
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
41

77
--

F
R appor t

de recherche

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Affectation automatique des relecteurs de la
conférence PPSN VI : un exemple d’utilisation du

language EASEA

Pierre COLLET — Evelyne LUTTON — Marc SCHOENAUER

N° 4177

May 2001

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

A�etation automatique des releteurs de la onférenePPSN VI : un exemple d'utilisation du language EASEAPierre COLLET � , Evelyne LUTTON y , Mar SCHOENAUER zThème 4 � Simulation et optimisationde systèmes omplexesProjets FratalesRapport de reherhe n° 4177 �May 2001 � 29 pages
Résumé : Ce rapport présente un algorithme qui a été e�etivement utilisé par les or-ganisateurs de la onférene PPSN VI pour a�eter ses releteurs aux papiers soumis, equi peut être onsidéré omme un problème de satisfation de ontraintes. Le but n'est pasii de présenter une méthode révolutionnaire et ompétitive de résolution du problème desatisfation de ontraintes, mais plut�t de montrer omment on peut programmer de façonsimple un tel problème à l'aide du language de spéi�ation d'algorithmes évolutionnairesEASEA.Mots-lés : algorithmes évolutionnaires, algorithmes génétiques, satisfation de ontraintes

� CMAPX, Éole Polytehnique, 91128 Palaiseau edex, Frane, Pierre.Collet�polytehnique.fry Projet FRACTALES, INRIA, B.P. 105, 78153 Le Chesnay edex, Frane, Evelyne.Lutton�inria.frz CMAPX, Éole Polytehnique, 91128 Palaiseau edex, Frane,Mar.Shoenauer�polytehnique.fr

PPSN VI Reviewers and Papers: an EASEA MathAbstrat: This paper presents an algorithm whih has been used by PPSN VI organisersto alloate papers to reviewers, whih is typially a Constraint Satisfation Problem. Itsaim is not to present a new revolutionary ompetitive method to solve CSPs, but rather toshow how suh a problem an be simply implemented using EASEA, a language designedspei�ally to write evolutionary algorithms.Key-words: evolutionary algorithms, geneti algorithms, Constraint Satisfation Problem

PPSN VI Reviewers and Papers 31 IntrodutionMathing papers and reviewers has always been a major ause of baldness amongst onfe-rene organisers, unless they manage to avoid this hore by delegating the job to someoneelse, rewarded with some honori� title.The quality of the onferene somehow depends on the nie math between papers andreviewers: judging a paper an rapidly beome problemati if the subjet falls outside of thereviewer's �eld of ompetene. Honest reviewers will tell the organiser they annot evaluatethe paper, ausing delays due to the neessary rediretion while shy ones will probably givean average mark, unless the paper is utterly unreadable.A bad math between reviewers and papers therefore has at least two main onsequenes:1. embarrassed reviewers, wishing they had not aepted to review papers for this onfe-rene in the �rst plae.2. and above all, a boring onferene, where uninteresting papers have been seleted byinompetent reviewers.This paper presents a simple evolutionary algorithm written with EASEA v0.35 tryingto math hundreds of papers with hundreds of reviewers, mainly aording to keywords anda ouple of onstraints. Rather than trying to ompete with state of the art CSP-solvingmethods, this paper aims to:� demonstrate how easily suh an algorithm an be written with EASEA v0.35,� ut down the budget of hair lotion in researh teams.2 Presentation of the EASEA programming languageWhile many important �elds in omputer siene have their spei� languages (Fortran,C/C++, Lisp, Prolog, Smalltalk, . . .), not speaking of omplex appliations suh asdatabases spread-sheets, and web-browsers whih have also developed their own language(!), EA programmers remain with inadapted general purpose languages.Unfortunately, EAs are not that straightforward to implement and the lak of any spe-ialised language fores users to reinvent the wheel every time they want to write a newprogram.One way to speed up the proess is to use one of the many existing evolutionary libraries.All is for the best as they o�er very powerful tools provided . . . one is �uent enough withonstrutors, opy-onstrutors, destrutors and suh nieties involved by relatively low-levelobjet languages.The next hurdle is then to learn how to use the library, to understand the intriate datastrutures and to memorise the neessary several hundred objet types, funtions and va-riables and the way they are inter-related. This an be quite time onsuming when all majorevolutionary libraries are written in C++ or JAVA and make full use of objet programming.RR n° 4177

4 Collet, Lutton & ShoenauerAll in all, many physiists, hemists, mathematiians and other sientists who other-wise would be apable of writing relatively elaborate funtions in C, Fortran or Lisp aredenied experimentation of evolutionary algorithms due to the sheer omplexity of their im-plementation. When they go through the long and di�ult proess of writing their ownevolutionary programs, their results are barely omparable due to thoroughly di�erent pro-gramming tehniques and languages, whih is a great obstale to sienti� ooperation andemulation.The aim of EASEA (EAsy Spei�ation of Evolutionary Algorithms) is to hide thisomplexity behind a high-level language, allowing sientists to onentrate on evolutionaryalgorithms, rather than on their implementation.EASEA v0.6 is available on the net at: http://www-roq.inria.fr/EVO-Lab/ .2.1 Mode of operationRather than throwing down the drain all the man-years already spent in the developmentof evolutionary libraries by rereating our own, EASEA is designed to reuse already existinglibraries.This means that objet �les resulting from the EASEA ompilation of .ez soure �lesare C++ soure �les, using the objets of an existing evolutionary library. The resultingC++ �le is in turn ompiled and linked with the library to �nally produe an exeutable�le implementing the evolutionary algorithm spei�ed in the original .ez �le.Two libraries have been hosen to start with: GAlib �a widely used C++ geneti library[2℄� and EO (Evolving Objets [5℄) initially developed at the University of Granada (Spain)within the Evonet [4℄ framework.

Fig. 1 � EASEA mode of operation.The EASEA�GAlib ompiler uses for input an asii �le with a .ez su�x. Its output is aGAlib or an EO C++ soure �le ontaining alls to GAlib or EO funtions and objets. Theresulting C++ �le must then be ompiled by a C++ ompiler and linked with the GAlib orEO library (f. �gure 1). The produed exeutable implements the evolutionary algorithmdesribed in the original EASEA soure �le. INRIA

PPSN VI Reviewers and Papers 53 Mathing Papers and ReviewersTo begin with, all authors and reviewers were given the same list of �xed keywords tohoose from. All the neessary information is in fat stored in four databases:1. Among other �elds, the reviewers database ontains their identi�ation number, theirname, their e-mail address and a set of keywords listing the �elds in whih they areompetent.2. The interesting �elds of the papers database are the identi�ation number, the title,the list of authors, their e-mail addresses and a list of keywords related to the paper.For the �rst time this year, PPSN VI organisers have deided to let reviewers hose whihpapers they would rather review and whih they would rather not. This poliy added twoextra �les:3. A �le ontaining the reviewer's identi�ation number along with a list of paper IDshe/she would rather review4. A seond �le ontaining the reviewer's Id along with a list of paper IDs he/she wouldrather not review.3.1 Mathing riteria� A basi math between papers and reviewers supposes that at least two onstraints besatis�ed:1. Eah paper must be examined by N reviewers.2. A reviewer must not review a paper of whih he is an author.� Niely mathing papers and reviewers involves maximising an evaluation funtion,depending on the following riteria:1. If 156 papers are to be reviewed by 178 reviewers and if eah paper should bereviewed N = 3 times, this means that eah reviewer should be given an averageof 155� 3=178 = 2:61 papers to review. It is understandable that we should tryto avoid having too many reviewers with 0 or 6 papers to review.2. So as to avoid biases, it is preferable that reviewers should not know authors per-sonally. Although this is di�ult to determine onsidering the little informationavailable in the databases, we an attempt to minimise suh �risks� thanks to thee-mail �elds.The last �eld of an e-mail address allows us to determine the ountry while thelast but one usually ontains the institution name. Our mathing algorithm willthen avoid as muh as possible to assign a reviewer a paper in whih an author'se-mail address has the same last two �elds than the reviewer's.RR n° 4177

6 Collet, Lutton & ShoenauerOf ourse, hotmail or yahoo users will be prevented to review papers written byother hotmail or yahoo users, but that is another story.3. As reviewers have taken the pain to selet whih papers they would like or wouldnot like to review based on the paper title and abstrat, the algorithm should tryto take their preferene into aount.4. Finally, the program should try to math papers and reviewers who have a maxi-mum of keywords in ommon.In fat, experiene has shown that riterion 4 should have been more important thanriterion 3: strongly refusing to math a reviewer and a paper he has refused to read had theside e�et of onsiderably diminishing the number of papers a reviewer ould read withinhis own �eld.4 Algorithmi hoies4.1 Satisfying onstraintsConstraints handling is a ruial problem for EA in general. However, one should dis-tinguish between Constrained Optimization Problems (COP), in whih the goal is to mini-mize some objetive funtion while satisfying a few (generally numerial) onstraints, andConstraint Satisfation Problems (CSP), that involve a large number of generally booleanonstraints (typially several thousands) and in whih the goal is to �nd either a point of thesearh spae satisfying all onstraints, or to minimize the number of violated onstraints.Of ourse this is not a strit distintion, and many problems involve both numerial andboolean onstraints, with some objetive funtion to minimize, but the number and natureof the onstraints is the primary riterion that determines the hoie of a partiular methodto takle a problem involving onstraints.Several methods have been proposed for COPS (see e.g. [9℄ for a omplete review of thesemethods), and for CSPs (e.g. [7, 6℄), inluding:1. methods based on preserving feasability of solutions, for example using speializedoperators whih transform valid individuals into other valid ones, or repair operators(projetion on the feasible region),2. methods based on penalty funtions (weighted sum of the onstraints violations inlu-ded in the �tness funtion),The seond solution has the advantage of being very simple to implement, although itonsiderably enlarges the searh spae with bad solutions, meaning that many generationswill be devoted to sieving out unviable solutions.The �rst solution presents the advantage of onsiderably reduing the searh spae toviable solutions. Its main disadvantage is that it is more omplex to implement, leadingINRIA

PPSN VI Reviewers and Papers 7to slower geneti operators (the mutator must make sure the mutation does not result in anon-viable solution) but above all, if the problem has no solution, the evolutionary algorithmwill stop when trying to initialise the �rst individual of the �rst generation . . . whih is notof muh help to the onferene organisers.A loser look to our onstraints will however show that they are of di�erent nature: whileonstraint number 2 (a reviewer must not review a paper of whih he is an author) alonean diretly lead to a deadlok (one paper o-authored by all reviewers), onstraint number1 (eah paper must be examined by N reviewers) alone an always be satis�ed, providedthere are at least N reviewers.Our implementation will take a bit of both solutions: our genome struture will enforeonstraint number 1, and we will let the evolutionary algorithm try to satisfy onstraintnumber 2 with help of weighted penalty funtions. Another justi�ation for using suh astrategy is that suh penalty funtions allow �smoother� �tness funtions, whih learlytend to make the job easier for the GA (see for example [8℄ for theoretial onsiderationsabout �tness irregularities in�uene).Moreover, we hose to implement the unwillingness of reviewers to be assigned a paperas a supplementary onstraint, so that their hoie is not negleted by the algorithm. Theinitialising and mutator funtions make sure that they do not assign a paper to a reviewerwho has expressly mentioned his relutane to review it.4.2 Struture of a genomeKnowing N (number of reviewers per paper), the simplest struture apable of repre-senting a solution is an array of P papers to whih N reviewers are assigned, resulting ina bidimensional P �N array. This has the advantage of automatially satisfying onstraintnumber 1.4.3 Geneti operators4.3.1 Initialisation funtionEah paper in the array is randomly assigned N reviewers (onstraint 1 is satis�ed, whileonstraint 2 will be taken are of by the evaluation funtion).As stated before, we try to take into aount the reviewers's point of view by exlusivelyinitialising papers with reviewers who have expressed their willingness to review the paper. Ifless than three reviewers have expressed their interest, we selet reviewers at random amongthose who have not refused to review the paper. It appears that this deision was a bad one,as this has seriously redued the number of possible papers for a reviewer within his �eld.4.3.2 Mutation funtionThanks to the remarkable robustness of evolutionary algorithms, we an allow ourselvesto use the following (rather rude) mutation funtion:
RR n° 4177

8 Collet, Lutton & Shoenauerfor all papers in the genome:if tossoin(pMut) returns true,randomly hoose N new reviewers for the urrent paper among thosewho have not refused to review the paper.4.3.3 Cross-over funtionTo keep it simple, a single point ross-over an be easily de�ned as follows :Let parent1 and parent2 be the two genomes out of whih hild1 and hild2 must begenerated, and let L be the lous where the ross-over will take plae:� hild1 will inherit papers 0 to L� 1 from parent1 and will inherit papers L to P � 1from parent2.� hild2 will inherit papers 0 to L� 1 from parent2 and will inherit papers L to P � 1from parent1.4.4 Fitness funtionThe �tness funtion has two aims: maximising the quality of the solution, and makingsure onstraint 2 is satis�ed.4.4.1 Satisfying onstraint 2Here again, to keep things simple, the easiest way to ensure that onstraint 2 is not bustedis to punish the genome with a -1000 penalty for every o�ending math between paper andreviewer. If in fat the punishment is applied whenever the last two �elds of the authors'e-mail addresses are found in the mathed reviewers' e-mails, this automatially takes areof onstraint 2 while at the same time trying to avoid possible existing onnexions betweenauthors and reviewers.4.4.2 Ful�lling reviewers' preferenesAs the unwillingness of reviewers to review a paper has already been taken into aount inthe initialisation and mutation funtions, there remains to take into aount their willingnessto review a paper. This is easily done by giving a bonus of 10 points whenever the ase ours.Maximising the quality of the solution is however more subtle, as more parameters omeinto onsideration.4.4.3 Mathing keywordsSome reviewers have negleted to give a list of keywords desribing the �elds in whihthey are ompetent. If we give bonus points whenever a paper keyword mathes a reviewerkeyword, reviewers with no keywords will reeive less papers to review than the others, whihis somewhat unfair to those who have taken the pain to orretly �ll up the form. INRIA

PPSN VI Reviewers and Papers 9Conversely, �tness is biased by the number of keywords given for a paper: papers with 1keyword annot get many points from keywords math ompared to a paper desribed with5 keywords.Hene, a simple boolean �tness (+1 per mathed keyword) would not give balanedresults.We therefore hose to:� proportionally grade from 0 to 10 the number of paper keywords that are mathed byreviewer keywords, independently of the number of paper keywords.� give an average bonus of 5 points to a reviewer who has given no keyword list (as ifhe had mathed half the paper keywords).� give a penalty of -10 to a math between a reviewer with a keyword list with 0 paperkeyword math to disourage ill-mathing.4.4.4 Evening out the number of papers per reviewerFinally, we should try to avoid rewarding hyper-ompetent reviewers with many morepapers to review than the others. As it is easy to alulate the average number of paperswhih should be attributed per reviewer (P�N= number of reviewers), a penalty of the ubeof the di�erene over this average is given, and a penalty of -5 is given per paper under thisaverage (it is preferable to have a small number of papers per reviewer than the opposite).5 Implementation with EASEA v0.35The implementation in EASEA v0.35 is very straightforward. The ppsn.ez soure �le isdeomposed in di�erent setions eah introdued by a di�erent keyword :User Spei�: This setion ontains preproessor diretives, extern variables delarations,strutures delarations for data storage as well as a ouple of string omparison fun-tions.This setion is a spae of freedom for the user, written in pure C++.Initialisation funtion: As indiated by its name, this setion ontains the body of aninitialisation funtion immediately alled by the main funtion. In ppsn.ez, it is usedto load the de�ned strutures with data found in the papers and reviewers databases.This funtion is also written in pure C++.Classes: This setion ontains the di�erent lasses needed by the genome and the genomeitself:Math { int reviewer[3℄; }Genome { Math paper[200℄; }
RR n° 4177

10 Collet, Lutton & ShoenauerAs EASEA v0.35 annot yet handle multidimensional arrays, we de�ne the genome asan array of 200 papers of type Math. By doing so, the seond reviewer of paper 23 isaessed by paper[22℄.reviewer[1℄.Standard funtions: Here ome all geneti operators, namely:1. The initialisation funtion (mathing all papers with random reviewers).2. The rossover funtion (transribing in C++ the behaviour desribed in setion4.3.3).3. The mutation funtion (transribing in C++ the behaviour desribed in setion4.3.2).4. The evaluation funtion (transribing in C++ the behaviour desribed in setion4.4).Run parameters: This setion speaks for itself:Population size : 40Number of generations : 5000Mutation probability : 0.2Crossover probability : 1Geneti engine : SteadyStateThanks to EASEA, the end-user only has to write in C++ the bodies of the �interesting�funtions of an evolutionary algorithm. EASEA takes are of wrapping them into a GALibprogram.A side e�et is that end users do not need to know about onstrutors, destrutors,opy-onstrutors and all similar nieties one must take into aount when using an objet-oriented language. EASEA takes are of that part. The C++ ode used in ppsn.ez is purelyproedural. The funtions implementing the initialisation funtion, the geneti operatorsand the �tness funtion have nothing to do with objet-oriented programming. They aresimilar to what they would have looked like had they been written in pure C, but with aC++ syntax.The question that may legitimely arise is �Why C++?� The answer is simple : the un-derlying evolutionary libraries alled by EASEA are written in C++, hene this hoie.Subsequent versions of EASEA will allow users to write their funtions in the language oftheir hoie (Fortran for instane) and link them at ompile time to produe an exeutable�le.Hene, default methods spei� to C++ are transparently added for the user lasses(Math and Genome), as well as an automati genome display funtion. One a satisfying pro-totype has been elaborated with EASEA, the end-user an swith to the generated ppsn.pp�le to speialise the display funtion for instane.EASEA an therefore be used as a primer, reating a working prototype destined to bere�ned afterwards.
INRIA

PPSN VI Reviewers and Papers 116 Results6.1 GA outputThe results presented in this paper were obtained with the real PPSN VI databasesontaining 155 papers and 178 reviewers. As it was �rst deided that 3 reviewers shouldread eah paper, the average number of papers per reviewer is 2.61.As GALib does not handle negative �tness evaluations, we o�set results by 100,000 soas to allow �negative� sores.By default, the EASEA-generated genome display method is automatially alled twie:the �rst time on generation 0 on a newly reated individual initialised by the user-writteninitialiser method, and the seond time on the best genome, after the last generationhas been evolved.The run we will analyse (whih has been used by the onferene organisers to distri-bute the papers) shows that the evaluation of a �rst-generation individual returns 22,716.This is the result of the following sum : 100,000 + Keyword_Contribution (�27; 190) +Willing_Contribution (4,200) + Distribution_Contribution (�54; 294).� The Keyword_Contribution value is extremely negative beause we have attributed apenalty of �1; 000 to eah reviewer whose institution is the same as the institution ofone of the paper's authors. A areful examination of the output �le shows that 28 suhmathes ourred, whih gives a real keyword ontribution of +810. This good resultis explained by the fat that the initialisation funtion hose for eah papers those ofthe reviewers who had wanted to review them. Suh a riterion is sure to also seletreviewers with the greatest number of keywords in ommon with the paper.� The Willing_Contribution value is maximal as the initialisation funtion has de-liberately hosen reviewers among those who had been willing to review the paperswhenever possible, regardless of the papers per reviewer distribution.� The Distribution-Contribution value is therefore extremely negative, as reviewerswho did not express their hoies have not been seleted by default. Figure 3 showsthat 65 reviewers out of 178 have been given 0 papers to review and that 13 reviewerswere given more than 9 papers to review, hene the very bad result.The best genome of the 5 millionth generation of 40 individuals (obtained in 41 hoursand 40 minutes on a PENTIUM II 300 Mhz) yields a result of 99,900 whih an be de-omposed in : 100,000 + Keyword_Contribution (368) + Willing_Contribution (500) +Distribution_Contribution (�968).� The Keyword_Contribution value is now positive, but a areful analysis of the resultsshows that no �1; 000 penalty has been given. This means that onstraint 2 is fullysatis�ed but this also means that the real keyword ontribution dropped from 810 downto 368. This drop is explained by the even reshu�e of papers among reviewers who
RR n° 4177

12 Collet, Lutton & Shoenauer

Fig. 2 � Keyword mathhave not expressly wished to review the papers (see Distribution_Contributionbelow) and by the fat that allowing reviewers to refuse papers has introdued annegative bias: Reviewers were allowed to refuse papers exlusively among the list ofpapers having at least one keyword in ommon with their list of keywords. This meansthat only potentially good solutions w.r.t. keyword math have been rejeted !The histogram of keyword math values is shown in �gure 2 for generation 0 andgeneration 5 million.� For similar reasons, the Willing_Contribution value drops down to 500, meaningthat only 50 papers were given to reviewers who had asked to review them.� The Distribution-Contribution value is the one responsible for the previous badresults, as it has broken many optimal mathes on the ground that the repartition ofpapers among reviewers was unbalaned. As this was nevertheless a very importantriterion, it was given a great weight whih explains why its value rose from �54; 294to �968. This is still a negative value as the distribution is not optimal (all reviewersdo not have 2.61 papers to review) although it is muh better than the one of the�greedy� solution of generation 0 (�gure 3).
INRIA

PPSN VI Reviewers and Papers 13

Fig. 3 � Papers per reviewer distributionExtensive results annot be given for obvious reasons of on�dentiality. We will howeverprovide:� the ppsn.ez soure �le, in Appendix A.� the EASEA-generated ppsn.pp that has been slightly re�ned (modi�ed display fun-tions), in Appendix B.6.2 Final resultThe previously desribed result was passed to the onferene organisers who used theautomati assignment as a basis for the �nal assignment.Starting from this basis, for eah paper, they have looked into the keyword math andall reviewers who were willing to review the paper. If for some paper, the assignment wasmostly 0 (no keyword math) or �1 (no keyword suggested), they have replaed at least onereviewer with another one, either willing or with a keyword math. At the same time, theyhave tried to balane the number of papers per reviewer.Finally, aording to them, �[the �nal assignment℄ is almost the GA-generated result,with some knowledge of experts for eah paper.�After this was done, the organising ommittee �nally deided to manually add one morereviewer per paper for seurity, in ase of defetive reviewers, rising the average number ofpapers per reviewer to 3.50.
RR n° 4177

14 Collet, Lutton & Shoenauer7 ConlusionThe very simple ppsn.ez program has been written both to write a �rst real-worldappliation with EASEA, and to help out organisers of PPSN VI in the painstaking hore ofmathing papers and reviewers, whih up to now was done by hand and neessitated a oupleof full-time human days. The presented result (5 million generations of 40 individuals) alsoneeded a ouple of days to omplete, but with less human sweat.Although a seond pass was needed to polish the raw results of the algorithm, the orga-nisers who were in harge with papers assignment kindly asked to keep this ode for futureonferenes, whih leads us to think that the results of this program have been of some helpto them, although there is ertainly muh room for improvement.EASEA v0.6 is now apable to use the EO evolutionary library developed within EVO-NET. The next step will be for EASEA v0.7 to use the DREAM library written in JAVA.8 AknowledgementsThe authors would like to thank the PPSN VI organisers for their help and for their kindanalysis of the results of this algorithm.We would also like to thank the other organisers of PPSN VI, as well as DanielBouillot,Jean-Mihel Genevois, Thierry Prost, who have aepted to run of the presented GenetiAlgorithm on their personal omputers, in addition to the omputers of the Projet Fratales,the omputers of the EEAAX laboratory at Éole Polytehnique and espeially JaquesTisserand, whose personal omputer ame out with the best result, whih was used by thePPSN VI organising ommittee.Référenes[1℄ ALex & AYa home page: http://www.bumblebeesoftware.om , Bumblebee SoftwareLtd.[2℄ GAlib home page: http://www.mit.edu/people/moriken/do/galib , MIT.[3℄ EVO-Lab home page : http://www-roq.inria.fr/EVO-Lab/ (also ontaining nowEASEA v0.6).[4℄ The Evonet mirror home page: http://www.evonet.polytehnique.fr .[5℄ EO home page: http://eodev.soureforge.net/ , Granada University.[6℄ A.E. Eiben and Z. Ruttkay, Self-adaptivity for Constraint Satisfation: Learning PenaltyFuntions, in ICEC96, 1996, IEEE Servie Center, pp 258-261.
INRIA

PPSN VI Reviewers and Papers 15[7℄ J.K. Hao, P. Galinier and M. Habib, Métaheuristiques pour l'optimisation ombinatoireet l'a�etation sous ontraintes, Revue d'Intelligene Arti�ielle, 1999, vol 13 No 2, pp283-324.[8℄ E. Lutton, �Geneti Algorithms and Fratals,� in Evolutionary Algorithms in Enginee-ring and Computer Siene, John Wiley & Sons, 1999.[9℄ Z. Mihalewiz, M. Shoenauer, �Evolutionary Algorithms for Constrained ParameterOptimization Problems,� Evolutionary Computation v4, pp1-32, 1997.[10℄ M. Shoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, H.-P. Shwefel(Eds), �Parallel Problem Solving from Nature,� PPSN VI 6th International Conferene,Paris, Frane, September 16-20, 2000. Proeedings. Springer Verlag, Leture Notes inComputer Siene 1917, 2000.

RR n° 4177

16 Collet, Lutton & ShoenauerAppendix A: ppsn.ez �le/*___ppsn.ezThis file speifies an evolutionary algorithm trying tomath papers and reviewersPierre COLLET (Pierre.Collet�inria.fr)03/02/00___*/User speifi :#define MAX_PAPERS 8#define PAP_KEYW 5#define PAP_AUTH 5#define PAP_INST 5#define MAX_REVIEWERS 12#define REV_KEYW 5#define REV_WILL 5#define REV_UNWILL 5#define REV_PER_PAPER 3int PAPERS, REVIEWERS;strut PaperInfo {har Title[50℄;int Keyword[PAP_KEYW℄;har Author[PAP_AUTH℄[50℄;har Institution[PAP_INST℄[50℄;} PAPER[MAX_PAPERS℄;strut ReviewerInfo {har Name[50℄;int Keyword[REV_KEYW℄;har Institution[50℄;int Willing[REV_WILL℄;int Unwilling[REV_UNWILL℄;} REVIEWER[MAX_REVIEWERS℄;FILE *fpPapers, *fpReviewers;int mystrimp(har *string1, har *string2){for (int i=0; string1[i℄&&string2[i℄;i++){if (tolower(string1[i℄)<tolower(string2[i℄)) return -(i+1);if (tolower(string1[i℄)>tolower(string2[i℄)) return i+1;}if (string2[i℄) return -(i+1);if (string1[i℄) return i+1;return 0;}Initialisation funtion:int i,j;fpPapers=fopen("Papers.txt","r");fpReviewers=fopen("Review.txt","r");for (i=0;i<MAX_PAPERS;i++) {strpy(PAPER[i℄.Title,"");
INRIA

PPSN VI Reviewers and Papers 17for (j=0;j<PAP_KEYW;j++) PAPER[i℄.Keyword[j℄=999;for (j=0;j<PAP_AUTH;j++) strpy(PAPER[i℄.Author[j℄,"");for (j=0;j<PAP_INST;j++) strpy(PAPER[i℄.Institution[j℄,"");}for (i=0;i<MAX_REVIEWERS;i++) {strpy(REVIEWER[i℄.Name,"");for (j=0;j<REV_KEYW;j++) REVIEWER[i℄.Keyword[j℄=999;strpy(REVIEWER[i℄.Institution,"");for (j=0;j<REV_WILL;j++) REVIEWER[i℄.Willing[j℄=999;for (j=0;j<REV_UNWILL;j++) REVIEWER[i℄.Unwilling[j℄=999;}for (i=0;i<MAX_PAPERS;i++) {if (fsanf(fpPapers,"%[^\n℄",PAPER[i℄.Title)==EOF) break; get(fpPapers);for (j=0;j<PAP_KEYW;j++) {fsanf(fpPapers,"%d",&(PAPER[i℄.Keyword[j℄));if(get(fpPapers)=='\n') break;}for (j=0;j<PAP_AUTH;j++) {fsanf(fpPapers,"%[^,\n℄",PAPER[i℄.Author[j℄);if(get(fpPapers)=='\n') break;}for (j=0;j<PAP_INST;j++) {fsanf(fpPapers,"%[^,\n℄",PAPER[i℄.Institution[j℄);if(get(fpPapers)=='\n') break;}}PAPERS=i;for (i=0;i<MAX_REVIEWERS;i++) {if (fsanf(fpReviewers,"%[^\n℄",REVIEWER[i℄.Name)==EOF) break; get(fpReviewers);for (j=0;j<REV_KEYW;j++) {fsanf(fpReviewers,"%d",&(REVIEWER[i℄.Keyword[j℄));if(get(fpReviewers)=='\n') break;}fsanf(fpReviewers,"%[^,\n℄",REVIEWER[i℄.Institution); get(fpReviewers);for (j=0;j<REV_WILL;j++) {fsanf(fpReviewers,"%d",&(REVIEWER[i℄.Willing[j℄));if(get(fpReviewers)=='\n') break;}for (j=0;j<REV_UNWILL;j++) {fsanf(fpReviewers,"%d",&(REVIEWER[i℄.Unwilling[j℄));if(get(fpReviewers)=='\n') break;}}REVIEWERS=i;flose(fpPapers); flose(fpReviewers);Classes :Math {int reviewer[3℄;}Genome {Math paper[8℄;}Standard funtions :Genome::initialiser : // "initializer" is also aeptedint i,j,k,again=0;for (i=0;i<PAPERS;i++)for (j=0;j<REV_PER_PAPER;j++)do {again=0;Genome.paper[i℄.reviewer[j℄=(int) random(0,REVIEWERS);for (k=0;k<j;k++) if (Genome.paper[i℄.reviewer[k℄==Genome.paper[i℄.reviewer[j℄) again++;} while (again) ;
RR n° 4177

18 Collet, Lutton & ShoenauerGenome::rossover : // Must return the number of onerned hildrenint i,j,GeneratedChildren=0;int pos=(int) random(0,PAPERS-1); // Piks a random site named posif (&hild1){hild1<=parent1;for(i=pos;i<PAPERS;i++)for(j=0;j<REV_PER_PAPER;j++)hild1.paper[i℄.reviewer[j℄=parent2.paper[i℄.reviewer[j℄;GeneratedChildren++;}if (&hild2){hild2<=parent2;for(i=pos;i<PAPERS;i++)for(j=0;j<REV_PER_PAPER;j++)hild2.paper[i℄.reviewer[j℄=parent1.paper[i℄.reviewer[j℄;GeneratedChildren++;}return GeneratedChildren;Genome::mutator : // Must return the number of mutations as an intint i,j,k,again,nbMut=0;for (i=0;i<PAPERS;i++)if (tossCoin(PMut)){for(j=0;j<REV_PER_PAPER;j++)do {again=0;Genome.paper[i℄.reviewer[j℄=(int) random(0,REVIEWERS);for (k=0;k<j;k++) if (Genome.paper[i℄.reviewer[k℄==Genome.paper[i℄.reviewer[j℄) again++;} while (again) ;nbMut++;}if (nbMut==0) identialGenome=true; // saves evaluation timereturn nbMut;Genome::evaluator : // Must return the sore as a positive doubleint i,j,k,l,eval=100000;int papPerRev[MAX_REVIEWERS℄;for (i=0;i<REVIEWERS;papPerRev[i++℄=0);for (i=0;i<PAPERS;i++)for(j=0;j<REV_PER_PAPER;j++){//--// if the keywords of the paper math the keywords of the reviewerfor(k=0;k<REV_KEYW;k++)for(l=0;l<PAP_KEYW;l++)if ((REVIEWER[Genome.paper[i℄.reviewer[j℄℄.Keyword[k℄==PAPER[i℄.Keyword[l℄)&&(REVIEWER[Genome.paper[i℄.reviewer[j℄℄.Keyword[k℄!=999)&&(PAPER[i℄.Keyword[l℄!=999)) eval++;// if paper and reviewer ome from the same institutionfor(k=0;k<PAP_INST;k++)if (!strimp(REVIEWER[Genome.paper[i℄.reviewer[j℄℄.Institution,PAPER[i℄.Institution[k℄)) eval-=1000;// if the reviewer has been willing to review the paperfor(k=0;k<REV_WILL;k++)if (REVIEWER[Genome.paper[i℄.reviewer[j℄℄.Willing[k℄==i) eval++;
INRIA

PPSN VI Reviewers and Papers 19// if the reviewer has been unwilling to review the paperfor(k=0;k<REV_UNWILL;k++)if (REVIEWER[Genome.paper[i℄.reviewer[j℄℄.Unwilling[k℄==i) eval--;// Reviewers should review have an average of REV_PER_PAPERxPAPERS/REVIEWERS papers to reviewpapPerRev[Genome.paper[i℄.reviewer[j℄℄++;//--}for (i=0;i<REVIEWERS;i++) eval-=abs(papPerRev[i℄-REV_PER_PAPER*PAPERS/REVIEWERS);return (double)(eval<0 ? 0 : eval);Run parameters :Population size : 100 // PSizeNumber of generations : 100 // NbGenMutation probability : 0.3 // PMutCrossover probability : 1 // PCrossGeneti engine : SteadyStateEnd of genome file.

RR n° 4177

20 Collet, Lutton & ShoenauerAppendix B: ppsn.pp �le//**//// ppsn.pp//// C++ file generated by EASEA-GALIB v0.4////**#inlude <stdio.h>#inlude <stdlib.h>#inlude <math.h>#inlude <iostream.h>#inlude <fstream.h>#inlude <ga/ga.h>// User Speifi/*___ppsn.ezThis file speifies an evolutionary algorithm trying tomath papers and reviewersPierre COLLET (Pierre.Collet�inria.fr)03/02/00___*/// User Funtions and Delarations#define MAX_PAPERS 148#define PAP_KEYW 10#define PAP_AUTH 25#define PAP_INST 10#define MAX_REVIEWERS 179#define REV_KEYW 20#define REV_WILL 5#define REV_UNWILL 5#define REV_PER_PAPER 3int PAPERS, REVIEWERS;strut PaperInfo {int Id;har Title[300℄;har Keyword[PAP_KEYW℄[100℄;har Author[PAP_AUTH℄[100℄;har Institution[PAP_INST℄[100℄;} PAPER[MAX_PAPERS℄;strut ReviewerInfo {int Id;har Name[100℄;har Keyword[REV_KEYW℄[100℄;har Institution[100℄;int Willing[REV_WILL℄;int Unwilling[REV_UNWILL℄;} REVIEWER[MAX_REVIEWERS℄;FILE *fpPapers, *fpReviewers;har mytolower(har) {
INRIA

PPSN VI Reviewers and Papers 21if ((>=65)&&(<=91)) -=64;return ;}int mystrimp(har *string1, har *string2){int i;for (i=0; string1[i℄&&string2[i℄;i++){if (mytolower(string1[i℄)<mytolower(string2[i℄)) return -(i+1);if (mytolower(string1[i℄)>mytolower(string2[i℄)) return i+1;}if (string2[i℄) return -(i+1);if (string1[i℄) return i+1;return 0;}// Initialisation funtionvoid EASEAInitFuntion(){int i,j,k,lastPaper,urrentPaper;har *p,szTemp[1000℄;fpPapers=fopen("papers.txt","r");fpReviewers=fopen("review.txt","r");for (i=0;i<MAX_PAPERS;i++) {strpy(PAPER[i℄.Title," ");for (j=0;j<PAP_KEYW;j++) strpy(PAPER[i℄.Keyword[j℄," ");for (j=0;j<PAP_AUTH;j++) strpy(PAPER[i℄.Author[j℄," ");for (j=0;j<PAP_INST;j++) strpy(PAPER[i℄.Institution[j℄," ");}for (i=0;i<MAX_REVIEWERS;i++) {REVIEWER[i℄.Id=97834;strpy(REVIEWER[i℄.Name," ");for (j=0;j<REV_KEYW;j++) strpy(REVIEWER[i℄.Keyword[j℄," ");strpy(REVIEWER[i℄.Institution," ");for (j=0;j<REV_WILL;j++) REVIEWER[i℄.Willing[j℄=999;for (j=0;j<REV_UNWILL;j++) REVIEWER[i℄.Unwilling[j℄=999;}lastPaper=i=-1;while (i+1<MAX_PAPERS){if (fsanf(fpPapers,"| %d | ",&urrentPaper)==EOF)break;if (urrentPaper!=lastPaper) { // We have a new paperi++;lastPaper=PAPER[i℄.Id=urrentPaper;if (fsanf(fpPapers,"%[^|℄ | ",PAPER[i℄.Title)==0) fsanf(fpPapers," | ");if (fsanf(fpPapers,"%[^|℄ | ",PAPER[i℄.Author[0℄)==0) fsanf(fpPapers," | ");if (fsanf(fpPapers,"%[^|℄ | ",szTemp)==0) fsanf(fpPapers," | ");for (p=&(szTemp[strlen(szTemp)-1℄);(*p==' ')&&(p!=&szTemp[0℄);p--); *(p+1)=0;if (p!=&szTemp[0℄) {for (;(*p!='.')&&(p!=&szTemp[0℄);p--); for (p--;(*p!='.')&&(*p!='�')&&(p!=&szTemp[0℄);p--);strpy(PAPER[i℄.Institution[0℄,p+1);}for (j=0;j<PAP_KEYW;j++) {fsanf(fpPapers," %[^,|℄",&(PAPER[i℄.Keyword[j℄));for (k=strlen(PAPER[i℄.Keyword[j℄)-1;(PAPER[i℄.Keyword[j℄[k℄==' ')&&(k>0);k--);PAPER[i℄.Keyword[j℄[k+1℄=0;// remove trailing spaesif(get(fpPapers)=='|') break;}}else {// another line for the same paperif (fsanf(fpPapers,"%[^|℄ | ",szTemp)==0) fsanf(fpPapers," | ");
RR n° 4177

22 Collet, Lutton & Shoenauerfor (k=0;(k<PAP_AUTH);k++) // looking for an empty spaeif ((PAPER[i℄.Author[k℄)[0℄==' ') break;if (fsanf(fpPapers,"%[^|℄ | ",PAPER[i℄.Author[k℄)==0) fsanf(fpPapers," | ");if (fsanf(fpPapers,"%[^|℄ | ",szTemp)==0) fsanf(fpPapers," | ");for (p=&(szTemp[strlen(szTemp)-1℄);(*p==' ')&&(p!=&szTemp[0℄);p--); *(p+1)=0;if (p!=&szTemp[0℄) {for (;(*p!='.')&&(p!=&szTemp[0℄);p--); for (p--;(*p!='.')&&(*p!='�')&&(p!=&szTemp[0℄);p--);strpy(PAPER[i℄.Institution[k℄,p+1);}fsanf(fpPapers,"%[^\n℄",szTemp);}get(fpPapers);}PAPERS=i+1;for (i=0;i<MAX_REVIEWERS;i++) {if (fsanf(fpReviewers,"| %d | ",&(REVIEWER[i℄.Id))==EOF)break;if (fsanf(fpReviewers,"%[^|℄ | ",REVIEWER[i℄.Name)==0) fsanf(fpReviewers," | ");if (fsanf(fpReviewers,"%[^|℄ | ",szTemp)==0) fsanf(fpReviewers," | ");for (p=&(szTemp[strlen(szTemp)-1℄);(*p==' ')&&(p!=&szTemp[0℄);p--); *(p+1)=0;if (p!=&szTemp[0℄) {for (;(*p!='.')&&(p!=&szTemp[0℄);p--);for (p--;(*p!='.')&&(*p!='�')&&(p!=&szTemp[0℄);p--);strpy(REVIEWER[i℄.Institution,p+1);}for (j=0;j<REV_KEYW;j++) {fsanf(fpReviewers," %[^,|℄",&(REVIEWER[i℄.Keyword[j℄));for (k=strlen(REVIEWER[i℄.Keyword[j℄)-1;(REVIEWER[i℄.Keyword[j℄[k℄==' ')&&(k>0);k--);REVIEWER[i℄.Keyword[j℄[k+1℄=0;// remove trailing spaesif(get(fpReviewers)=='|') break;}get(fpReviewers);}REVIEWERS=i;flose(fpPapers); flose(fpReviewers);}// User Classeslass Math {publi:// Default methods for lass MathMath(){ // Construtor}Math(Math &EASEA_Var) { // Copy onstrutor{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)reviewer[EASEA_Ndx℄=EASEA_Var.reviewer[EASEA_Ndx℄;}Id=EASEA_Var.Id;{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)ReviewerId[EASEA_Ndx℄=EASEA_Var.ReviewerId[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)KwMath[EASEA_Ndx℄=EASEA_Var.KwMath[EASEA_Ndx℄;}KeywContribution=EASEA_Var.KeywContribution;}~Math() { // Destrutor}Math& operator<=(Math &EASEA_Var) { // Operator<=if (&EASEA_Var == this) return *this;{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)reviewer[EASEA_Ndx℄ = EASEA_Var.reviewer[EASEA_Ndx℄;}Id = EASEA_Var.Id;{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)ReviewerId[EASEA_Ndx℄ = EASEA_Var.ReviewerId[EASEA_Ndx℄;}
INRIA

PPSN VI Reviewers and Papers 23{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)KwMath[EASEA_Ndx℄ = EASEA_Var.KwMath[EASEA_Ndx℄;}KeywContribution = EASEA_Var.KeywContribution;return *this;}bool operator==(Math &EASEA_Var) onst { // Operator=={for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)if (reviewer[EASEA_Ndx℄!=EASEA_Var.reviewer[EASEA_Ndx℄) return gaFalse;}if (Id!=EASEA_Var.Id) return gaFalse;{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)if (ReviewerId[EASEA_Ndx℄!=EASEA_Var.ReviewerId[EASEA_Ndx℄) return gaFalse;}{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)if (KwMath[EASEA_Ndx℄!=EASEA_Var.KwMath[EASEA_Ndx℄) return gaFalse;}if (KeywContribution!=EASEA_Var.KeywContribution) return gaFalse;return gaTrue;}bool operator!=(Math &EASEA_Var) onst {return !(*this==EASEA_Var);} // operator!=friend ostream& operator<< (ostream& os, onst Math& EASEA_Var) { // Output stream insertion operator{os << "Array reviewer : ";for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << EASEA_Var.reviewer[EASEA_Ndx℄ << "\t";}os << "\n";os << "Id:" << EASEA_Var.Id << "\n";{os << "Array ReviewerId : ";for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << EASEA_Var.ReviewerId[EASEA_Ndx℄ << "\t";}os << "\n";{os << "Array KwMath : ";for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << EASEA_Var.KwMath[EASEA_Ndx℄ << "\t";}os << "\n";os << "KeywContribution:" << EASEA_Var.KeywContribution << "\n";return os;}friend istream& operator>> (istream& is, Math& EASEA_Var) { // Input stream extration operator{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)is >> EASEA_Var.reviewer[EASEA_Ndx℄;}is >> EASEA_Var.Id;{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)is >> EASEA_Var.ReviewerId[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<3; EASEA_Ndx++)is >> EASEA_Var.KwMath[EASEA_Ndx℄;}is >> EASEA_Var.KeywContribution;return is;}// Class membersint reviewer[3℄;int Id;int ReviewerId[3℄;int KwMath[3℄;int KeywContribution;};// User Genomelass ppsnGenome : publi GAGenome {// Default methods for lass ppsnGenomepubli:
RR n° 4177

24 Collet, Lutton & ShoenauerGADefineIdentity("ppsnGenome", 251);stati void Initializer(GAGenome&);stati int Mutator(GAGenome&, float);stati float Comparator(onst GAGenome&, onst GAGenome&);stati float Evaluator(GAGenome&);stati int Crossover(onst GAGenome&, onst GAGenome&, GAGenome*, GAGenome*);publi:ppsnGenome::ppsnGenome() :GAGenome(Initializer, Mutator, Comparator){evaluator(Evaluator); rossover(Crossover);}ppsnGenome(onst ppsnGenome & orig) {opy(orig);}~ppsnGenome() {// Destruting pointers}ppsnGenome& operator<=(onst GAGenome &);virtual GAGenome *lone(GAGenome::CloneMethod) onst ;virtual void opy(onst GAGenome &);virtual int equal(onst GAGenome& g) onst;virtual int read(istream & is);virtual int write(ostream & os) onst ;// Class membersint NbPapersPerReviewerContribution;int Distribution[10℄;int NbPapersPerReviewer[179℄;Math paper[148℄;};ppsnGenome& ppsnGenome::operator<=(onst GAGenome & arg){opy(arg);return *this;}void ppsnGenome::opy(onst GAGenome& g) {if(&g != this){GAGenome::opy(g); // opy the base lass partppsnGenome & genome = (ppsnGenome &)g;// Memberwise opyNbPapersPerReviewerContribution=genome.NbPapersPerReviewerContribution;{for(int EASEA_Ndx=0; EASEA_Ndx<10; EASEA_Ndx++)Distribution[EASEA_Ndx℄=genome.Distribution[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<179; EASEA_Ndx++)NbPapersPerReviewer[EASEA_Ndx℄=genome.NbPapersPerReviewer[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<148; EASEA_Ndx++)paper[EASEA_Ndx℄=genome.paper[EASEA_Ndx℄;}}}GAGenome*ppsnGenome::lone(GAGenome::CloneMethod) onst {return new ppsnGenome(*this);}int ppsnGenome::equal(onst GAGenome& g) onst {ppsnGenome& genome = (ppsnGenome&)g;// Default diversity test (required by GALIB)if (NbPapersPerReviewerContribution!=genome.NbPapersPerReviewerContribution) return 0;{for(int EASEA_Ndx=0; EASEA_Ndx<10; EASEA_Ndx++)if (Distribution[EASEA_Ndx℄!=genome.Distribution[EASEA_Ndx℄) return 0;}{for(int EASEA_Ndx=0; EASEA_Ndx<179; EASEA_Ndx++)if (NbPapersPerReviewer[EASEA_Ndx℄!=genome.NbPapersPerReviewer[EASEA_Ndx℄) return 0;}{for(int EASEA_Ndx=0; EASEA_Ndx<148; EASEA_Ndx++)
INRIA

PPSN VI Reviewers and Papers 25if (paper[EASEA_Ndx℄!=genome.paper[EASEA_Ndx℄) return 0;}return 1;}float ppsnGenome::Comparator(onst GAGenome& a, onst GAGenome& b) {ppsnGenome& sis = (ppsnGenome &)a;ppsnGenome& bro = (ppsnGenome &)b;int diff = 0;// Default genome omparator (required by GALIB)if (sis.NbPapersPerReviewerContribution!=bro.NbPapersPerReviewerContribution) diff++;{for(int EASEA_Ndx=0; EASEA_Ndx<10; EASEA_Ndx++)if (sis.Distribution[EASEA_Ndx℄!=bro.Distribution[EASEA_Ndx℄) diff++;}{for(int EASEA_Ndx=0; EASEA_Ndx<179; EASEA_Ndx++)if (sis.NbPapersPerReviewer[EASEA_Ndx℄!=bro.NbPapersPerReviewer[EASEA_Ndx℄) diff++;}{for(int EASEA_Ndx=0; EASEA_Ndx<148; EASEA_Ndx++)if (sis.paper[EASEA_Ndx℄!=bro.paper[EASEA_Ndx℄) diff++;}return (float)diff;}int ppsnGenome::read(istream & is) {// Default read ommand (required by GALIB)is >> NbPapersPerReviewerContribution;{for(int EASEA_Ndx=0; EASEA_Ndx<10; EASEA_Ndx++)is >> Distribution[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<179; EASEA_Ndx++)is >> NbPapersPerReviewer[EASEA_Ndx℄;}{for(int EASEA_Ndx=0; EASEA_Ndx<148; EASEA_Ndx++)is >> paper[EASEA_Ndx℄;}return is.fail() ? 1 : 0;}int ppsnGenome::write(ostream & os) onst {// Default write ommand (required by GALIB)os << "NbPapersPerReviewerContribution:" << NbPapersPerReviewerContribution << "\n";{os << "Array Distribution : ";for(int EASEA_Ndx=0; EASEA_Ndx<10; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << Distribution[EASEA_Ndx℄ << "\t";}os << "\n";{os << "Array NbPapersPerReviewer : ";for(int EASEA_Ndx=0; EASEA_Ndx<179; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << NbPapersPerReviewer[EASEA_Ndx℄ << "\t";}os << "\n";{os << "Array paper : ";for(int EASEA_Ndx=0; EASEA_Ndx<148; EASEA_Ndx++)os << "[" << EASEA_Ndx << "℄:" << paper[EASEA_Ndx℄ << "\t";}os << "\n";return os.fail() ? 1 : 0;}// Standard Funtionsvoid ppsnGenome::Initializer(GAGenome& g) {ppsnGenome & genome = (ppsnGenome &)g;// "initializer" is also aeptedint i,j,k,again=0;for (i=0;i<PAPERS;i++){genome.paper[i℄.KeywContribution=0;genome.paper[i℄.Id=PAPER[i℄.Id;for (j=0;j<REV_PER_PAPER;j++)do {again=0;genome.paper[i℄.reviewer[j℄=(int) GARandomDouble(0,REVIEWERS);
RR n° 4177

26 Collet, Lutton & Shoenauerfor (k=0;k<j;k++) if (genome.paper[i℄.reviewer[k℄==genome.paper[i℄.reviewer[j℄) again++;} while (again) ;genome.paper[i℄.ReviewerId[j℄=REVIEWER[genome.paper[i℄.reviewer[j℄℄.Id;}genome._evaluated=gaFalse;}int ppsnGenome::Crossover(onst GAGenome& a, onst GAGenome& b, GAGenome* , GAGenome* d) {ppsnGenome& mom = (ppsnGenome &)a;ppsnGenome& dad = (ppsnGenome &)b;ppsnGenome& sis = (ppsnGenome &)*;ppsnGenome& bro = (ppsnGenome &)*d;if(&bro) bro._evaluated=gaFalse;if(&sis) sis._evaluated=gaFalse;// Must return the number of onerned hildrenint i,j,GeneratedChildren=0;int pos=(int) GARandomDouble(0,PAPERS-1); // Piks a GARandomDouble site named posif (&bro){bro<=dad;for(i=pos;i<PAPERS;i++)for(j=0;j<REV_PER_PAPER;j++)bro.paper[i℄.reviewer[j℄=mom.paper[i℄.reviewer[j℄;GeneratedChildren++;}if (&sis){sis<=mom;for(i=pos;i<PAPERS;i++)for(j=0;j<REV_PER_PAPER;j++)sis.paper[i℄.reviewer[j℄=dad.paper[i℄.reviewer[j℄;GeneratedChildren++;}return GeneratedChildren;}int ppsnGenome::Mutator(GAGenome& g, float pmut) {ppsnGenome & genome = (ppsnGenome &)g;genome._evaluated=gaFalse;// Must return the number of mutations as an intint i,j,k,again,nbMut=0;for (i=0;i<PAPERS;i++)if (GAFlipCoin(pmut)){for(j=0;j<REV_PER_PAPER;j++)if (GAFlipCoin(1-pmut)) do {again=0;genome.paper[i℄.reviewer[j℄=(int) GARandomDouble(0,REVIEWERS);for (k=0;k<j;k++) if (genome.paper[i℄.reviewer[k℄==genome.paper[i℄.reviewer[j℄) again++;} while (again) ;nbMut++;}if (nbMut==0) genome._evaluated=gaTrue; // saves evaluation timereturn nbMut;}float ppsnGenome::Evaluator(GAGenome &) {ppsnGenome & genome = (ppsnGenome &);// Must return (float) the sore as a positive double
INRIA

PPSN VI Reviewers and Papers 27int ontrib,i,j,k,l,mathes,NbPapKwds,eval=100000;for (i=0;i<REVIEWERS;genome.NbPapersPerReviewer[i++℄=0);for (i=0;i<10;genome.Distribution[i++℄=0);for (i=0;i<PAPERS;i++) {ontrib=0;genome.paper[i℄.Id=PAPER[i℄.Id;for(j=0;j<REV_PER_PAPER;j++){genome.paper[i℄.ReviewerId[j℄=REVIEWER[genome.paper[i℄.reviewer[j℄℄.Id;//--// if the keywords of the paper math the keywords of the reviewermathes=0;for (NbPapKwds=0;(NbPapKwds<PAP_KEYW)&&((PAPER[i℄.Keyword[NbPapKwds℄)[0℄!=' ');NbPapKwds++);// Determines the nb of keywords for the urrent paper.if ((REVIEWER[genome.paper[i℄.reviewer[j℄℄.Keyword[0℄)[0℄==' '){ontrib+=5; // If the reviewer has no keyword list, we suppose this is equivalent to an average math (5/10)genome.paper[i℄.KwMath[j℄=-1; // We signal the fat that the reviewer has no keywords by indiating "-1"}else {for(k=0;k<REV_KEYW;k++){if ((REVIEWER[genome.paper[i℄.reviewer[j℄℄.Keyword[k℄)[0℄==' ') break;for(l=0;l<PAP_KEYW;l++){if ((PAPER[i℄.Keyword[l℄)[0℄==' ') break;if (!mystrimp(REVIEWER[genome.paper[i℄.reviewer[j℄℄.Keyword[k℄,PAPER[i℄.Keyword[l℄)) mathes++;}}if (mathes==0) ontrib-=10; // we disourage ill mathingelse ontrib+=(mathes*10)/NbPapKwds; // With this alulation, a reviewer mathing all the paper keywords gets 10/10genome.paper[i℄.KwMath[j℄=mathes;} // and a reviewer mathing half of the keywords gets only 5/10// if paper and reviewer ome from the same institutionfor(k=0;k<PAP_INST;k++)if (!mystrimp(REVIEWER[genome.paper[i℄.reviewer[j℄℄.Institution,PAPER[i℄.Institution[k℄)) ontrib-=1000;// if the reviewer has been willing to review the paper// for(k=0;k<REV_WILL;k++)// if (REVIEWER[genome.paper[i℄.reviewer[j℄℄.Willing[k℄==i) ontrib++;// if the reviewer has been unwilling to review the paper// for(k=0;k<REV_UNWILL;k++)// if (REVIEWER[genome.paper[i℄.reviewer[j℄℄.Unwilling[k℄==i) ontrib--;genome.NbPapersPerReviewer[genome.paper[i℄.reviewer[j℄℄++;//--}eval +=ontrib;genome.paper[i℄.KeywContribution=ontrib;}ontrib=0;// Reviewers should have an average of REV_PER_PAPERxPAPERS/REVIEWERS papers to reviewfor (i=0;i<REVIEWERS;i++){genome.Distribution[genome.NbPapersPerReviewer[i℄℄++;if (REV_PER_PAPER*PAPERS/REVIEWERS<1) {if (genome.NbPapersPerReviewer[i℄>1) ontrib -= 10*(genome.NbPapersPerReviewer[i℄ -1);}else{j=genome.NbPapersPerReviewer[i℄-REV_PER_PAPER*PAPERS/REVIEWERS;if (j>0) ontrib -= (int)pow(5,j); // Mar's suggestion
RR n° 4177

28 Collet, Lutton & Shoenauerif (j<0) ontrib +=5*j;}}eval += ontrib;genome.NbPapersPerReviewerContribution=ontrib;return (float) (float) (double)(eval<0 ? 0 : eval);}int main(int arg, har *argv[℄){int i;GARandomSeed(0);// Cheks whether we've been given a seed to use (for testing purposes).for(int ii=1; ii<arg; ii++) {if(strmp(argv[ii++℄,"seed") == 0) {GARandomSeed((unsigned int)atoi(argv[ii℄));}}// Parse the ommand line for arguments.for(i=1; i<arg; i++){if(strmp("seed", argv[i℄) == 0){if(++i < arg) ontinue;ontinue;}else {err << argv[0℄ << ": unreognized argument: " << argv[i℄ << "\n\n";err << "valid arguments are standard GAlib arguments.\n";exit(1);}}EASEAInitFuntion();ppsnGenome genome;GASteadyStateGA ga(genome);ga.populationSize(40); // how many individuals in the populationga.nGenerations(10000); // number of generations to evolvega.pMutation((float)0.200000); // likelihood of mutating new offspringga.pCrossover((float)1.000000); // likelihood of rossing over parentsgenome.initialize();out << "Sore of a generation 0 genome: " << genome.Evaluator(genome) << "\n";out << "Contents of the genome:\n" << genome << endl;ga.evolve();out << "\nBest genome sore : " << (ga.statistis().bestIndividual()).evaluate() << endl;out << "Contents of the genome :\n" << ga.statistis().bestIndividual() << "\n";exit(0);return 0;}// If your ompiler does not do automati instantiation (e.g. g++ 2.6.8),
INRIA

PPSN VI Reviewers and Papers 29// then define the NO_AUTO_INST diretive. This will fore the instantiation// of the template lasses that we use. For some ompilers (e.g. metrowerks)// this must ome after any speializations or you'll get 'multiply-defined'// errors when you ompile.#ifdef NO_AUTO_INST#inlude "GAList.pp"#inlude "GAListGe.pp"#if defined(__GNUG__)template lass GAList<int>;template lass GAListGenome<int>;#elseGAList<int>;GAListGenome<int>;#endif#endif// That's all folks !

RR n° 4177

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

