviors, found in a single run for each method. In

summary, the N-GLD produced a set of species behaviors that are

unique, while NEAT could not do the same.

4. CONCLUSIONS
This paper describes a behavior-based speciation method that en-

courages several navigation strategies to evolve within a single pop-

ulation. The proposed method found several unique solutions for

the same problem, while topological speciation could not.
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