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Abstract: Cooperative coevolution algorithms (CCEAS) usually repre a searched solution as an aggregation of sev-
eral individuals (or even as a whole population). In othemie each individual only bears a part of the
searched solution. This scheme allows to use the artifi@ahimism principles in a more economic way, and
the gain in terms of robustness and efficiency is importamthé computer vision domain, this scheme has
been applied to stereovision, to produce an algorithm (shal§orithm) with asynchronism property. How-
ever, this property has not yet been fully exploited, inipatar at the sensor level, where CMOS technology
opens perpectives to faster reactions. We describe in #erpa new coevolution engine that allow the Fly
Algorithm to better exploit the properties of CMOS images@s.

1 INTRODUCTION searched solution is represented by the whole popu-
lation rather than by the single best individual. The
anytimeproperty of this algorithm has been discussed

in (Boumaza and Louchet, 2001). It has been ex-
loited in particular through the development of ad-

Image processing and Computer vision are now an
important source of problems for EC community, and

various successful applications have been advertise h b " B q
up to now (Cagnoni et al., 2008). There are many oc asynchronous robot controllers (Boumaza an

reasons for this success, mainly due to the fact that Louchet, 2003). How_ever, the advantage of being
stochastic and adaptive methods are convenientto ad&n _asynchronous a!gprlthm has_not yet been fully ex-
dress some ill-defined, complex and computationally P10ited, due to the rigid sequential delivery of images
expensive computer vision tasks (Horn, 1986). The by <_:o_nve_nt|or_1al sensors. This is t_he pointwe are ex-
great majority of EC image and vision applications amining in this paper. The paper is organised as fol-

is actually dealing with computationnally expensive 0WS: Section 2 is an overview of the original fly al-
aspect. There exists however less known issues regorithm, then section 3 presents the characteristics of

lated to real-time processing where EC techniques CMOS image capture dlevices thgt can be exploited in
have been proven useful. the core of the fly algorithm (section 4). A computa-

In stereovision, a cooperative coevolution algo- tional analysis is developed in section 5 and a conclu-

rithm?, the fly algorithm(Louchet, 2000; Louchet, sion is given in section 6.

2001; Louchet and Sapin, 2009), has been designed

for a rapid identification of 3D positions of ob-

jects in a scene. This algorithm evolves a popu- 2 CCEASAND FLIES
lation of 3-D points,the flies so that the popula-

tion matches the shapes of the objects on the scene . .

It is a cooperative coevolution in the sense that the 2.1 Cooperative Coevolution

These cooperative-coevolution algorithms are also Cooperative coevolution strategies actually rely on a
called “Parisian approach.” formulation of the problem to be solved as a cooper-
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(and computationnally efficient) evaluation is enough
to run the loop of figure 1. With appropriate parame-
ter tuning it is then possible to obtain “real-time” evo-
lution for video sequences.

Figure 1: A Parisian EA: a monopopulation cooperative-
coevolution

ative task, where individuals collaborate or compete 2 2 Principle of the Fly Algorithm

in order to build a solution. They mimic the ability of

natural populations to build solutions via a collective
!

process. Nowadays3 these techniques have been us s a 3-D point with coordinateg,(,7). As presented
W|_th success on various prot_)lems _(Jong et_al., 2007;;, (Louchet and Sapin, 2009), if the fly is on the
Wiegand and Potter,_ 2006), including Iearnln_g prob- surface of an opaque object, then the corresponding
lems (Bongard and Lipson, 2005). Alar.ge majority of el in the two images will normally have highly
such approaches deals with a coevolution process tha imilar neighbourhoods as shown in figure 2. Con-
happens between a fixed number of separated populaye gely if the fly is not on the surface of an object,

tions (Panait et al., 2006; Bucci and Pollack, 2005). - et cjose neighbourhoods will usually be poorly cor-

We study here a differentimplementation of coop- g |ated. The fitness function exploits this property and
erative coevolution principles, the so-called Parisian oo ates the degree of similarity of the pixel neigh-
approach (Collet et al., 2000; Ochoa et al., 2007) de- q;rhoods of the projections of the fly, giving higher

scribed on figure 1, that uses cooperation mechanisms;iiyass values to those probably lying on objects sur-
within a singlepopulation. It is based on a two-level  ¢;-aq

representation of an optimization problem, where an
individual of a Parisian population represents only a
part of the solution to the problem. An aggregation
of multiple individuals must be built in order to ob-
tain a solution to the problem. In this way, the co- The first version of the algorithm was generational.
evolution of the whole population (or a major part of At each generation, flies are created thanks to ge-
it) is favoured instead of the emergence of a single netic operators then evaluated using the fitness func-
best individual, as in classical evolutionary schemes. tion. The number of flies in the population is called

The motivation is to make a more efficient use of Popu and at each generation the rate of fly cre-
the genetic search process, and reduce computationafted by mutation and crossover are caltedt and
expense. Successful applications of such a schemecross A generation of the fly algorithm can be de-
usually rely on a lower cost evaluation of the par- scribed by algorithm 1 where fitnedg) is the fit-
tial solutions (i.e. the individuals of the population), ness of the flyf;, mutationf,) is the result of a
while computing the full evaluation only once at each Mmutation on the flyf; and crossoveff, fi) is the
generation. fly resulting from the cross-over of the flifls and

The fly algorithm is a direct application of this f1.
principle to stereovision (see section 2.2). It is ac- After a generatiorg the image is refreshed so the
tually an extreme case, as it is so well conditionned computation of the fitness function depends on the
for CCEA that there is no need to compute a global lastimage sent by the image sensor at the end of gen-
fitness evaluation for feedback to individuals. A local erationg-1.

n individual of the population, i.e. 8y, is defined

2.3 Original Algorithm



Algorithm 1 Fly algortihm

for i = 0 to popux mutdo
flies f1 andf, randomly chosen
if fitnessf1)<fitness(,) then
f1 < mutatior( f,), computation of fitness()
else
f, < mutatior(f1), computation of fithnes$f)
end if
end for
for i = 0 to popux crossdo
flies f1 andf, randomly chosen
if fitnessf1)<fitness(,) then
f1 < crossove(fy, f2), computation of the
fitness()
else
f, « crossoveffy, f1),
fitness(?)
end if
end for

computation of the

24 Steady-State Version

The first step to adapt the fly algortihm to a CMOS
image sensor is to create and evaluate flies dy-
namically. The notion of generation disappears
and each time a fly is created, algorithm 2 is ap-
plied.

Algorithm 2 Fly algorithm

i = a random number between O amdit+ cross
if i < mutthen
flies f1 andf, randomly chosen
if fitnessf1)<fitness(,) then
f1 < mutatior( f,), computation of fitness()
else
f, — mutatior(f1), computation of fithnes$g)
end if
else
flies f1 and f, randomly chosen
if fitnessf1)<fitness(,) then
f1 «— crossove(fy, fa),
fitness(1)
else
f, «— crossoveffy, f1),
fitness(,)
end if
end if

computation  of

computation  of

Figure 3: Corridor scene and flies resulting of one particula
run of the Fly algorithm, projected on the corridor scene
(printout contrast has been reduced in order to enhance the
visibility of flies).

more recently updated pixel values, enabling faster re-
actions to new events or new objects in the scene.

In order to compare the two versions of the Fly
Algorithm, one hundred runs have been performed
with the corridor scene shown on figure 3 with flies
resulting of one particular run of the Fly algorithm.
The original version of the Fly Algorithm runs until
200 generations and the steady-state version is run-
ning until having the same number of evaluations of
the fitness function. The computation time required
by the steady-state version is 9 percent less than for
the original version of the Fly Algorithm.

3 CAPTURING IMAGES
DIGITALLY

The delay for capturing an image is critical in the fly
algorithm. There exists two main different technolo-
gies for capturing images digitally (Dal, ) in which
light is converted into electric charge and then into
electronic signals:Charge coupled device (CCD) and
Complementary metal oxide semiconductor (CMOS).
For the former, every pixels charge is transferred
through a very limited number of output nodes to be
converted into voltage, buffered, and sent off-chip as
an analog signal. All the pixels are devoted to light
capture, and the output’s uniformity is high allowing
a good image quality. For the latter, each pixel has
its own charge-to-voltage conversion, and the sensor

Fresh image data are now available at each evaluatioroften also includes amplifiers, noise-correction, and
rather than at each generation as in the previous ver-digitization circuits, so that the chip outputs digital

sion of the algorithm. The advantage is this allows to
better exploit the fact image data are exploited quasi-
continuously : each fly is evaluated with reference to

bits. It results that a pixel could be checked in an im-
age without checking the whole image.
CMOS image sensors have already been used



with artificial vision algorithms. Chalimbaud and
Berry (Chalimbaud and Berry, 2004) have imple-
mented a template tracking in which this possibility

for evaluation are in the same line, all these flies are
computed.
In order to determine when the fitness function

allows to improve the perception and to focalise the of a fly has to be evaluated, thresholfs T, and

system on areas of interest. Tajimaetal. (Tajimaetal.,
2004) developed a prototype vision system maintain-

T, are used by algorithm 3 in whichime is a
counter to know how much time the program has

ing conventional data transfer speeds using a CMOS spent.

image sensor.

El Gamal (Gamal, 2002) presented

developments which take advantage of the modifica- Algorithm 3 Creation of the flyF
tions of deep submicron CMOS processes. LarnaudieTimeStart— CurrentTime
etal. (Larnaudie et al., 2004) have developeda CMOS | Projection along x-axis of the flif

imaging sensor for tracking applications. Our goal
is to adapt the fly algorithm to optimize the use of
CMOS image sensors.

4 THEFLY ALGORITHM FOR
CMOSIMAGE SENSORS

4.1 Characteristics of the CMOS Image
Sensors

if number of flies irL < Tp then
Storage of flyF into line L

else
Time« CurrentTime- TimeStart
computation of the fitness function of fiy
TimeStart— CurrentTime
Processing lin&.

end if

Time« CurrentTime- TimeStart

At each creation of a fly, the projection on left im-
age of the flyF along the x-axis is computed. This

The characteristics of the CMOS image sensors de-projection is the same on both images if the cameras
pend on the manufacturer and the model (Chalimbaudare parallel. If the number of flies in table at the

and Berry, 2004; Tajima et al., 2004; Gamal, 2002;
Larnaudie et al., 2004). With some common CMOS

corresponding ling is lower than thresholdy, then
the fly F is stored into lineL otherwise the fithess

image sensors, it is possible to send requests for thefunction of the flyF is computed and ling is pro-

values of a single line of pixels instead of the whole
image.

The time required to respond for a lihg of pixels
will be calledty. The response time for a line close

cessed. The processing of a line is described in algo-
rithm 4.

Algorithm 4 Processing lingé

to line Ly, is shorter than the time needed to respond Time« CurrentTime- TimeStart

to a random line. The response time to lings 1
andLp. 1 ist; and the response time to lineg_» and
Lni2 is to. The numberdg, t1 andt, are such that
t1 <tz <tp. The values ofy, t; andt, depends on
each CMOS image sensor.

The goal is to try to exploit this property in order
to optimize the fly algorithm thanks to a new evolu-
tionary engine.

4.2 Algorithm

In the fly algorithm, the fitness function of a fly is nor-

mally evaluated right after the creation of the fly. The
main idea is to wait before evaluating a fly until there
is a sufficient number of flies whose projections are in
the same line. The flies which are waiting to be eval-

computation of the fitness functions of flies at line
TimeStart— CurrentTime
Dumping of the flies at lin& from tableT
if number of fliesirL +1 > T; then
L — L+1, Processing line
else
if number of flies ir. — 1 > Ty then
L+ L—1, Processing liné
else
if number of flies irL +2 > T, then
L — L+ 2, Processing line
else
if number of flies irL — 2 > T then
L — L—2, Processing liné
end if
end if

uated cannot be chosen by the evolutionary operators. eqd if

The new fly algorithm is based on a tablein
which a dimension is the number of lines of the im-
age calledine. In this table, all the flies are stored

end if

The processing of a link is a recursive procedure

before being evaluated. When enough flies waiting which begins with the computation of the fitness func-



E

tions of all the flies at liné and the dumping of these
flies from tableT. Then if the number of flies in ta-
bleT at lineL+1 is higher than thresholf, then line
L+ 1 is processed; otherwise the number of flies in
tableT atlineL-1 is compared to threshold.

The numbers of flies in tabl@ at linesL + 1,
L—1, L+2, L—2 are successively compared to
thresholdsT; and T,. If a number of flies is higher M = GLENE D= N
than the threshold then the corresponding line is pro- ,
cessed. This recursive process is the key to the suc- S
cess in the use of the property of CMOS image sensor.
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Figure 4: Variation of the number of flies which are wait-

5 ANALYSISAND COMPARISON ing to be evaluated for different thresholds for 100 runs for

500000 evaluations of the fitness function of the fly algo-
rithm on the corridor scene shown on 3.

5.1 Analysis

The values of thresholdg, T; andT, are a key point 5.2 Comparison

of the algorithm. If these thresholds are too high, flies

in some parts of the scene could have to wait too long The results of the different versions of the algorithm

to be evaluated, and the algorithm would not react fast are compared. The number of evaluations by a fithess

enough to new events in the scene. If these thresholdsunction is counted and the time the program spends

are too low, the characteristic of CMOS sensors are in algorithms 4 and 3 is known as the courtiere

not exploited well enough. The thresholts T, and For these two algorithms, léty be the number

T, depend on the delayk, t; andt, required to re- of evaluations of a random line arldy and N, be

spond for different linestp is the response time for a  the numbers of evaluations of lines spaced by respec-

line Ly, t1 is the response time to linés_1 andL, 1 tively 1 and 2 from the line of the fly previously eval-

andt; is the response time to lingég_» andLp 2. uated. The time taken by all the requests to the sensor
The flies will be evaluated if there are more than is given byNp x tg+ Ny x t1 + Nz x to. For algorithm

To flies for which the projection is on the same line. 2, the time taken by all the requests to the sensor is

The response time will b so the average response given by(No + N1+ N2) X to.

time per fly will betT—%. For the same reason, if there The time the algorithm spends for the cross-over,
are enough flies the projection of which is on lines the mutation and the evaluation of the fitness function
Ln_1 andL 1, the response time per fly will b% If is the same for both versions of the fly algorithm.
there areT, flies which the projection is on linds, The two versions differ in the time of the requests
andL.», the response time per flies will t% to the sensor and the time spent in the two algorithms

The numberso, t; andt, depend on each CMOS 4 and 3. Then, algorithms 4 and 3 are faster than al-
sensor and in order to analyse the fly algorithm 9°rthm 2ifNo>xto+Nix t1+Np X tp +-time< (No+

adapted to CMOS sensdh, andT, are chosen equal  N1+N2) xto, Sotime< Ny x (to—t1) +Np x (fo—ta).
to 10 and 2T Up to our knowledge, the possible numeric values for
3 3

to, t1 andty allow to verify this equation. The variable
time depends on thresholdg T; andT, as shown on
figure 5. The integerll; andN, depends on thresh-
oldsTp, T1 andT, as shown on figure 6.

The next step is to study the numbéy,; of flies
which are waiting to be evaluated. Figure 4 shows
the average variation of the numb\y.;; for different
thresholds for one hundred runs for 200 generations
of the fly algorithm on the corridor scene shown on
figure 3. One can see the number of fidg,; de-
pending on thresholdp. 6 CONCLUSION

The number of fliedNyait Which are waiting to be
evaluated are constant for given thresholds. One can CCD and CMOS sensors are the two main types of
see on the graphics that the higher the threshold, thesensors. CMOS sensors allow random access to a part
higher the number of flieBly4t. These flies are not  of an image. We presented how the Fly Algorithm
used by the algorithm because they cannot be chosercan be modified in order to exploit this property. As
by the evolutionary operators. the internal delays in a CMOS camera are depending
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olds for 100 runs for 500000 evaluations of the fitness func-
tion of the fly algorithm on the corridor scene shown on
figure 3.
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