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Abstract: This work presents a novel local image descriptor based on the
concept of pointwise signal regularity. Local image regions are extracted
using either an interest point or an interest region detector, and discrimina-
tive feature vectors are constructed by uniformly sampling the pointwise
Hölderian regularity around each region center. Regularity estimation is
performed using local image oscillations, the most straightforward method
directly derived from the definition of the Hölder exponent. Furthermore,
estimating the Hölder exponent in this manner has proven to be superior
when compared to wavelet based estimation. Our detector shows invariance
to illumination change, JPEG compression, image rotation and scale
change. Results show that the proposed descriptor is stable with respect to
variations in imaging conditions, and reliable performance metrics prove it
to be comparable and in some instances better than SIFT, the state-of-the-art
in local descriptors.
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1. Introduction

The feature extraction problem, in the domain of image analysis systems, poses to main re-
search questions. How can distinctive areas within an image be identified? How can distinctive
areas be represented in such a way as to facilitate their identification? The main concepts to
be taken from those questions are: identification and representation. Concerning the former,
the identification problem, a mainstay in vision systems are interest point or interest region
extraction algorithms. These techniques search for image pixels, or image regions, that exhibit
high signal variations with respect to a particular local measure. Solutions have been designed
based on studying intrinsic properties of 2D-signals [9], and more recently by solving a prop-
erly framed optimization problem [12, 13]. In response to the second question, dealing with
the concept of representation, different techniques hanve been proposed that encode the in-
formation within these so called interesting regions. Discriminative feature are constructed that
uniquiley characterize each interest regions. This in turn allows for efficient feature matching in
a wide range of imaging problems. Currently, the SIFT [7] descriptor has proven to be the most
discriminative local descriptor in machine vision literature, and shows the highest performance
with respect to the current set of benchmark tests [10].

This paper presents a novel region descriptor based on the concept of Hölderian regularity.
By approximating the pointwise Hölder exponent, also known as the Lipschitz exponent, us-
ing local signal oscillations around each image point, we are able to construct discriminative
feature vectors. Our proposed descriptor is invariant to several types of changes in viewing
conditions, exhibiting high and stable performace. As such, the main contribution of this work
is that it introduces novel concepts to the field of feature extraction algorithms, using formal
mathematical tools and corroborated by high performance on standard tests.

The rest of this paper is organized as follows. Section 2 gives a brief overview of related
work. Section 3 presents the concept of Hölderian regularity and how to estimate it. Section
4 introduces our local descriptor based on pointwise Hölder exponents. Later in Section 5,
experimental results are provided. Finally, in Section 6 we give conclusions and outline possible
future work.

2. Related Work

It is not our intention to give a comprehensive summary on the subject of local descriptors, such
a discussion can be found in [10]. Hence, we will only focus on presenting the basic strategies
followed by the most common type of region detectors, distribution based descriptors, and
discuss the SIFT strategy.

Currently, most state-of-the-art local descriptors use a distribution based approach. These
techniques characterize image information using local histograms of a particular measure re-
lated to shape or appearance. The most simple would be using histograms of pixel values,
while more complex representations could be values representing texture characteristics. The
most successful descriptor currently available in computer vision literature is SIFT, developed
by David Lowe [7], which builds an histogram of gradient distributions within an interest re-
gion. The descriptor builds a 3D histogram of gradient locations and orientations, weighted by
the gradient magnitudes. Although SIFT combines both a scale invariant detector with the gra-
dient distribution descriptor, only the latter has proven to outperform other types of techniques,
and it is possible to replace the former with a more reliable region detector.



3. Hölder Regularity

One of the most popular ways to measure a signals regularity, be it pointwise or local, is to
consider Hölder spaces. Hence, we will present the concept of regularity expressed through the
Hölder exponent.

DEFINITION 1. Let f : ℜ → ℜ, s ∈ ℜ+∗ \N and x0 ∈ ℜ. Then, f ∈Cs(x0) ⇔∃η ∈ ℜ+∗, a
polynum P of degree < s and a constant c such that

∀x ∈ B(x0,η), | f (x)−P(x− x0)| ≤ c|x− x0|
s
. (1)

The pointwise Hölder exponent of f at x0 is αp = sups { f ∈Cs(x0)}, see Figure 1.

Fig. 1. H ölderian envelope of signal f at point x0.

The concept of signal regularity, characterized by the Hölder exponent, has been widely
used in fractal analysis [2, 1]. With regards to image analysis, the Hölder exponent provides
a great deal of information related to the local structure around each point. Hence, it has been
applied to such tasks as edge detection [6], image denoising [3] and image interpolation [4].
Furthermore, because most local image descriptors are fundamentally attempting to describe
local image variations and overall structure, it is a natural conclusion to expect that Hölderian
regularity will prove to be a useful tool in this task. Now, we are left with the task of accurately
estimating the pointwise Hölder exponent.

3.1. Estimating the Hölder Exponent with oscillations

The most natural way to estimate the Hölder exponent, because it follows from its definition,
consists in studying the oscillations around each point. This method gives accurate results,
better then those obtained using wavelet analysis [5], hence it will be the technique of choice to
compute our proposed descriptor. A brief description of this technique will now be given, for
a more detailed analysis please see [11]. It is pointed out that the Hölder exponent of function
f (t) at t is αp ∈ [0,1], if a constant c exists such that ∀ t ′ in a vicinity of t,

| f (t)− f (t ′)| ≤ c|t − t ′|αp . (2)

In terms of signal oscillations, this condition can be written as: a function f (t) is Hölderian
with exponent αp ∈ [0,1] at t if ∃c ∀τ such that oscτ(t) ≤ cταp , with

oscτ(t) = sup
|t−t′|≤τ

f (t ′)− inf
|t−t′|≤τ

f (t ′) = sup
t′,t′′∈[t−τ,t+τ]

| f (t ′)− f (t ′′)|. (3)

An estimation of the regularity will be built at each point by computing the slope of the re-
gression between the logarithm of the oscillation and the logarithm of the dimension of the



Fig. 2. Estimating the H ölder exponent with oscillations. Left: the region of interest λ ,
and three of the seven neighborhoods around point t, when r = 1,2, · · · ,7. Center: the
neighborhood of radius τ5 = 32 pixels, with base = 2’ Right: computing the supremum of
the differences within radius τ5, where d denotes the Euclidian distance.

Fig. 3. Descriptor building process.

neighborhood at which one calculates the oscillation. From an algorithmic point of view, it is
preferable not to use all sizes of neighborhoods between two values τmin and τmax. Hence, we
calculate the oscillation at point t only on intervals of the form [t−τr : t +τr], where τr = baser.
Here, we use least squares regression, with base = 2 and r = 1,2, . . . ,7. For a 2D signal, t de-
fines a point in 2D space and τr a radius around t, such that the Euclidian distances d(t ′, t)
and d(t ′′, t) are ≤ τr. We can visualize this process in Figure 2. The method of estimation with
oscillations will give good results under three conditions: that αp < 1, the regression converges,
and the regression converges towards a valid slope.

4. Hölder Descriptor

Now that we have described a method to accurately characterize the pointwise signal regularity,
we can now move on to describe how we use this information to build our local descriptors.
The process, described in Figure 3, is as follows.



First, a set Λ of regions of interest are extracted from an image. Second, the dominant gra-
dient orientation φλ is computed, this preserves rotation invariance. Finally, our feature vector
δλ contains the Holder exponent αp of the region center and of 128 concentric points, orderd
according to φλ .

Region Extraction: The first step in the process requires stable detection of prominent image
regions. The type of regions to be extracted will depend on the requirement of the higher level
application with respect to invariance. For instance, an interest point detector will suffice when
the scale of the imaged scene is not modified. In our work, we use a detector optimized for
geometric stability and global point separability, the IPGP2 detector which is the determinant
of the Hessian matrix smoothed by a 2D Gaussian [12, 13]. All regions extracted with an interest
point detector are assigned the same scale, wλ = 2.5 pixels. For images where scale is a factor,
we use the Hessian-Laplace detector presented in [8], which searches for extrema in a linear
scale space generated with a Gaussian kernel. After this step we are left with a set Λ of circular
image regions, where the scale is set to sλ = 5 ·wλ , and wλ is the scale given by the detector.

Dominant Orientation: In order to preserve rotation invariance, the dominant gradient ori-
entation is computed and used as a reference for the subsequent sampling process. For the scale
invariant detector, all image regions are normalized to 41x41 bit size using bicubic interpo-
lation. An orientation histogram is constructed using gradient orientations within the interest
region, similar to what is described in [7]. The histogram peak is obtained and thus ∀λ ∈ Λ a
corresponding φλ is assigned. In this way, each region is described by a set λ = {xλ ,yλ ,sλ ,φλ},
the image center, scale and orientation of the region.

Hölder Descriptor: Now that regions are appropriately detected and described with λ , we
can now continue to construct our region descriptor δλ ,∀λ ∈ Λ. Our sampling process is sim-
ple, see Figure 3, the first element of δλ is the Hölder exponent αp computed at the region
center (xλ ,yλ ). Next, the Hölder exponent of points on the perimeter of four concentric rings
are sampled, with radii of 1

4 · sλ , 1
2 · sλ , 3

4 · sλ and sλ respectively. A total of 32 points on each
ring are sampled, starting from the position given by φλ , uniformly spaced and ordered coun-
terclockwise. Hence, our feature vector δλ has 129 dimensions, compared to the 128 of SIFT.

5. Experimental Results

In order to effectively evaluate and compare our results, we use standard image sequences pro-
vided by the Visual Geometry Group [14]. From each image sequence there is one reference
image and a set of test images, since we know beforehand the transformation between the ref-
erence and test images we are able to quantify a matching score for our descriptor. For image
sequences where there is no scale change, we use threshold based matching, and for images
with scale change we use neareast neighbor distance ratio matching. The former, is a strategy
where two image regions λ1 and λ2 are matched if the following relation holds d(δλ1

,δλ2
) < t.

While the latter strategy assigns a match between regions if
d(δλ1

,δλ2
)

d(δλ1
,δλ3

) < t, where λ2 is the near-

east neighbor of λ1, and λ3 is the second nearest. In both cases, the value of t is varied to obtain
the performance curves. Two types of curves are presented: one plots recall versus 1-precision,
characterizing the matching between one test image and the reference image [10]; the other
is a double y-axis plot, one axis for recall and the other for 1-precision, that characterizes the
performance of the descriptor on an entire image sequence. The second type of plot, includes
errorbars in order to visualize the stability of the descriptor. Recall and 1-precision are defined
as in [10]: recall = #correctmatches

#correspondences , and 1− precision= # f alsematches
#correctmatches−# f alsematches . For compari-

son, the performance of our descriptor is plotted with that of SIFT. To compute SIFT descriptor,
the Harris and Harris-Lapplace detectors were used to extract image regions, as suggested in
[10]; executables for SIFT and the Harris detectors were obtained from [14].



Fig. 4. Columns, from left to right: 1)Rotation (36 images in sequence), 2)Illumination
change (10 images), 3)JPEG compression (6 images), and 4)Scale change (first 6 images
of sequence). Rows, from top to bottom: 1)Reference image, 2)Test Image, 3)Performace
between test and reference with H ölder-Green and SIFT-Red, 4)SIFT average performance
on entire set, and 5)H ölder average performance.

6. Conclusions and Future Work

Results show very promising performance, in general we can appreciate how the regularity
based descriptor is more stable and achieves equal or better performace than SIFT for image
sequences without scale change. Even do this is not the case for scale change transformations,
we can still appreciate competitive performace up to a reasonable change in scale. The perfor-
mance drop-off in this circumstances is expected to be directly related to the method of Hölder
exponent estimation. For this reason an appropriate modification of the oscillations method is
necessary in order to obtain a more efficient scale invariance for our Hölder descriptor.


