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Abstract. The basic problem for a mobile vision system is determinirgng
it is located within the world. In this paper, a recognitioystem is presented
that is capable of identifying known places such as roomsamnidors. The sys-
tem relies on a bag of features approach using locally prentimage regions.
Real-world locations are modeled using a mixture of Gaussiapresentation,
thus allowing for a multimodal scene characterization.dlaegions are repre-
sented by a set of 108 statistical descriptors computed tfifferent modes of
information. Therefore, the system needs to determinetwibset of descrip-
tors captures regularities between image regions of the dacation, and also
discriminates between regions of different places. A geradgorithm is used to
solve this selection task, using a fithess measure that pesmb) a high clas-
sification accuracy; 2) the selection of a minimal subsetesfcdptors; and 3) a
high separation among place models. The approach is testedooreal world
examples: a) using a sequence of still images with 4 diftdl@ations; and b)
a sequence that contains 8 different locations. Resultiroothe ability of the
system to identify previously seen places in a real-worttrsg

1 Introduction

Building an artificial system that is capable of answering dluestiorfWhere am 1?”

is one of the central problems studied in computer visioepassh. This task has only

been partially solved in constrained real-world situagiofo solve an instance of this
problem, and many vision problems in general, three desisueils must be accounted
for [1] : 1) What information should be extracted from themuttof visual sensors? 2)

How is the information extracted? 3) How should the inforiorabe represented? 4)
How will it be used to solve higher-level tasks?

This contribution introduces a system that performs plam®gnition using only
local image information and probabilistic models for eamtation. The design ques-
tions stated above are addressed in the following mannesstipms 1 and 4 are an-
swered using common computer vision techniques that adeapfe to different types
of problems. The extracted information are local imageaesi what corresponds to
abags of featuregpproach [2—4]. In this way, the system can be robust to siuts
and avoids the need for prior segmentation. The informagathered from the images



is used to create a probabilistic mixture model for each efkmown locations. On the

other hand, questions 2 and 3 were answered using desigmdaels based on evolu-
tionary computation. More precisely, information is extead using GP-evolved region
detectors [5-7]. In addition, local image regions are repnéed by a subset of statisti-
cal descriptors that are selected by a genetic algorithn) (GAThe proposal is related

to vision based recognition, where a model correspondenseught. This contrasts
with image indexing approaches where specific image instaace retrieved or used
for comparison.

This paper is organized as follows. Section 2 reviews rélegsearch and gives a
working definition for the problem of place recognition. Sec 3 presents a detailed
description of the proposed method. Section 4 describesqerimental setup, the test
sets used and the obtained results. Finally, concludinguriesrand future perspectives
are given in Section 5.

2 Related work and problem definition

This section presents some examples of place recognitgtarsg. Then, a more precise
problem statement is given that illustrates the difficultyh@ problem.

Related work. Due to paper size considerations the review of past work®ts n
exhaustive, however it does give a general overview of the tf approaches that are
currently being used to solve the problem of place recogmitror instance, Torrallet
al. [8] present a combined place and object recognition systatruses context depen-
dentinformation. The system employs global features fac@recognition, and object
detection is contingent on the location that has been ifieditiThe system also relies
on the spatial relations between different locations, dadlsi employing a topological
map of the environment represented by a hidden Markov m@uethe other hand, the
present work is concerned with place recognition that ompleys visual information
without a Markovian assumption regarding the temporal gradial relationships be-
tween frames of an image sequence. Therefore, the propcstbddis closely related
with the problem of object class recognition. Furthermanstead of using a holistic
image description, the current work relies on a sparse aral ttescription of each im-
age [2—4]. Another relevant example is the work by Wahgl.[9], where vision-based
localization is performed for a mobile robotic system. latttvork, the authors utilize
scale invariant features detected using the Harris-Lamlatector and characterize each
local region using the popular SIFT descriptor. Their applois to utilize an image in-
dexing technique, which contrasts with the recognitiorebleapproach presented here.
Moreover, the use of SIFT limits the type of information tlia¢ system can employ
for recognition purposes, more notably it excludes any tyfpalor information. Both
aforementioned examples show how different types of modge#re possible. There-
fore, a more concrete definition for the problem of place gadtion is necessary to
clearly express the goal behind the current work.

Problem Statement.The place recognition problem can be defined as follows.
Given a set of physical real-world locationg, and a set of representative images
for each location, train a system capable of recognizingiiication is being viewed
in each frame of a sequence of test images that are differ@mtthe images used for



Fig. 1. The problem of place recognition. 1) First row: differenéws of the same location (Re-
search Lab); 2) Second row: Images from four different liocet (Students Lab, Computer Lab,
Research Lab, and Office).

training. The only constraint is that the testing sequemdg contains images from the
[ locations learned during training. This constraint cowdcelasily relaxed by adding an
unknowrclass to the list of locations.

In order to grasp the difficulty of the problem some visualregées are shown in
Figure 1. The first row contains images from different vieishe same location. A
high degree of variability exists within this location, vilmapresents a single class. The
second row, contains images from four different locatioresiertheless, it is possible to
observe that many features are shared amongst them. Irfoletidg the set of features
that can best discriminate between classes and at the samedpture properties that
are special to each class, represents a complex searclemprobhis work addresses
these issues using an evolutionary search and a probahitistielling.

3 Outline of the recognition system

With a clear understanding of the place recognition task,nbw possible to introduce
each aspect of the current proposal. In accordance wittragluctory discussion, this
Section starts by giving a description of each of the mainmgtheshoices. Then, the GA
learning loop is described, and finally the proposed redamnériteria are given.

Extracting local image information. As stated above, the system employs sparsely
distributed local image regions, also know as a “bags ofifest approach. Salient im-
age regions are extracted based on their distinctive ptiepghat make them unique
when compared with neighboring regions. Employing thisrapph has two principal
advantages. First, relevant image regions are extractibwithe need for prior seg-
mentation thereby eliminating what is considered to be g d@#ficult task. Second, the
extraction of these type of regions is robust to partial asicins or scene variations.

In order to extract locally prominent regions a scale adhjpterest region detector
is employed [7]. Selecting a characteristic scale for lagelge features is a process
in which local extrema of an operator’s response, embeduedii linear scale-space,
are found over different scales [10]. The interest operataployed in the current work
was synthesized with Genetic Programming and is optimiaedifh repeatability and
global region separability [5, 6]. The operator is nank&d-i »1- and is given by

KIPGPI* (X;tj) = th * |th * I(X) — I(X)| N (1)



Fig. 2. Scale invariant regions detected on three test images. dap &iginal images; Bottom
Row: detected regions. Columns contain a test image fronmobtiee locations in Experiment 2
of this paper, from left to right: Students lab; Computer LRbsearch Lab.
Features Description
Gradient informatiorGradient Gradient magnitudeand Gradient Orientation
(VI V I, V).
Gabor filter response The sum®#bor filterswith 8 different orientationggab).
Interest operators The response to 3 stable interest operatdesris, / PG P1
andI PGP2 (Kxarris, Kirapri, Kipap2).
Color information  All the channels of 4 color spac&GB YIQ, Cie Lah and
rg chromaticity(R, G, B,Y,1,Q, L,a,b,r,g).

+ K1 p@ p1 isproportional to a DoG filter, and ; p ¢ po is based on the determinant of the Hessian [5, 7).

Table 1. The complete feature spade

with j = 0,1, ..., k, andk is the number of scales to be analyzed, here it is sett05.
The size of a detected region is proportional to the scaldnatiwit obtained its extrema
value. For the sake of uniformity, all regions are scaleddza of41 x 41 pixels using
bi-cubic interpolation before region descriptors are catag, as in [11]. Figure 2 shows
sample interest regions extracted with thepsp1- Operator. It is important to note,
however, that the recognition system does not depend onaatigydar region detector.
To exhibit this, the first experimental setup employs theiKadd Brady detector that
relies on a local entropy measure of intensity values [12].

Feature Spacelocal image regions are more discriminantly characterizgdg
different types of numerical descriptors. In the currentkydhe space of all possible
descriptorsp includesl8 different modes of color and texture related informatia® s
Table 1. To characterize the information contained aloffgrint information channels,
six statistical descriptors are computedeany, standard deviatiorr, skewnessg,
kurtosiss, entropyH andlog energyE. This yields a total ofl 08 possible descriptor
values that can be used to model regions from each location.

Place modelsltis necessary to model how regions are mapped to descspéme.
It is expected that regions extracted from images of the dacaion, each offering
a different view, will create distinctive clusters én Hence, when a test image is ob-



tained and local regions are extracted, to determine whichtion those regions corre-
spond with it is only necessary to map those regions to dascrspace and compute
their class membership. This is a classification probler ,aa@aussian mixture model
(GMM) is chosen to solve this task. GMMs are able to represmuitimodal data, a
property that can be expected from different image regiaken from a real-world
location, see Figure 1. Formally, a GMM pdf is defined as,

c
p(x;0) = D acN(x; e, o) (2)

c=1

whereN (x; e, X.) is thecth multivariate Gaussian component with mean covari-
ance matrix¥., and an associated weight. Estimation of the mixture model param-
eters is done using the EM algorithm when a fixed number of @orapts is assumed.
Alternatively, if a variable number of component is desjneith a maximum bound, it
is possible to use Figueiredo-Jain (FJ) algorithm [13]s6€ification with GMMs can
be easily done employing Bayes rule. Additionally, it is gibe to estimate the amount
of separation between two class models using a closed fdutico

Fisher’s Linear Discriminant. Fisher defined the separation between two distribu-
tionsV; and\V; as the following ratio

)P
S = W T ) ©

wherew = (2;+ ;)7 (s — i) [14]. Note thatS is defined for unimodal pdfs, hence

a weighted versio® that accounts for the weight; anda; of the associated Gaussian
components in a GMM is proposed, such that

G S
“J 1+ai—|—04j'

(4)

Hence, the separation between components with a small c@ohlveight (they have
less influence over their associated models) ejfipearto be larger with respect to
the separation between components with larger weightgefdre, letC, andC, rep-
resent the number of componentsiafx; ©,) andp,(x; ©,) respectively, thers®®
represents thapparentseparation matrix of siz€', x C that contains the weighted
separationS; ; of every component gb, with respect to every component pf. The
final apparentseparation measutebetweerp, andp; is defined as

S = inf(S*?) . (5)

3.1 The GA training algorithm

The system recognizes a totaliadifferent locations. For each locatidh n different
images are taken aspresentativeriews, these images are used for training. For every
representative image, scale invariant regions are erttaand for all such regions the
complete 108 descriptor values are computed off-line. THeGA performs feature



selection and learns appropriate GMMs, one for each logaitica single run. The GA
employs fitness proportional selection, mask crossovaglesbit mutation and an elitist
survival strategy. Solution representation and fitneskiatian are described next.
Solution Representation.Each individual in the population is coded as a binary
string B = (b1, bo, ...b10s) Of 108 bits. Each bit is associated with one of the statistical
descriptors inp. Therefore, if bith; is set to 1 its associated descriptor will be selected,
with the opposite being true i, = 0. The feature vectax, for each regiom is given
by the concatenation of all the selected descriptors.
Fitness Evaluation:Here is where object models are learned and fitness is agsigne
For every physical locatioi. a corresponding GMM . (x; ©p,) is trained using an
all vs. all ! strategy. Only 70% of the regions extracted from the repriesiee views
are used for learning the GMMs, employing the descriptonesiselected bys. This
generates a sé? = {p.(x;0.)} of GMMs, one for each location, witjP| = 1.
Afterwards, the remaining0% of image regions are used for validation to compute an
accuracy scorgl using Bayes rule. Fitness is given for minimization by,

Bopes +1 o
va’pﬂ' eEP.,i#j,when A>0,
f(B) = ©
Bones ]- .
% otherwise .

In the above equatio3,,.s is the number of ones in string, ¢ = 0.01, anda is a
weight parameter. The first case in Eq. 6 is applied when th&/Gidining algorithm
converges; fitter individuals will minimize the number ofesged descriptors and max-
imize the average validation accurady Furthermore, the terrim f (SPi-Pi ) promotes
between-class model separation by selecting the infimunil tie apparent separa-
tion measures between all modelsfn The second case in Eq. 6 is applied when the
training algorithm fails to converge.

Pruning the descriptor space with a two-stage GAPrevious results of a similar
algorithm [4], used for object recognition, suggests thatdescribed approach is ca-
pable of solving complex recognition problems. Howevevgesal limitations were no-
ticeable. For instance, spa@ds quite large, thus all GA runs would converge towards
models with only one Gaussian component in a large subsgageusing between 27
and 43 dimensions. This made the use of GMMs completely wssacy. Moreover,
this makes the obtained solutions less desirable becaubke t#rge amount of numer-
ical descriptors that they require. Therefore, in orderweroome these limitations a
two-stage GA is proposed.

In the first stage, the GA runs using the process describackatnith the parameter
a = 2in Eq. 6. In this way, the tern®,,,.s will have a greater influence on the fitness
score. Thus, the GA will favor solutions that use a small stilo @. Additionally,
due to the large dimensions @f the EM algorithm is used for training with only one
Gaussian component in each model. After a fixed number ofrgéars, set to 50 in
all experiments, the best solution identifies a subspaded#noted byb*.

The second stage works the same as the first with three mdidifisaFirst, the
search space employed is defineddbyinstead of®, what is normally a substantially

L Allvs all learning implies that all class models are learired single step or EM execution.
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Fig. 3. Sample images for each of the four locations used in Expetirhe

more compact search space. Second, with the smaller sqech the dimensions of
the Gaussian components are expected to be smaller tharebyraging a more mul-
timodal characterization. Hence, the FJ algorithm is usedr&ining the GMMs with
maximum of 10 components per GMM. Third, the weight paramiet&q. 6 is set to
«a = 1 thereby reducing the influence that,,.; has over fithess and focusing fitness
on the accuracy termd. The output of this two-stage GA is a gétC ¢* of descriptors
that best characterizes the regions from each locdtj@nd a set of trained GMMB°
used to classify unseen test images.

Place RecognitionThe final place recognition process proceeds as followseGiv
an unseenmage I from one of the known places, interest regions are deteatdd a
their corresponding descriptors, specifiedFinare computed. The extracted regions
are classified using Bayes rule with the model$’th Therefore, if a majority of the
regions are classified to a modgel € P° then it is said that location is viewed in the
imaged scené.

4 Experimental setup and results

This section is divided in two parts, one for each experi@lesunfiguration.

Experiment 1. The first test for the proposed recognition system contaiosb-
cations: 1) Room, 2) WC, 3) Diner, and 4) Lounge. The trairangd test images were
chosen from the same image sequence of 1 Mb color photogseative images of
each location are shown in Figure 3. The size of the imagasget than what is normal
for this type of system, however the larger image allows dgean detector to extract
more image patches for training and testing. Regions weraard using the entropy-
based Kadir & Brady detector. In order to simplify the leagnof GMM parameters, a
max number of training regions was set to 3,500, which wemdaenly selected from
all the regions extracted from the training images. Frora thibset, 30% are used in
validation and the rest with the learning algorithm (EM o} faf the GMMs. Table 2
gives further details regarding the number of photos peatlon, the cardinality of each
GMM learned, the total of of test images,the number of masifeed images. Addition-
ally, the first row of Table 3 presents the characteristighefbest individual found by
the two-stage GA, describing: the fithess value, the siz&*pthe cardinality ofF', the
descriptors inF', and validation accuracy.

Experiment 2. The second setup contains eight locations from our reseamter,
these are: 1) Students Lab, 2) Computer Lab, 3) Researchi) &bckers, 5) 1st Floor
, 6) 2nd Floor, 7) Office, and 8) Mail. Two sequences of imagesvtaken from each



Location||Training Im. GMM components Test Im. Error

Room 7 3 2 0
WC 5 6 2 0
Diner 9 4 2 0
Lounge 9 8 2 0

Table 2. Description of Experiment 1, setup and results.

Experiment[|Fitness [¢*| |F| Features A
1) ]0.0061 30 7 Ve, K1rari(n) Riuey Qom): (o). buy 70-75%
2) 0.0053 36 14 gab,, 1,y Kipapr2 (), G(o), B(o),

Yo Loy Quoys Lioys 0y, b1y, 7o) 14.73%

Table 3. Performance and selected features; see text for furthailslet

location, one during the morning and the other in the aftenrtbus providing different
lighting conditions. Sample images of each location arevshia Figure 4. All images
are color jpeg photos of sizZ20 x 340. In this experimental setup thH€; pcp1- Scale
invariant detector is used, without any restrictions indheunt of regions that are used
for training; Table 4 gives further details. Some locatiblase more training regions
that do others, this is a result of the fact that some regiams Imany textured objects,
such as the Office and all the Labs, while other locations arehnsimpler, such as
the corridors on each floor, the Mail area, and the Locker.aFba second row of
Table 3 describes the best individual found by the GA. Additilly, Table 5 presents
the confusion matrix for this experiment, here it is possitd see that most of the
recognition errors occur with the simpler less texturedg@$a This suggests that the
the learning algorithm builds more discriminant models tfuzse regions with more
training regions, something that can be expected beforehan

5 Conclusions and future work

This paper described a learning approach to place recognitinich is an essential task
for any mobile vision system, such as those used by autonsnoetwts. This proposal
relies on local scale invariant regions and builds proligtilmodels using mixtures
of Gaussians. The regions are described using statistidaés related to texture and
color information. The numerical descriptors used are ehds/ a two-stage GA from
a maximum of 108 different values. The evolutionary leagrpnocess searches for the
smallest possible subset of descriptors, while also atiegp maximize classification
accuracy and the distinctiveness of the GMMs that represacit physical location.
Experimental results confirm the validity of the approachsbying two real-world
problems of place recognition, and doing so using only Vigufarmation. However,
results from Experiment 2 indicate that building a recagnitsystem that only relies
on visual cues represents a very difficult problem becauselésimilarities between
locations within most office buildings. Future extensiofighis work will center on
integrating the system with an autonomous robot in ordeaddifate localization dur-



Lockers

Fig. 4. Sample images for each of the eight locations used for Exya 2.

Location ||Training Im. Training Regions GMM components Test Im. Error

Students Lab 17 5469 3 17 4
Computer Lab 14 5477 3 14 0
Research Lab 27 4941 2 26 12
Lockers 14 507 3 14 14
1st Floor 13 4534 3 12 11
2nd Floor 20 2263 2 19 12
Office 17 6756 2 16 1
Mail 10 1139 3 10 10

Table 4. Description of Experiment 2, setup and results.

ing kidnappingevents in real time. Moreover, restrictions should be idetly such as
spatial relationships between different locations thgnefaking the recognition pro-
cess more robust. Additionally, it would be of interest tpaxd the amount and type
of descriptors available to the GA search.
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