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Abstract. In this paper we present a study based on an evolutionary
framework to explore what would be a reasonable compromise between
interaction and automated optimisation in finding possible solutions for
a complex problem, namely the learning of Bayesian network structures,
an NP-hard problem where user knowledge can be crucial to distinguish
among solutions of equal fitness but very different physical meaning.
Even though several classes of complex problems can be effectively tack-
led with Evolutionary Computation, most possess qualities that are dif-
ficult to directly encode in the fitness function or in the individual’s
genotype description. Expert knowledge can sometimes be used to inte-
grate the missing information, but new challenges arise when searching
for the best way to access it: full human interaction can lead to the
well-known problem of user-fatigue, while a completely automated evo-
lutionary process can miss important contributions by the expert. For
our study, we developed a GUI-based prototype application that lets
an expert user guide the evolution of a network by alternating between
fully-interactive and completely automatic steps. Preliminary user tests
were able to show that despite still requiring some improvements with
regards to its efficiency, the proposed approach indeed achieves its goal
of delivering satisfying results for an expert user.
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1 Introduction

Efficiently using algorithmic solvers to address real world problems initially re-
quires dealing with the difficult issue of designing an adequate optimisation
landscape - that is, defining the search space and the function to be optimized.
The Bayesian Network Structure Learning (BNSL) problem is a good example
of a complex optimisation task in which expert knowledge is of crucial impor-
tance in the formulation of the problem, being as essential as the availability



of a large enough experimental dataset. By its very nature, BNSL is also at
least bi-objective: its aim is to optimize the tailoring of a model to the data
while keeping its complexity low. The balance between the multiple objectives
has to be decided by an expert user, either a priori or a posteriori, depending
on whether a mono or multi-objective solver is used. Other high level design
choices made by the expert condition the type of model that is searched (i.e.,
the definition of the search space), and the constraints that are applied to the
search.

Lack of experimental data is a rather common issue in real world instances
of the BNSL problem, making the optimisation task very multi-modal or even
badly conditioned. Although previous work has proved that EA approaches tend
to be more robust to data sparseness than other learning algorithms [30], an
efficient and versatile way of collecting expert knowledge would still represent
an important progress. Interaction with the expert, for instance, can be useful
to disambiguate solutions considered as equivalent given the available dataset.
How to best access an expert’s knowledge, however, is still an open issue: asking
a human user for input at a high frequency may lead to the well-known problem
of user fatigue; not asking frequently enough might result in too little feedback.
In this paper we present a study that constitutes a first step into reaching this
balance between interaction and automation.

For our study we developed a prototype application that allows an expert
user to guide the evolution of a Bayesian network. The prototype works by al-
ternating steps of interactive visualisation with fully automated evolution. The
original network and evolved solutions are always displayed to the user as inter-
active node-link diagrams through which constraints can be added so that the
function to be optimized can be refined. Our approach is related to humanized
computation as defined by [1] (EvoINTERACTION Workshops) i.e., “systems
where human and computational intelligence cooperate.”

The use of interactive evolution (IEAs, or IEC) algorithms is the most com-
mon approach for humanized computation. This strategy considers the user as
the provider of a fitness function (or as a part of it) inside an evolutionary loop
and has been applied to various domains, such as art, industrial design, the tun-
ing of ear implants, and data retrieval [28, 26]. There are, however, different ways
to interlace human interaction and optimization computations that may be as
simple as what we study in this paper (i.e., an iterative scheme) or as sophis-
ticated as collaborative learning and problem solving using Serious Games or
Crowd Sourcing [4, 31, 24]. An interesting feature of theses latter approaches is
that they consider various tools to deal with what they call “user engagement,”
which may represent a new source of inspiration to address the well-known “user
fatigue” issue of IEAs.

This paper is organized as follows. Section 2 gives a short background on
Bayesian Networks (BN) and how they can be visualized, as well as on meth-
ods used for dealing with the BNSL problem. Section 3 details our proposed
approach. Experimental results are presented in section 4 and an analysis is de-



veloped in section 5. Finally, our conclusions and some possible directions for
future research are discussed in section 6.

2 Background

2.1 Bayesian Networks

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose arcs encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

Node Parents Probabilities 

A P(A=a1) = 0.99 
P(A=a2) = 0.01 

B A,E P(B=b1|A=a1,E=e1) = 0.5 
P(B=b2|A=a1,E=e1) = 0.5 
P(B=b1|A=a1,E=e2) = 0.1 
P(B=b2|A=a1,E=e2) = 0.9 
P(B=b1|A=a2,E=e1) = 0.4 
P(B=b2|A=a2,E=e1) = 0.6 
P(B=b1|A=a2,E=e2) = 0.2 
P(B=b2|A=a2,E=e2) = 0.8 

Node Parents Probabilities 

C B P(C=c1|B=b1) = 0.3 
P(C=c2|B=b1) = 0.7 
P(C=c1|B=b2) = 0.5 
P(C=c2|B=b2) = 0.5 

D A P(D=d1|A=a1) = 0.8 
P(D=d2|A=a1) = 0.2 
P(D=d1|A=a2) = 0.7 
P(D=d2|A=a2) = 0.3 

E P(A=e1) = 0.75 
P(A=e2) = 0.25 

Fig. 1. Left, a directed acyclic graph. Right, the parameters it is associated with.
Together they form a Bayesian network BN whose joint probability distribution is
P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|pa(Xi))

2.2 The structure learning problem

Learning the optimal structure of a Bayesian network starting from a dataset
is proven to be an NP-hard problem [7]. Even obtaining good approximations
is extremely difficult, since compromises between the representativeness of the
model and its complexity must be found. The algorithmic approaches devised
to solve this problem can be divided into two main branches: heuristic algo-
rithms (which often rely upon statistical considerations on the learning set) and
score-and-search meta-heuristics. Recently, hybrid techniques have been shown
to produce promising results.

Heuristic algorithms: The machine learning community features several
state-of-the-art heuristics algorithms to build Bayesian network structures from



data. Some of them rely upon the evaluation of conditional independence be-
tween variables, while others are similar to score-and-search approaches, only
performed in a local area of the solutions’ space, determined through heuristic
considerations. The main strength of these techniques is their ability of return-
ing high-quality results in a time which is negligible when compared to meta-
heuristics.

Two of the best algorithms in this category are Greedy Thick Thinning
(GTT) [5] and Bayesian Search (BS) [9]. Although a detailed description of
the two procedures is outside the scope of this work, it is important to highlight
the most relevant difference between them. While GTT is fully deterministic,
always returning the same solution for the same input, BS is stochastic, starting
from different random positions at each execution. Both GTT and BS imple-
mentations can be found in commercial products such as GeNie/SMILE [12].

Evolutionary approaches: Among score-and-search meta-heuristics, evo-
lutionary algorithms are prominently featured. Several attempts to tackle the
problem have been tested, ranging from evolutionary programming [33], to co-
operative co-evolution [2] and island models [25]. Interestingly, some of the evolu-
tionary approaches to Bayesian network structure learning in the literature show
features of memetic algorithms, hinting that injecting expert knowledge might
be necessary to obtain good results on such a complex problem. For example,
[33] employs a knowledge-guided mutation that performs a local search to find
the most interesting arc to add or remove. In [11], a local search is used to select
the best way to break a loop in a non-valid individual. The K2GA algorithm
[20], in its turn, exploits a genetic algorithm to navigate the space of possible
node orderings, and then runs the greedy local optimisation K2, which quickly
converges on good structures starting from a given sorting of the variables in
the problem.

Memetic algorithms: Memetic algorithms are “population-based meta-heuristics
composed of an evolutionary framework and a set of local search algorithms which
are activated within the generation cycle of the external framework” [18]. First
presented in [23], they gained increasing popularity in the last few years [21].
What makes these stochastic optimisation techniques attractive is their ability
to quickly find high-quality results while still maintaining the exploration po-
tential of a classic evolutionary algorithm. Their effectiveness has been proven
in several real-world problems [15] [22] and there have been initial attempts to
employ them in the structure learning problem. In particular, in [29] the authors
combine the exploratory power of an evolutionary algorithm with the efficient
exploitation of GTT, obtaining Bayesian network structures with higher repre-
sentation and lower complexity than results produced by the most prominently
featured heuristic methods.

2.3 Visualizing Bayesian Networks

It has been shown that efficient interactions in humanized computation requires
efficient visualisations [19]. Current visualisation tools for BN rely on classical
graph layouts for the qualitative part of the BN, i.e., its graphical structure.
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Fig. 2. Overview of the prototype’s interface in use: a network being displayed and pre-
pared for evolution. Node properties panel: The table shows the parameters or, in
other words, the conditional probabilities for the corresponding variable. Edge prop-
erties panel: The arcs can be set as forced or forbidden before running the structure
learning algorithms. Network properties panel: The log-likelihood expresses how
well the current network expresses the dataset, while the dimension is a measure of
the network’s complexity. History panel: Every time a structure learning algorithm
is run, a new network is added to the history.

Still, a difficult issue remains regarding the quantitative part of the BN: the
conditional probability set associated to each node of the graph. It has been
noted in 2005 that ”the work performed on causal relation visualisation has been
surprisingly low” [6]. Various solutions have been proposed like in [10], BayViz
[6, 10] SMILE and GeNIe [13], or VisualBayes [32]. To our knowledge, the most
advanced and versatile visualisation interface for dealing with structure learning
is GeNIe, a development environment for building graphical decision-theoretic
models from the Decision Systems Laboratory of the University of Pittsburgh:
it has gained a notoriety in teaching, research and industry.

None of these tools, however, has really been designed to run a smooth in-
teraction scheme and to easily allow users to revisit the learning stage after
the visualisation. Our approach explores new features for visualisation-based
interactive structure learning strategies. For the moment, it does not address
quantitative visualisation, though that may be considered in the future.



3 Proposed Approach

Automated structure learning processes usually score candidate networks with
specific metrics: however, networks with similar scores might be extremely differ-
ent from a user’s point of view. In order to take into account human expertise, we
propose an interactive evolutionary tool for Bayesian network structure learning.

To perform our study a prototype application has been developed through
which users can control the generation and evolution of the Bayesian network.
This application consists of a GUI (Figure 2) that serves as a hub for net-
work manipulation and interactive evolution. The GUI consists of the menu,
the workspace, a node/edge properties panel, a network properties panel, and a
history panel.

To start the process from scratch, users can load a CSV file containing a
training set by selecting the appropriate option from the prototype’s File menu.
Alternatively, users can load an already computed network from an XMLBIF
file by choosing the corresponding option from the same menu. Once a network
is loaded, it will be displayed as a node-link diagram on the workspace, with
nodes represented as labelled circles and edges as directed line segments. When
a network is first loaded, nodes are arranged in a circular layout. Other layout
options can be found in the Layout menu, and include the Gürsoy-Atun [17],
Fruchterman-Reingold [16], and Sugiyama [27] layouts, see figure 3.

Fig. 3. Sample of layout options, from left to right: circular, Gürsoy-Atun,
Fruchterman-Reingold and Sugiyama layouts of the Alarm BN benchmark.

Navigation in the workspace consists of zooming and panning. Users can
zoom in or out by spinning the mouse wheel and pan using the scrollbars that
appear when the visualisation is too big to fit in the workspace’s view. Panning
can also be performed with the drag tool, accessible from the Edit menu. When
this tool is active, panning can be performed by clicking and dragging anywhere
on the workspace.

By default, when a network is first loaded the selection tool is active. This
tool allows users to select nodes and edges and move them around the workspace
by clicking and dragging. Multiple objects can be selected by clicking on each
object separately while the Ctrl key is pressed or by clicking on an empty area of
the workspace and dragging so that the shown selected area intersects or covers



the desired objects. Clicking and dragging on any selected object will move all
others along with it.

Users can connect nodes to one another with the Create Edge tool, available
from the Graph menu. Once this tool is active, the new edge can be created
by first clicking on the desired origin node and subsequently on the target one.
While the new edge is being created, a dashed line is shown from the origin node
to the current cursor position to help users keep track of the operation. If after
choosing the origin node they click on empty space instead of on another node,
the edge creation is cancelled. To delete an edge from the graph, after selecting
it they can either press the Delete key on the keyboard or select Remove Edge
from the Graph menu. This operation is irreversible so a dialogue will pop up
to ask for their confirmation.

When an object is selected in the workspace, its properties are displayed in
the properties panel (node properties and edge properties panels of Figure 2).
Node properties include its name and numeric id in the graph as well as its
probability table (if a training set has been loaded) and a list of other properties
that might be present in the network’s corresponding file. Edge properties show
the id and name of an edge’s origin and target nodes and helps users prepare the
network for evolution of the network by setting the edge as forced or forbidden, or
leaving it as a normal edge. Forced edges will appear in green in the workspace,
while forbidden edges will appear in red.

From the moment the network is loaded, its properties are displayed in the
network properties panel (Figure 2). These properties include the amount of
nodes and edges, the network’s log likelihood and dimension, and other proper-
ties loaded from the network file, all updated every time there is a change in the
graph. If the network was generated by evolving another, the parent network
and the method used to generate it will also be shown. The training set that will
be used to evolve the network can also be set from within this panel through
the corresponding field’s Choose button, which lets users load a CSV file. Note
that the training set must be compatible with the network (i.e., have the exact
same nodes).

If the current network has been created directly from a training set or one
has been loaded in the network properties panel, it can be evolved into new
networks. This is done through the learning algorithms accessible through the
Learning menu. Users can choose among three techniques: Greedy Thick Thin-
ning, Bayesian Search and µGP. When one is chosen, its corresponding config-
uration dialog is shown, where parameters for the evolution can be set and, for
the case of µGP, stop conditions defined.

After evolution, the workspace is updated to display the new network. The
new network is also added to the list in the history panel (Figure 2). In this
panel, the current network is always shown highlighted. Users can change the
currently displayed network by clicking on its name and export it to an XMLBIF
file through the Export Selected Network button. The latest layout is always kept
when alternating among the different networks.



The prototype application was implemented in C++ using the Qt 4.8.2
framework and the Boost (http://www.boost.org) and OGDF [8] libraries. Fig-
ure 2 shows the prototype in use. A couple of networks have been generated
using the learning algorithms, with the one displayed on the workspace having
been created with Greedy Thick Thinning. The user has set some of the edges to
forced (MINVOLSET to VENTMACH and MINVOLSET to DISCONNECT)
and forbidden (INTUBATION to SHUNT) and a node has been selected (DIS-
CONNECT).

4 Experimental Setup

In order to validate the proposed approach, test runs were performed in coop-
eration with two experts on food processing and agriculture. Agri-food research
lines exploit Bayesian network models to represent complex industrial processes
for food production.

The first expert analysed a dataset on cheese ripening [3]. It consists of 27
variables evaluating different properties of the cheese from the point of view of
the producer. Of these variables, 7 are qualitative while the other 20 refer to
chemical processes. A candidate solution for the dataset is reported in Figure 4.

Fig. 4. A sample configuration of the complete network used in the test trial. The
Sugyiama layout is preferred by the expert to visualize the structure.

The second expert analysed a dataset on biscuit baking. It consists of 10
variables describing both properties of the biscuits, such as weight and colour,
and controlling variables of the process, such as heat in the top and bottom parts
of the oven.



After a preliminary run, the setup of the memetic algorithm is changed in
order to better fit the user’s preferences. In particular, since the prototype is
not optimized with regards to the running speed of the evolutionary process, the
population size is reduced in comparison to the parameters reported in [30] so
that a compromise can be reached between the quality of the results and time
the user needs to wait before seeing the outcome.

5 Analysis and Perspectives

The expert users’ response to the prototype’s graphical user interface was gen-
erally positive. The ease of arc manipulation, which made it possible to imme-
diately see the improvements in the network’s representativeness and/or dimen-
sion, was well received. Also commended were the automatic layout algorithms,
which were extensively used when considering the entire network. The possibil-
ity of rapidly browsing through the history of networks was used thoroughly by
the experts and found to be advantageous. They felt, however, that comparing
candidates would have been more immediate and effective if the interface would
allow such candidates to be shown side-by-side, two at a time.

Since the process of structure learning is interactive, the users also noted
how the possibility of cumulating constraints would be beneficial. In the current
framework, the forced and forbidden arcs are clearly visible in each network,
but they have to be set again every time a learning method is run. Despite
results of slightly higher quality provided by the memetic approach, both users
felt that the improvement in quality did not justify the extra time needed to
obtain the solution (this approach can take up to several minutes, while the
others finish running after a few seconds). For this reason, the experts favoured a
more interactive approach, running the deterministic heuristic (GTT), changing
the forced and forbidden arcs in its results, and repeating the process until a
satisfactory solution was found.

Concerning algorithm performance, it should be noted that in order to un-
derstand the efficacy of the tool one of the users repeatedly divided the original
network in smaller networks, being more confident that in this way he could
highlight links that he deemed right or wrong (see Figure 5 for an example).
In networks with a reduced number of variables, however, the difference in per-
formance between the methods became less clear, since smaller search spaces
inevitably favours the heuristics. Nevertheless, the second expert was able to
use the tool to eventually exclude a potential relationship between two variables
in the process by iteratively generating configurations and then focusing on the
log-likelihood values presented by the different candidate solutions.

Summarizing, the feedback given by the expert user in this first trial allowed
us to compile a list of features that should make the structure learning experience
more efficient:

1. Speeding up the memetic algorithm is recommended, and can be done straight-
forwardly by using parallel evaluations and letting the user tweak some in-
ternal parameters;



Fig. 5. One of the sub-networks extensively explored by the user. In particular, this
one contains only qualitative variables from the original dataset.

2. Allowing the user to compare solutions side-by-side could be very helpful for
the user, since humans are more inclined to visually compare two network
at the same time than by simply browsing through the history;

3. Modifying the memetic algorithm to ask for the user’s input at predeter-
mined points (in order to try to extract his preferences by comparing net-
works, as in user-centric memetic algorithms [14]) might be a way to involve
the user in a more time-consuming evolutionary process;

4. Designing special features to address Dynamic Bayesian Networks (DBNs).
DBNs are extensively used in the agri-food field, and existing BN tools are
often missing inference and learning method specifically tailored for these
structures;

5. Minor features such as: allowing the user to reverse arcs; visualizing node-
related statistics in pop-up windows (for clarity); selecting several arcs at
the same time; and making it possible to select only a subset of variables
from the original dataset.

6 Conclusion

In this paper we presented a preliminary study on balancing automatic evolution
and user interaction for the NP-hard problem of Bayesian network structure
learning. The study was performed through a graphical user interface.

A test run with a modelling expert showed that the tool is able to assist
the user in expressing knowledge that would be difficult to encode in a classical
fitness function, returning more satisfying models than a completely automatic
approach. Despite the promising preliminary results, several improvements must
be performed on the proposed framework to enhance usability and progress
towards an optimal balance between automatic evolution of results and user
interaction. For example, the evolutionary approach included at the core of the
framework is found to be too time-consuming when compared to fast state-of-
the-art heuristic algorithms.



Further developments will add other evolutionary structure learning algo-
rithms, as well as the possibility for more user interaction in the definition of
parameters and during the evolution itself.
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