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Abstract: We address here the resolution of the so-called inverse problem for IFS. This problem has already
been widely considered, and some studies have been performed for a�ne IFS, using deterministic or stochastic
methods (Simulated Annealing or Genetic Algorithm) [17, 10]. When dealing with non a�ne IFS, the usual
techniques do not perform well, except if some a priori hypotheses on the structure of the IFS (number and
type functions) are made. In this work, a Genetic Programming method is investigated to solve the \general"
inverse problem, which permits to perform at the same time a numeric and a symbolic optimization. The use of
\mixed IFS", as we call them, may enlarge the scope of some applications, as for example image compression,
because they allow to code a wider range of shapes.
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IFS mixtes : r�esolution du probl�eme inverse par programmation

g�en�etique

R�esum�e : Nous nous int�eressons ici �a la r�esolution du probl�eme inverse pour les IFS, largement �etudi�e dans
le cadre de la g�eom�etrie fractale. Celui-ci a d�ej�a �et�e assez bien r�esolu dans certains cas en ce qui concerne
les IFS a�nes, par des m�ethodes d�eterministes ou stochastiques (recuit simul�e ou algorithmes g�en�etiques)
[17, 10]. En revanche, si l'on souhaite aborder le probl�eme g�en�eral, c'est �a dire mettant en jeu des IFS non
a�nes, les techniques pr�ec�edentes sont di�cilement utilisables, sauf si l'on pose des hypoth�eses a priori sur la
structure des IFS (nombre et type des fonctions). Nous proposons ici l'emploi d'une technique de programmation
g�en�etique pour la r�esolution du probl�eme inverse g�en�eral, qui permet d'e�ectuer simultan�ement une optimisation
num�erique et symbolique. La r�esolution du probl�eme inverse pour les \IFS mixtes" pourra �elargir le champ de
certaines applications, comme par exemple la compression d'images, car ceux-ci permettent de coder une plus
large vari�et�e de formes.

Mots-cl�e : Fractales, Programmation G�en�etique, Probl�eme inverse pour les IFS
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1 Introduction

IFS (Iterated Functions System) theory is an important topic in fractals. The geometric and measure theoretical
aspects of systems of contractive maps (and associated probabilities) were worked out by J. Hutchinson [14],
and the existence of a unique compact invariant set was proven. These studies have provided powerful tools for
the investigation of fractal sets, and the action of systems of contractive maps to produce fractal sets has been
considered by numerous authors (see for example [2, 3, 8, 12]).

A major challenge of both theoretical and practical interest is the resolution of the so called inverse problem
[20, 26, 25, 4]. An exact solution can be found in some particular cases, but in general, no exact solution is
known.

From a computational viewpoint this problem may be formulated as an optimization problem. A lot of work
has been done in this framework, and some solutions exist, based on deterministic or stochastic optimization
methods. Most of them make some a priori restrictive hypotheses : a�ne IFS, with a �xed number of functions
[5, 15, 9, 27, 17]. Solutions based on Genetic Algorithms (GA) or Evolutionary Algorithms have recently been
presented for a�ne IFS [25, 10, 24, 21].

As it will be seen in section 3, non-a�ne IFS provide an interesting variety of shapes, whose practical interest
might be large. However, in that case, the inverse problem cannot be addressed using the \classical" techniques.
We propose to make use of Genetic Programming in that framework. As far as we know, this is the �rst attempt
to use Genetic Programming to solve that problem.

We will �rst recall IFS theory in section 2, then present some examples of mixed IFS attractors (section 3),
and �nally detail our genetic programming method (section 4).

2 IFS theory

An IFS (Iterated Function System) 0 = fF; (wn)n=1;::;Ng is a collection of N functions de�ned on a
complete metric space (F; d).

Let W be the Hutchinson operator, de�ned on the space of subsets of F :

8 K � F; W (K) =
[

n2[0;N ]

wn(K)

Then, if the wn functions are contractive (the IFS is then called an hyperbolic IFS), there exists a unique
set A such that :

W (A) = A

A is called the attractor of the IFS.

Recall : A mapping w : F ! F , from a metric space (F; d) into itself, is called contractive if there exists
a positive real number s < 1 such that:

d(w(x); w(y)) � s:d(x; y) 8x; y 2 F

The uniqueness of an hyperbolic attractor is a result of the Contractive Mapping Fixed Point Theorem for W ,
which is contractive according to the Hausdor� distance :

� Hausdor� distance :

dH(A;B) = max[max
x2A

(min
y2B

d(x; y));max
y2B

(min
x2A

d(x; y))]

� Contractive Mapping Fixed Point Theorem:

if (F; d) is a complete metric space, and W : F ! F is a contractive transformation, then W has a unique
�xed point.

RR n�2631



2 Evelyne LUTTON , Jacques LEVY-VEHEL , Guillaume CRETIN , Philippe GLEVAREC , C�edric ROLL

From a computational viewpoint, an attractor can be generated according to two techniques :

� Stochastic method (toss-coin)
Let x0 be the �xed point of one of the wi functions. We build the points sequence xn as follows :
xn+1 = wi(xn), i being randomly chosen in f1::Ng.
Then

S
n xn is an approximation of the real attractor of 0. The larger n is, the more precise the approxi-

mation is.

� Deterministic method :
From any kernel S0, we build the sets sequence fSng

Sn+1 =W (Sn) =
S
nwn(Sn)

When n tends to 1 , Sn is an approximation of the real attractor of 0.

The inverse problem for 2D IFS can be stated as follows :
for a given 2D shape (a binary image), �nd a set of contractive maps whose attractor resembles more this shape,
in the sense of a pre-de�ned error measure.

Our error measure will be described in section 4.

w1(x; y) =

� p
j sin (cos 0:90856� log(1 + jxj))j

sin y

�

w2(x; y) =

�
cos(cos(

p
jxj))

cos(log(1 + jyj))

�

w3(x; y) =

�
log(1 + j cos(log(1 + jy + xj))j)p
jsin0:084698j

�

w4(x; y) =

�
log(1 + j sin(

p
j0:565372j)j)p

j0:81366� ((log(1 + j0:814259j)) � cos y)j

�

w5(x; y) =

�
log(1 + j

p
j0:747399 + cos yjj)

sin 0:73624
0:0001+j0:264553�y+0:581647+xj

�

Figure 1: A Mixed IFS, left, and its attractor, right.

3 Mixed IFS

In the case of a�ne IFS, each contractive map wi of 0 is represented as :

wi(x; y) =

�
ai bi
ci di

�
:

�
x

y

�
+

�
ei
fi

�

The inverse problem corresponds to the optimization of the values (ai; bi; ci; di; ei; fi) in order to get the attractor
which resembles more the target.

When the wi are not anymore restricted to be a�ne functions, we call the corresponding IFS Mixed IFS.
The �rst point we have to address is the one of �nding an adequate representation of these mixed IFS : the more
natural one is to represent them as trees.

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 3

Figure 2: Other examples of attractors generated with mixed IFS.

The attractors of �gures 1 and 2, are random mixed IFS : the wi functions have been recursively built with
help of random shots in a set of basic functions, a set of terminals (x and y), and a set of constants. In our
examples, the constants belong to [0; 1], and the basic functions set is :

� +

� �

� �

� div(x; y) = x
0:0001+jyj

� cos

� sin

� root(x) =
p
jxj

� loga(x) = log(1 + jxj)

*

+

1

2

x

y

*

+

x

cos

Figure 3: The function ((cos(x) + 2 � y) � (1 + x)).

U

...w1 w2 w3 wN

Figure 4: Representation of a mixed IFS.

We thus represent each wi as a tree (see for example �gure 3). The trees of the wi are then gathered to
build the main tree which represents the IFS 0 (�gure 4). This is a very simple structure which allows to code
IFS with di�erent numbers and di�erent types of functions. The evaluation of such a structure is that of a
simple mathematical expression evaluation. However, note that the evaluation is recursive, and thus may be
time consuming.

RR n�2631
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As we have seen, generating a mixed IFS is done via simple recursive random shots. The set of possible IFS
depends on the choice of the basic functions set and constants set. A di�cult problem for mixed IFS is to verify
that the wi are contractive, in order to select hyperbolic IFS. On the contrary to a�ne IFS, this veri�cation
is not straightforward, and is in fact computationally intractable. We thus propose to use some heuristics that
reject strongly non-contractive functions. The simplest way to do that (see section 4.3 for a �ner criterion) is
to verify the contractivity on some sample points, for example vertices of a grid placed on the domain.

Besides, as we have chosen to generate IFS whose attractors are in the [0; 1]� [0; 1] domain, we verify at the
same time that each grid vertex remains in the domain.

x

y

(0,0)

(1,1)
a0

a1 a2

a3

Figure 5: The domain constraint is tested on each vertex, the contractivity constraint, on each couple of vertices.

4 Genetic Programming to address the inverse problem

4.1 Introduction

Since John Koza [16] �rst proposed to extend the GA model to the space of computer programs, in order to
create programs able to solve problems for which they haven't been explicitly programmed, a lot of very di�erent
applications have arisen : robotics, control, symbolic regression for example.

Compared to Genetic Algorithms approaches (GA), the individuals in a GP population are not any more
strings of �xed length, but are programs that, when they are executed, give a possible solution to the problem.
Typically, these programs are coded as trees.

The populations programs are built from elements of a set of functions and of a set of terminals which
are typically symbols selected as being appropriate to the kind of problems we are solving. The \crossover"
operation is performed by exchanging sub-trees between the programs and generally the \mutation" operation
is not used in GP. When it is used, mutation consists in sometimes (with a weak probability) modifying a
symbol of the tree.

The evolution of a program inside a GP algorithm is done simultaneously on its size, its structure and its
content : the search space is the set of all recursively possible (sometimes according to some restriction rules)
structures, built from the functions, terminal and constant sets (see �gure 6),

When applying GP (or GA) to the resolution of a given problem, one generally has to deal with several
points, namely :

� coding of the individuals,

� evaluation function of the individuals (�tness),

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 5

� Generate an initial population of random compositions of the functions
and the terminals of the problem (computer programs).

� Iteratively perform the following sub-steps until the termination criterion
has been satis�ed :

{ Execute each program in the population and assign to it a �tness
value according to how well it solves the problem.

{ Create a new population of computer programs by applying the follo-
wing two primary operations. The operations are applied to computer
programs in the population chosen with a probability based on �tness
(selection).

� Copy some existing computer programs in the new population.

� Create new computer programs by genetically recombining ran-
domly chosen parts of two existing programs.

� The best computer program that appeared in any generation (i.e the best
so far individual) is designated as the result of genetic programming. This
result may be a solution (or an approximate solution) to the problem.

Figure 6: Structure of a GP algorithm.

� de�nition of the genetic operators,

� choice of the parameters.

Concerning the �rst point, as we have already seen, the individuals of the population (i.e the Mixed IFS),
are coded as trees. It allows to code a variable number of functions (dynamically), and it is an appropriate data
structure for the mutation and the crossover.

In the following, we will address the other points, and insist on the original ones for our application : the use
of two di�erent types of mutation and the integration of the contractivity constraints in the �tness.

4.2 The �tness function

From a general viewpoint, the �tness function is a major procedure in GP or GA applications, because �tness is
evaluated a large number of times at each generation. Moreover, in most complex problems, as the one we deal
with, the �tness evaluation step is time consuming. For these reasons, the �tness evaluation procedure must be
very carefully implemented : it can severely inuence the computational time and results accuracy.

In our application, we have to characterize the quality of an IFS, that means to evaluate how far is its
attractor from the target image.

4.2.1 Fitness based on Collage theorem versus �tness based on toss-coin algorithm

Among people dealing with inverse problem for IFS with GA, it is largely admitted that the �tness function
based on the so-called collage theorem is preferable to a �tness based on a direct evaluation of the attractor

RR n�2631



6 Evelyne LUTTON , Jacques LEVY-VEHEL , Guillaume CRETIN , Philippe GLEVAREC , C�edric ROLL

via the toss-coin algorithm. Indeed, the �rst method is very attractive and can be less time consuming than
toss-coin evaluation algorithm.

Collage theorem : Let A be the attractor of the hyperbolic IFS 0 = fw1; :::; wng :

8K � F; dH(K;W (K)) < " ) dH(K;A) <
"

1� �

� being the smallest number such that : 8n;8(x; y) 2 F 2; d(wn(x); wn(y)) < �:d(x; y)

This theorem means that the problem of �nding an IFS 0, whose attractor is close to a given image I, is
equivalent to the minimization of the distance :

dH(I;
n[
i=1

wi(I))

under the constraint that the wi are contractive functions.

But if dH(I;
Sn

i=1wi(I)) is to be used as the �tness function in a GA (or a GP algorithm), then :

� The �tness depends on the contractivity of the maps ; if one of the maps is weakly contractive, then the
term 1

1�� may become very large, and the bound becomes meaningless. Moreover, in the case of a�ne

IFS, it is possible to estimate � and thus to minimize 1
1��dH(I;

Sn
i=1 wi(I)) to overcome this di�culty.

For mixed IFS, the contraction factor may not be uniform over the domain and is almost impossible to
estimate.

� The Hausdor� distance itself is CPU-time consuming, and may also appear as counter-intuitive in many
cases : on the �gure 7 are represented two couples of shapes [(a), (b)] and [(a'), (b')] with dH [(a), (b)] =
dH [(a'), (b')]. While (a) and (b) are perceived as similar, (a') and (b') look quite di�erent.

(a) (b) (a’) (b’)

Figure 7: Hausdor� distance may be counter-intuitive.

These drawbacks led us to use the toss-coin �tness, which experimentally provides more precise results.
Moreover, the direct computation of a distance between the target and the estimated attractor, computed using
the toss-coin algorithms allows :

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 7

� to have variable accuracy estimations of the attractor, by tuning of the iterations number (see section
4.2.2 below),

� to use a more intuitive distance between shapes (namely pixels di�erence or quadratic distance), instead
of the HausdorfF distance.

4.2.2 Practical �tness computation

In order to improve the algorithm e�ciency, we have modi�ed the �tness computation in two ways :

� As the �tness computation is the most computation time consuming procedure (it is repeated a large
number of time), it must be considered very carefully. The toss-coin algorithm generally needs a lot of
iterations to create the IFS's attractor. But as we noticed that the population quickly converges to a rough
approximation of the target, only an approximation of the attractor may be needed at the beginning of
the optimization process. We thus make the iteration number linearly increase during the generations, in
order to provide a quickly computed approximation at the beginning of the GP, and then progressively
tune �ne details along the computation.

� In order to guide the research of the optimum, we use distance images. This allows to consider \smoother"
functions to be optimized, as in [19]. A distance image is the transformation of a black & white image into
a grey-level one, where the level a�ected to each image point is a function of its distance to the original
shape. It can be easily computed by a simple algorithm (see [6]), based on the use of two masks (see �gure
8) : the resulting images are parameterized by d1 and d2 which represent the two elementary distances on
vertical/horizontal and diagonal directions. This parameterization allows to use distances which are more
or less \abrupt". For practical reasons, we use here grey level values which are proportional to the inverse
of a distance. White pixels (value 255) are inside the attractor. Pixels get darker when their distance to
the attractor increases (values between 254 and 0).

d2 d1 d2

d1 0

0 d1

d2d1d2

mask 1 mask  2

j−1 j j+1

i

i−1 i

i+1

j−1 j j+1

Original image Distance Masks

Distance (5,7) Distance (10,14) Distance (20,28)

Figure 8:

The computation of the �tness of the current IFS is thus based on a measure of the di�erence between
its attractor and the distance image of the target. The simple byte-to-byte di�erence (i.e. a counting of

RR n�2631



8 Evelyne LUTTON , Jacques LEVY-VEHEL , Guillaume CRETIN , Philippe GLEVAREC , C�edric ROLL

coinciding white pixels) is thus completed by the mean value of the grey levels of the points belonging to
the evaluated IFS attractor. This yields to the algorithm more \local" informations about the resemblance
between the attractor and the target.

We improved this technique by varying the distance image parameters (d1 and d2) along the generations:
we begin with a very fuzzy distance image. Every x generations we modify it so that at the end it becomes
the real B&W attractor. Tolerance to small errors, and computation times have been thus improved.

4.3 Contractivity constraints

Before each individual evaluation, we have to verify if it is an hyperbolic IFS (thus yielding an unique attractor).
As we have seen before, this veri�cation is uneasy on mixed IFS, mainly because of the non linearity of the
mappings. We have proposed in section 3 to simply verify the contractivity conditions on some sample points of
the domain, and reject the individuals which does not verify it. This is a way to discard a lot of non-contractive
IFS from the current population. But we have to notice that it may not discard some pathological mappings,
even if we use a lot of sampling points.

We propose to address this problem in a di�erent way, which will allow at the same time to use an a priori
information in the target image, and to reduce the computation time. Our approach is based on the �xed point
theorem.

For an hyperbolic IFS 0 =
S
wi whose attractor is A, each mapping wi is contractive, and thus admits an

unique �xed point Xi. We must then have :
8i;Xi 2 A

The veri�cation of the existence of the Xi's and their estimation can be easily performed : we built two suites
of points xin+1 = wi(x

i
n+1) starting from two points of the domain (for example (0,0) and (1,1)) :

1. Within a few iterations we can estimate the �xed point or decide that the function is not contractive. The
use of two sequences allows to speed up the �xed points estimation.

2. We then check if the Xi's belongs to the target shape. This test yields a rough estimation of the chance
of 0 to correctly approximate I.

Notice that 1 only gives a necessary condition for the mapping to be contractive.
Practically, we compute a constraints function : C(0) which is the mean distance value (measured on the

distance image of the target) of the Xi's to the target. If C(0) has too low a value, the �tness computation
using the toss-coin algorithm can be pruned.

The �tness computation integrates the contractivity constraints in the following way :

1. If there exists a wi which is not contractive, then �tness(0) = �1 and the individual is directly
discarded from the population.

2. If C(0) < C0 then �tness(0) = C(0)

3. If C(0) � C0 then the attractor A of 0 is computed using the toss-coin algorithm, and �tness(0)
measures the di�erence between A and the target.

4.4 Genetic operators

Crossover : we use the classical GP crossover which performs exchanges of randomly selected nodes between
the parent-trees (see �gure 9).

Mutation : we decided to use mutation in our algorithm, which is a common operator in GA, but a quite rare
one in classical GP.

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 9

Parents

Offsprings

1 2

Nodes 1 & 2 selected for crossover

Figure 9: GP Crossover : nodes 1 and 2 are selected for crossover.

Indeed, mutation in a GA is a small change in the genetic code of the chromosome, for example, in the case
of binary codes, mutation is a bit ip of one of the genes. In the case of GP, mutation has to slightly perturb a
tree structure. In this view, we have to di�erentiate the nodes and the leaves of the tree :

� The nodes belong to the basic functions set, which is �nite. A node mutation could be to replace one node
by another basic function randomly chosen in the basic functions set. Since such a perturbation may have
too drastic e�ects, we have preferred not to use it.

� The leaves are chosen in a terminals set (x or y) or in a constants set, which is a continuous interval
([0; 1]). We also have to separate the mutation of constants to the mutation of variables, because they are
of di�erent nature. Of course we could also imagine a mutation process which transforms a constant into
a variable and reversely. However, it seems to be too violent, except in the case of variables, as we will
see.

{ Constants : mutation is the only mean to make constants evolve. This is very important in our case,
because we need to perform a numerical optimization of the constants. We perturb the constants with
a parameterized probability (see the parameters summary, section 4.5). A constant is replaced by a
new value obtained from an uniform random shot inside a disk of �xed radius (another parameter of
our algorithm) around it (see �gure 10).

{ Variables : an \internal" mutation, i.e. changing a x to a y and reversely is again possible, but we
preferred a mutation which changes a variable into a randomly chosen constant (see �gure 11).
We have made this choice on an empirical basis : we noticed that in some cases constants tend
to disappear from the current population. Once they have disappeared, they cannot reappear in the
o�springs populations. We thus propose to use a constants creation process, via mutation of variables,
to maintain a minimal proportion of constants in the population.

The constants vanishing e�ect we have experimentally noticed may be explained as follows : the
numerical optimization of the constants is a more di�cult task than the symbolic optimization of the
other nodes. The selection operator thus tends to eliminate too rapidly IFS having bad constants.
This di�erence is due to the fact that the search spaces of the nodes and variables is a �nite one
while the search space of the constants is theoretically in�nite.

RR n�2631
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*

+

1

2

x

y

*

+

x

cos

Node to be muted

*

+

2

x

y

*

+

x

cos 0.9
Node muted

Figure 10: Mutation of constants.

*

+

1

2

x*

+

x

cos

y
Node to be muted

*

+

1

2

x*

+

x

cos

Node muted0.6

Figure 11: Mutation of variables.

Other techniques (that we have not tested) that allow to avoid the constants to disappear, may be to
reduce the size of the constants search space by allowing only a �nite set of constants (via sampling
for example), or separate the symbolical and the numerical optimization (i.e. having a subprocess
which optimizes the constants before each IFS evaluation).

4.5 Parameters setting

As it has be seen before, there are a lot of parameters that have to be tuned to make the algorithm e�cient.
We here summarize these parameters, and precise the practical settings for each :

Image size : the method was tested on images from 64x64 to 256x256 pixels.

Population size : Typically 20 to 50 individuals, bigger populations were less e�cient.

Maximum number of generations : Typically 1000 to 2000 : as small populations sizes are used, a large
number of generations is needed in order to converge. This approach is more e�cient than an algorithm
with a large population size and a smaller number of generations.

Crossover probability : Typically 0.7 to 0.9.

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 11

Mutations probabilities : Typically 0.1 to 0.2 for the constants, and 0 to 0.01 for the variables.

Range of the constants : [0,1].

Perturbation radius of the constants during a mutation : between 0.05 and 0.15. The mutation of a
constant is thus a uniform random shot inside an interval centered on the constant.

Maximum and minimum allowed number of contractive maps in the mixed IFS : from 3 to 7 maps.
This is the only constraints set on the structures of the evolved IFS's trees. No depth restrictions are
imposed. However, we experimentally veri�ed that their structures do not excessively expand along the
evolution.

5 Results

We have tested our algorithm on shapes that were actual attractors of IFS, some generated with randomly
chosen contractive maps. The choice of basic functions for the GP is the one presented in section 3. Initial
populations are randomly chosen.

We present here three good convergence results. For each example, we present : the target attractor, the
best image obtained after convergence, the �tness evolution curve, the parameters setting, and the functions
composing the best IFS, compared to the \true" ones (in general, there is an in�nite number of IFS leading to
the same attractor).

� Example #1 : approximation of a square, see �gures 12, 13 and table 1 for the parameters setting.

IFS of the best image :

w1(x; y) =

�
sinx
sin(sin(cos(sin y)))

�

w2(x; y) =

�
sin(sin x)
sin y

�

w3(x; y) =

�
sinx
sin(sin y)

�

w4(x; y) =

�
sin(sin(cos x))
sin y

�

w5(x; y) =

�
sin(sin x)
sin(sin y)

�

IFS of the target image :

w1(x; y) =

�
0:5x+ 0:5
0:5y + 0:5

�

w2(x; y) =

�
0:5x� 0:5
0:5y + 0:5

�

w3(x; y) =

�
0:5x+ 0:5
0:5y � 0:5

�

w4(x; y) =

�
0:5x� 0:5
0:5y � 0:5

�

� Example #2 :approximation of a random IFS, see �gures 14, 15 and table 2 for the parameters setting.

IFS of the best image :

w1(x; y) =

�
cos x
cos(cos(cos y))

�
w2(x; y) =

�
sin x � cos(sin y)
cos(sin y)

�
w3(x; y) =

�
sin x
cos y

�
w4(x; y) =

�
sin(sin x)
log(1 + jyj)

�
w5(x; y) =

�
sin(sin(sin x)) � cos(cos x)
sin(sin y)

�

IFS of the target image :

w1(x; y) =

�
sin x
cos y

�
w2(x; y) =

�
log(1 + jxj)
cos y

�
w3(x; y) =

�
cos x
sin y

�
w4(x; y) =

� p
j sin(log(1 + log(1 + jxj)))� sin(sin x� 0:118226)j

cos(
p

j(y � x� sin x) � sin yj )

�
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� Example #3 : approximation of a random IFS, see �gures 16, 17 and table 3 for the parameters setting.

IFS of the best image :

w1(x; y) =

�
sin x
cos y

�
w2(x; y) =

�
log(1 + jxj)
cos y

�
w3(x; y) =

�
cos x
sin y

�
w4(x; y) =

� p
(j sin(log(1 + log(1 + jxj)))� (sin((sin x)� 0:118226))j)

cos(
p

(j((y � x)� (sin x)) � (sin y)j))

�

IFS of the target image :

w1(x; y) =

�
sin x
cos y

�

w2(x; y) =

0
B@ log(1 +

q
j cos(sin x)� sin(cos(0:568514� cos(

p
j cos yj)))j)r

j cos(cos(sin y)� y � cos( cos(

qp
y � cos(cos(cos(cos(sin(cos 0:473744))))))))j

1
CA

w3(x; y) =

�
cos x
sin y

�
w4(x; y) =

 
x �

rq
j0:335979� cos

p
jxjj

cos y

!

w5(x; y) =

�
sin(
p

j cos yj+ x� cos(cos(sin x)))

cos(cos(cos(cos y)))

�

The �rst point to remark is that the functions of the approximations does not resemble the one of the target
images (especially for the example #1) : this is due to the fact that the representation of an attractor by a set
of functions is not unique.

The parameters adjustment remains an uneasy task, but we empirically noticed the following facts :

� The distance images are very e�cient. It is particularly obvious on the �tness evolution curves (�gures
13, 15 and even more on �gure 17) : when updating the distance image, the curve suddenly falls down
and then grows up again. For the new distance image, the value of the �tness becomes lower, because it is
computed on a distance image with has larger d1 and d2 parameters. This corresponds in fact to a more
precise evaluation of the di�erence between the current IFS and the target.

� The mutation of the constants is important, it brings diversity and cannot be set to zero.

Finally, the target images which yield good results are rather compact : the convergence to line-shaped targets
is more di�cult.

INRIA



Mixed IFS : resolution of the inverse problem using Genetic Programming 13

Figure 12: Example #1, from left to right : original image and best images of generations 10, 100, 300 and 1500.
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Figure 13: Example #1 : �tness evolution. The maximum �tness of the current population is the continuous
curve, the mean �tness is the dotted one.

Image size 64 pixels
Population size 30

Max number of generations 1500
Crossover probability 0.7

Mutation probability for constants 0.2
Mutation probability for variables 0

Range of the constants [0,1]
Perturbation radius for the constants 0.1

Max and min number of contractive maps 3 to 6

Table 1: Example #1 : parameters setting.
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Figure 14: Example #2, from left to right : original image and best images of generations 50, 300, 500 and 1000.
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Figure 15: Example #2 : �tness evolution. The maximum �tness of the current population is the continuous
curve, the mean �tness is the dotted one.

Image size 64 pixels
Population size 20

Max number of generations 1000
Crossover probability 0.7

Mutation probability for constants 0.2
Mutation probability for variables 0

Range of the constants [0,1]
Perturbation radius for the constants 0.1

Max and min number of contractive maps 4 to 6

Table 2: Example #2 : parameters setting.
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Figure 16: Example #3, from left to right : original image and best images of generations 50, 260, 1010 and
1300.
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Figure 17: Example #3 : �tness evolution. The maximum �tness of the current population is the continuous
curve, the mean �tness is the dotted one.

Image size 256 pixels
Population size 30

Max number of generations 1300
Crossover probability 0.85

Mutation probability for constants 0.25
Mutation probability for variables 0.001

Range of the constants [0,1]
Perturbation radius for the constants 0.1

Max and min number of contractive maps 4 to 7

Table 3: Example #3 : parameters setting.

RR n�2631



16Evelyne LUTTON , Jacques LEVY-VEHEL , Guillaume CRETIN , Philippe GLEVAREC , C�edric ROLL

6 Conclusion

We have proposed a method to solve the \general" inverse problem for mixed IFS within a reasonable compu-
tation time (a few hours on Sparc 10 and Dec 5000 stations). This computation time is similar to computation
times of GA applied to the inverse problem for a�ne IFS [18], although in the case of mixed IFS the size of the
search space is much more larger. This fact may be explained by the use of variable sized structures in the GP
algorithm, which seems to perform a more e�cient search in a large space.

The method may be improved in several directions :

� test a \smoother" transition between distance images : a re-computation of distances images at every
generations would allow to let the parameters d1 and d2 vary more smoothly,

� test other mutation strategies, as suggested in section 4.4,

� test an adaptive radius for mutation of constants, in the same way as for evolutionary programming tech-
niques, where mutation variance is dynamically adapted, in function of the performance of the individual,

� make the iteration number of the toss coin evaluation algorithm be more adaptive (we can theoretically �x
the iterations number and the probabilities of the toss coin algorithm in order to more rapidly approximate
the attractor within a �xed error),

� modify the storage structure of the IFS in order to reduce the computation time (mainly by avoiding some
useless computations)

Such an approach might be interesting in the �eld of image compression. IFS compression techniques are ge-
nerally based on a�ne IFS. The use of mixed IFS may yield more exible spatial and grey-level transformations,
and thus may allow to improve the compression ratio for the same number of functions.
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Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
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