MRI Gastric Images Processing using a
Multiobjective Fly Algorithm *

S. Al-Maliki*2, E. Lutton®, F. Boué¢®*#, and F. Vidal?

! Basrh University, Iraq
2 Bangor University, United Kingdom
3 INRA-AgroParisTech, France
* LLB, CEA CNRS, France

Abstract. When dealing with rare and sparse data, like the ones collected
during a long and expensive experimental process, machine learning

is used in a different perspective. In this context, optimisation-based
approaches combined with user visualisation and interactions are sometimes
the best way to cope with modelling issues. We present here an example
related to an experimental project aiming at understanding the kinetics

of gastric emptying using MRI images of the stomach of healthy volunteers.
We show how a cooperation/co-evolution algorithm, the “Fly Algorithm”,
can be made multi-objective, and its output, a complex Pareto Front,
analysed using interactive Information Visualisation (InfoVis) and clustering.
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1 Introduction

The work presented here is part of a large project focused on the understanding of
the influence of food structure on digestion. Advanced imaging techniques allow
observing the digestion process at different scales. Small scale measurements were
performed in wvitro on large facilities (small-angle neutron scattering (SANS),
small-angle X-ray scattering (SAXS), and X-ray imaging) [2,3] while magnetic
resonance imaging (MRI) of the gastrointestinal tract (GIT) provides in vivo
information at large scale (stomach and duodenum of healthy human volunteers).
We focus here on MRI observations of the kinetics of gastric emptying for two
species of ingested food: 1) progressively and partially digested cooked pasta, and
ii) frozen garden peas, which keep their shape in early gastric stages ( Fig. 1).
We show how a “Fly Algorithm” [4] can be efficiently adapted to detect
peas in these MRI images (around 20 peas in one stomach for the current
experimental data). Being able to follow peas in these images is important as
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it reveals how the food bolus is stirred inside the stomach to favour the action
of the gastric juice. The Fly Algorithm has been turned into a multi-objective
cooperative-coevolution algorithm, and expert knowledge has been integrated
through simple Information Visualisation (InfoVis) techniques: a multi-objective
scheme provides Pareto front data which needs to be understood and explored
by the end-user.

2 The multi-objectives Fly Algorithm

Peas (not cooked nor chewed) keep their shape
and size in early gastric stages. A pea thus appear
in a MRI slices as a circle of a fixed radius of
about 4mm (R = 8 pixels). It is darker and
more homogeneous than the background. These
o omach properties are featured thanks to 7 objective
functions. Objectives 1, 2 and 3 are based on
homogeneity measurements (inside a circle or a
l', ring centred on the potential pea position), while
Objectives 4, 5, 6 measure the isotropy. Finally
Objective 7 ensures the pea area is darker than
its background.

Fig. 1. MRI slice of a human The Fly Algorithm maintains a population of
stomach containing peas and potential pea locations, and evolves it to optimise
pasta. the previous 7 objectives using a multi-objective

scheme (inspired from NSGA-II, [1]). The evolved
population then stabilises on a Pareto front.

3 Visualisation and interactive decision making

Each point of the Pareto front not only corresponds to a possible pea location,
but also to a different objective priority trade-off. Automatically extracting the
points that really correspond to peas is not trivial. This can be done efficiently
thanks to interactive visualisation.

A scatterplot displays the position of the individuals over the MRI image
(see Fig. 2), while a parallel coordinates plot® shows the values of the seven
objective functions for each individual. The user can interactively select areas
of points in the scatterplot that correspond to peas. Each selected area gets
a unique colour, the same in both plots. 7 validity ranges (two thresholds per
objective) are defined for filtering out the 25,000 individuals generated during
the evolutionary process. The scatterplots are then clustered using a Gaussian
Mixture Model (GMM) (see Fig. 3a). Clusters that are close to each other (e.g.
within a pea diameter) are then merged. All clusters centres are extracted (see

5 This plot represents a point in a n-dimensional space as a broken line with n — 1
segments, joining its n coordinates located on n vertical axes.
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(a) Scatterplot of the  (b) Scatterplot of the 6"  (c) Scatterplot of the 16"
initial population. generation. generation.

(d) Parallel coordinates (e) Parallel coordinates (f) Parallel coordinates
plot corresponding to (a). plot corresponding to (b). plot corresponding to (c).

Fig. 2. Scatterplots and parallel coordinates plots of successive generations. All
solutions (flies) are plotted in red by default. When the user selects an area in the
scatterplot, a specific colour is assigned to this area and linked to the corresponding
lines in the parallel coordinates plot.

(a) Clusters. (b) Cluster centres. (c) Parallel coordinates
plot.

Fig. 3. Candidate solution clusters.
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Fig. 3b). In total, 19 points were selected. Thanks to another parallel coordinates
plot a new set of thresholds is defined (see Fig. 3c¢) to further refine the results
and limit the number of false positive (i.e. points that do not actually correspond
to peas). The last set of thresholds is used to highlight stronger candidates (7

purple dots in Fig. 4).

4 Conclusions and future work

We present here some preliminary results
based on the first multi-objective version
of the Fly Algorithm. We have also shown
that an interactive process, combining image
display, scatterplot and parallel coordinates
plots, facilitates the analysis of the output
of this Fly Algorithm.

This interactive scheme will be used
to produce training data for a deep
neural network, for a further robust and
more automatic processing of the whole
dataset (all MRI slices of 3D volumes
and sequences of 3D volumes, at different
digestion duration, for all volunteers). The
next step will be to follow the peas as a set
of particles, to reconstruct their movements
inside stomach and their progressive ejection
through the pylorus along digestion.
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