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Abstract. The basic problem for a mobile vision system is determining where
it is located within the world. In this paper, a recognition system is presented
that is capable of identifying known places such as rooms andcorridors. The sys-
tem relies on a bag of features approach using locally prominent image regions.
Real-world locations are modeled using a mixture of Gaussians representation,
thus allowing for a multimodal scene characterization. Local regions are repre-
sented by a set of 108 statistical descriptors computed fromdifferent modes of
information. Therefore, the system needs to determine which subset of descrip-
tors captures regularities between image regions of the same location, and also
discriminates between regions of different places. A genetic algorithm is used to
solve this selection task, using a fitness measure that promotes: 1) a high clas-
sification accuracy; 2) the selection of a minimal subset of descriptors; and 3) a
high separation among place models. The approach is tested on two real world
examples: a) using a sequence of still images with 4 different locations; and b)
a sequence that contains 8 different locations. Results confirm the ability of the
system to identify previously seen places in a real-world setting.

1 Introduction

Building an artificial system that is capable of answering the question“Where am I?”
is one of the central problems studied in computer vision research. This task has only
been partially solved in constrained real-world situations. To solve an instance of this
problem, and many vision problems in general, three design issues must be accounted
for [1] : 1) What information should be extracted from the output of visual sensors? 2)
How is the information extracted? 3) How should the information be represented? 4)
How will it be used to solve higher-level tasks?

This contribution introduces a system that performs place recognition using only
local image information and probabilistic models for each location. The design ques-
tions stated above are addressed in the following manner. Questions 1 and 4 are an-
swered using common computer vision techniques that are applicable to different types
of problems. The extracted information are local image regions, what corresponds to
a bags of featuresapproach [2–4]. In this way, the system can be robust to occlusions
and avoids the need for prior segmentation. The informationgathered from the images



is used to create a probabilistic mixture model for each of the known locations. On the
other hand, questions 2 and 3 were answered using design techniques based on evolu-
tionary computation. More precisely, information is extracted using GP-evolved region
detectors [5–7]. In addition, local image regions are represented by a subset of statisti-
cal descriptors that are selected by a genetic algorithm (GA) [4]. The proposal is related
to vision based recognition, where a model correspondence is sought. This contrasts
with image indexing approaches where specific image instances are retrieved or used
for comparison.

This paper is organized as follows. Section 2 reviews related research and gives a
working definition for the problem of place recognition. Section 3 presents a detailed
description of the proposed method. Section 4 describes theexperimental setup, the test
sets used and the obtained results. Finally, concluding remarks and future perspectives
are given in Section 5.

2 Related work and problem definition

This section presents some examples of place recognition systems. Then, a more precise
problem statement is given that illustrates the difficulty of the problem.

Related work. Due to paper size considerations the review of past works is not
exhaustive, however it does give a general overview of the type of approaches that are
currently being used to solve the problem of place recognition. For instance, Torralbaet
al. [8] present a combined place and object recognition system that uses context depen-
dent information. The system employs global features for place recognition, and object
detection is contingent on the location that has been identified. The system also relies
on the spatial relations between different locations, basically employing a topological
map of the environment represented by a hidden Markov model.On the other hand, the
present work is concerned with place recognition that only employs visual information
without a Markovian assumption regarding the temporal and spatial relationships be-
tween frames of an image sequence. Therefore, the proposed method is closely related
with the problem of object class recognition. Furthermore,instead of using a holistic
image description, the current work relies on a sparse and local description of each im-
age [2–4]. Another relevant example is the work by Wanget al.[9], where vision-based
localization is performed for a mobile robotic system. In that work, the authors utilize
scale invariant features detected using the Harris-Laplace detector and characterize each
local region using the popular SIFT descriptor. Their approach is to utilize an image in-
dexing technique, which contrasts with the recognition based approach presented here.
Moreover, the use of SIFT limits the type of information thatthe system can employ
for recognition purposes, more notably it excludes any typeof color information. Both
aforementioned examples show how different types of modelling are possible. There-
fore, a more concrete definition for the problem of place recognition is necessary to
clearly express the goal behind the current work.

Problem Statement.The place recognition problem can be defined as follows.
Given a set ofl physical real-world locationsL, and a set ofn representative images
for each location, train a system capable of recognizing which location is being viewed
in each frame of a sequence of test images that are different from the images used for



Fig. 1. The problem of place recognition. 1) First row: different views of the same location (Re-
search Lab); 2) Second row: Images from four different locations (Students Lab, Computer Lab,
Research Lab, and Office).

training. The only constraint is that the testing sequence only contains images from the
l locations learned during training. This constraint could be easily relaxed by adding an
unknownclass to the list of locations.

In order to grasp the difficulty of the problem some visual examples are shown in
Figure 1. The first row contains images from different views of the same location. A
high degree of variability exists within this location, what represents a single class. The
second row, contains images from four different locations;nevertheless, it is possible to
observe that many features are shared amongst them. Indeed,finding the set of features
that can best discriminate between classes and at the same time capture properties that
are special to each class, represents a complex search problem. This work addresses
these issues using an evolutionary search and a probabilistic modelling.

3 Outline of the recognition system

With a clear understanding of the place recognition task, itis now possible to introduce
each aspect of the current proposal. In accordance with the introductory discussion, this
Section starts by giving a description of each of the main design choices. Then, the GA
learning loop is described, and finally the proposed recognition criteria are given.

Extracting local image information. As stated above, the system employs sparsely
distributed local image regions, also know as a “bags of features” approach. Salient im-
age regions are extracted based on their distinctive properties that make them unique
when compared with neighboring regions. Employing this approach has two principal
advantages. First, relevant image regions are extracted without the need for prior seg-
mentation thereby eliminating what is considered to be a very difficult task. Second, the
extraction of these type of regions is robust to partial occlusions or scene variations.

In order to extract locally prominent regions a scale adapted interest region detector
is employed [7]. Selecting a characteristic scale for localimage features is a process
in which local extrema of an operator’s response, embedded into a linear scale-space,
are found over different scales [10]. The interest operatoremployed in the current work
was synthesized with Genetic Programming and is optimized for high repeatability and
global region separability [5, 6]. The operator is namedKIPGP1∗ and is given by

KIPGP1∗(x; tj) = Gtj
∗ |Gtj

∗ I(x) − I(x)| , (1)



Fig. 2. Scale invariant regions detected on three test images. Top Row: original images; Bottom
Row: detected regions. Columns contain a test image from oneof the locations in Experiment 2
of this paper, from left to right: Students lab; Computer Lab; Research Lab.

Features Description

Gradient informationGradient, Gradient magnitudeand Gradient Orientation
(∇, ‖ ∇ ‖,∇φ).

Gabor filter response The sum ofGabor filterswith 8 different orientations(gab).
Interest operators† The response to 3 stable interest operators:Harris, IPGP1

andIPGP2 (KHarris, KIPGP1, KIPGP2).
Color information All the channels of 4 color spaces:RGB, YIQ, Cie Lab, and

rg chromaticity(R, G, B, Y, I, Q,L, a, b, r, g).

† KIP GP1
is proportional to a DoG filter, andKIP GP2

is based on the determinant of the Hessian [5,7].

Table 1.The complete feature spaceΦ.

with j = 0, 1, ..., k, andk is the number of scales to be analyzed, here it is set tok = 5.
The size of a detected region is proportional to the scale at which it obtained its extrema
value. For the sake of uniformity, all regions are scaled to asize of41× 41 pixels using
bi-cubic interpolation before region descriptors are computed, as in [11]. Figure 2 shows
sample interest regions extracted with theKIPGP1∗ operator. It is important to note,
however, that the recognition system does not depend on any particular region detector.
To exhibit this, the first experimental setup employs the Kadir and Brady detector that
relies on a local entropy measure of intensity values [12].

Feature Space.Local image regions are more discriminantly characterizedusing
different types of numerical descriptors. In the current work, the space of all possible
descriptorsΦ includes18 different modes of color and texture related information, see
Table 1. To characterize the information contained along different information channels,
six statistical descriptors are computed:meanµ, standard deviationσ, skewnessγ1,
kurtosisγ2, entropyH andlog energyE. This yields a total of108 possible descriptor
values that can be used to model regions from each location.

Place models.It is necessary to model how regions are mapped to descriptorspace.
It is expected that regions extracted from images of the samelocation, each offering
a different view, will create distinctive clusters inΦ. Hence, when a test image is ob-



tained and local regions are extracted, to determine which location those regions corre-
spond with it is only necessary to map those regions to descriptor space and compute
their class membership. This is a classification problem, and a Gaussian mixture model
(GMM) is chosen to solve this task. GMMs are able to representmultimodal data, a
property that can be expected from different image regions taken from a real-world
location, see Figure 1. Formally, a GMM pdf is defined as,

p(x; Θ) =

C∑

c=1

αcN (x; µc, Σc) , (2)

whereN (x; µc, Σc) is thecth multivariate Gaussian component with meanµc, covari-
ance matrixΣc, and an associated weightαc. Estimation of the mixture model param-
eters is done using the EM algorithm when a fixed number of components is assumed.
Alternatively, if a variable number of component is desired, with a maximum bound, it
is possible to use Figueiredo-Jain (FJ) algorithm [13]. Classification with GMMs can
be easily done employing Bayes rule. Additionally, it is possible to estimate the amount
of separation between two class models using a closed form solution.

Fisher’s Linear Discriminant. Fisher defined the separation between two distribu-
tionsNi andNj as the following ratio

Si,j =
(w(µi − µj))

2

(wT (Σi + Σj)(w))
, (3)

wherew = (Σi+Σj)
−1(µi−µj) [14]. Note thatS is defined for unimodal pdfs, hence

a weighted version̂S that accounts for the weightαi andαj of the associated Gaussian
components in a GMM is proposed, such that

Ŝi,j =
Si,j

1 + αi + αj

. (4)

Hence, the separation between components with a small combined weight (they have
less influence over their associated models) willappearto be larger with respect to
the separation between components with larger weights. Therefore, letCa andCb rep-
resent the number of components ofpa(x; Θa) andpb(x; Θb) respectively, thenSa,b

represents theapparentseparation matrix of sizeCa × Cb that contains the weighted
separation̂Si,j of every component ofpa with respect to every component ofpb. The
final apparentseparation measureS betweenpa andpb is defined as

Sa,b = inf(Sa,b) . (5)

3.1 The GA training algorithm

The system recognizes a total ofl different locations. For each locationL, n different
images are taken asrepresentativeviews, these images are used for training. For every
representative image, scale invariant regions are extracted, and for all such regions the
complete 108 descriptor values are computed off-line. Then, the GA performs feature



selection and learns appropriate GMMs, one for each location, in a single run. The GA
employs fitness proportional selection, mask crossover, single bit mutation and an elitist
survival strategy. Solution representation and fitness evaluation are described next.

Solution Representation.Each individual in the population is coded as a binary
stringB = (b1, b2, ...b108) of 108 bits. Each bit is associated with one of the statistical
descriptors inΦ. Therefore, if bitbi is set to 1 its associated descriptor will be selected,
with the opposite being true ifbi = 0. The feature vectorxλ for each regionλ is given
by the concatenation of all the selected descriptors.

Fitness Evaluation:Here is where object models are learned and fitness is assigned.
For every physical locationL a corresponding GMMpL(x; ΘL) is trained using an
all vs. all 1 strategy. Only 70% of the regions extracted from the representative views
are used for learning the GMMs, employing the descriptor values selected byB. This
generates a setP = {pL(x; ΘL)} of GMMs, one for each location, with|P| = l.
Afterwards, the remaining30% of image regions are used for validation to compute an
accuracy scoreA using Bayes rule. Fitness is given for minimization by,

f(B) =






Bα
ones + 1

A2 · inf(Spi,pj )
∀ pi, pj ∈ P , i 6= j , when A > 0 ,

Bones + 1

ε
otherwise .

(6)

In the above equation,Bones is the number of ones in stringB, ε = 0.01, andα is a
weight parameter. The first case in Eq. 6 is applied when the GMM training algorithm
converges; fitter individuals will minimize the number of selected descriptors and max-
imize the average validation accuracyA. Furthermore, the terminf(Spi,pj ) promotes
between-class model separation by selecting the infimum of all the apparent separa-
tion measures between all models inP . The second case in Eq. 6 is applied when the
training algorithm fails to converge.

Pruning the descriptor space with a two-stage GA.Previous results of a similar
algorithm [4], used for object recognition, suggests that the described approach is ca-
pable of solving complex recognition problems. However, several limitations were no-
ticeable. For instance, spaceΦ is quite large, thus all GA runs would converge towards
models with only one Gaussian component in a large subspace of Φ, using between 27
and 43 dimensions. This made the use of GMMs completely unnecessary. Moreover,
this makes the obtained solutions less desirable because ofthe large amount of numer-
ical descriptors that they require. Therefore, in order to overcome these limitations a
two-stage GA is proposed.

In the first stage, the GA runs using the process described above, with the parameter
α = 2 in Eq. 6. In this way, the termBones will have a greater influence on the fitness
score. Thus, the GA will favor solutions that use a small subset of Φ. Additionally,
due to the large dimensions ofΦ, the EM algorithm is used for training with only one
Gaussian component in each model. After a fixed number of generations, set to 50 in
all experiments, the best solution identifies a subspace ofΦ denoted byΦ∗.

The second stage works the same as the first with three modifications. First, the
search space employed is defined byΦ∗ instead ofΦ, what is normally a substantially

1 All vs all learning implies that all class models are learnedin a single step or EM execution.



Fig. 3. Sample images for each of the four locations used in Experiment 1.

more compact search space. Second, with the smaller search space the dimensions of
the Gaussian components are expected to be smaller thereby encouraging a more mul-
timodal characterization. Hence, the FJ algorithm is used for training the GMMs with
maximum of 10 components per GMM. Third, the weight parameter in Eq. 6 is set to
α = 1 thereby reducing the influence thatBones has over fitness and focusing fitness
on the accuracy termA. The output of this two-stage GA is a setF ⊂ Φ∗ of descriptors
that best characterizes the regions from each locationL, and a set of trained GMMsPo

used to classify unseen test images.
Place RecognitionThe final place recognition process proceeds as follows. Given

an unseenimageI from one of the known places, interest regions are detected and
their corresponding descriptors, specified inF , are computed. The extracted regions
are classified using Bayes rule with the models inPo. Therefore, if a majority of the
regions are classified to a modelpL ∈ Po then it is said that locationL is viewed in the
imaged sceneI.

4 Experimental setup and results

This section is divided in two parts, one for each experimental configuration.
Experiment 1. The first test for the proposed recognition system contains four lo-

cations: 1) Room, 2) WC, 3) Diner, and 4) Lounge. The trainingand test images were
chosen from the same image sequence of 1 Mb color photos, representative images of
each location are shown in Figure 3. The size of the images is larger than what is normal
for this type of system, however the larger image allows the region detector to extract
more image patches for training and testing. Regions were extracted using the entropy-
based Kadir & Brady detector. In order to simplify the learning of GMM parameters, a
max number of training regions was set to 3,500, which were randomly selected from
all the regions extracted from the training images. From this subset, 30% are used in
validation and the rest with the learning algorithm (EM or FJ) for the GMMs. Table 2
gives further details regarding the number of photos per location, the cardinality of each
GMM learned, the total of of test images,the number of misclassified images. Addition-
ally, the first row of Table 3 presents the characteristics ofthe best individual found by
the two-stage GA, describing: the fitness value, the size ofΦ∗, the cardinality ofF , the
descriptors inF , and validation accuracyA.

Experiment 2. The second setup contains eight locations from our researchcenter,
these are: 1) Students Lab, 2) Computer Lab, 3) Research Lab,4) Lockers, 5) 1st Floor
, 6) 2nd Floor, 7) Office, and 8) Mail. Two sequences of images were taken from each



Location Training Im. GMM components Test Im. Error

Room 7 3 2 0
WC 5 6 2 0

Diner 9 4 2 0
Lounge 9 8 2 0

Table 2.Description of Experiment 1, setup and results.

Experiment Fitness |Φ∗| |F | Features A

1) 0.0061 30 7 ∇φ(σ), KIPGP1(γ1), R(µ,σ), Q(γ2), a(σ), b(µ) 70.75%
2) 0.0053 36 14 gab(µ,γ2), KIPGP2(H), G(σ), B(σ),

Y(γ1), I(µ,σ), Q(σ), L(σ), a(H), b(µ,H), r(σ) 74.73%

Table 3.Performance and selected features; see text for further details.

location, one during the morning and the other in the afternoon thus providing different
lighting conditions. Sample images of each location are shown in Figure 4. All images
are color jpeg photos of size320 × 340. In this experimental setup theKIPGP1∗ scale
invariant detector is used, without any restrictions in theamount of regions that are used
for training; Table 4 gives further details. Some locationshave more training regions
that do others, this is a result of the fact that some regions have many textured objects,
such as the Office and all the Labs, while other locations are much simpler, such as
the corridors on each floor, the Mail area, and the Locker area. The second row of
Table 3 describes the best individual found by the GA. Additionally, Table 5 presents
the confusion matrix for this experiment, here it is possible to see that most of the
recognition errors occur with the simpler less textured places. This suggests that the
the learning algorithm builds more discriminant models forthose regions with more
training regions, something that can be expected beforehand.

5 Conclusions and future work

This paper described a learning approach to place recognition which is an essential task
for any mobile vision system, such as those used by autonomous robots. This proposal
relies on local scale invariant regions and builds probabilistic models using mixtures
of Gaussians. The regions are described using statistical values related to texture and
color information. The numerical descriptors used are chosen by a two-stage GA from
a maximum of 108 different values. The evolutionary learning process searches for the
smallest possible subset of descriptors, while also attempting to maximize classification
accuracy and the distinctiveness of the GMMs that representeach physical location.
Experimental results confirm the validity of the approach bysolving two real-world
problems of place recognition, and doing so using only visual information. However,
results from Experiment 2 indicate that building a recognition system that only relies
on visual cues represents a very difficult problem because ofself-similarities between
locations within most office buildings. Future extensions of this work will center on
integrating the system with an autonomous robot in order to facilitate localization dur-



Fig. 4. Sample images for each of the eight locations used for Experiment 2.

Location Training Im. Training Regions GMM components Test Im. Error

Students Lab 17 5469 3 17 4
Computer Lab 14 5477 3 14 0
Research Lab 27 4941 2 26 12

Lockers 14 507 3 14 14
1st Floor 13 4534 3 12 11
2nd Floor 20 2263 2 19 12

Office 17 6756 2 16 1
Mail 10 1139 3 10 10

Table 4.Description of Experiment 2, setup and results.

ing kidnappingevents in real time. Moreover, restrictions should be included, such as
spatial relationships between different locations thereby making the recognition pro-
cess more robust. Additionally, it would be of interest to expand the amount and type
of descriptors available to the GA search.
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