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Contribution to the Determination of Vanishing Points
Using Hough Transform

Evelyne Lutton. Henri Maitre. and Jaime Lopez-Krahe

Abstract— We propose a method to locate three vanishing points on
an image, corresponding to three orthogonal directions of the scene. This
method is based on two cascaded Hough transforms. ¥We show that, even
in the case of synthetic images of high quality, a naive approach may
fail, essentially because of the errors due to the limitation of the image
size. We take into account these errors as well as errors due to detection
inaccuracy of the image segments, and provide a method efficient. even
in the case of real complex scenes.

Index Terms—Bias and errors of the Hough transform, Hough trans-
form, orthogonal directions detection, vanishing points detection.

[. INTRODUCTION

In many tasks of artificial vision. an accurate location of vanishing
points is a first step toward three-dimensional (3D) interpretation.
Vanishing points are defined in the image plane as those points where
the images of all 3D scene lines, parallel to some space direction.
converge. To one 3D space direction is attached one vanishing point
on the image plane and conversely.

Detection of vanishing points. which is of little help in natural
outdoor scenes, becomes of prime importance in the man-made
environment where regular block looking structures or parallel align-
ments (streets, pavements, railroad) abound. We have the Italian
Quattrocento to thank for the deep comprehension of the formation
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Fig. 1. 1.2, and Aj are lines of the 3D space parallel to the direction
U.61.62. and &3 their images on the_image plane. é;. 46>, and é3 converge
to the vanishing point associated to U

of perspective images,' a comprehension that has been a constant
preoccupation of the theoricians in aesthetics up to the 20th century.?
Traces of rigorous mathematical bases are found mainly at the corner
of the 18th—19th centuries.>* Although the geometrical construction
of vanishing points may become very complex when no hypothesis is
made on the vision system, in the case of a perfect conic projection
(pinhole cameras) it may be solved easily, since the image of a
straight line remains a straight line. We will stay in the assumption
of conic projection throughout this paper.

Most of the existing methods to detect automatically these vanish-
ing points stand on the use of the Hough transform, explicitly or not
[16]. [20]. [21]. Hough transform is a global technique for detecting
parametrical structures in images [5]. (7]. [17]. Some primitives are
detected in the image. and then mapped into a parameter space:
underlying structures are detected by searching for clusters in this
parameter space. Two methods can be distinguished to fill the
accumulators of Hough space [17].

« The “one-to-many” (1-to-m} transform. used most of the time.
where for each feature point in the picture plane. several
accumulator cells are incremented.

« The “many-to-one” (m-to-1). where we make use of several
feature points in the image plane to increment exactly one
accumulator cell.

For the application of vanishing points detection, the primitives are
line segments. The vanishing points are thus characterized as those
points where most of the supporting lines of these segments intersect
(Fig. 1). Most of the time. these points are located far away from the
image limits and even can be at infinity (for frontal lines).

So. the most important problem of the detection of vanishing points
with the help of the Hough transform is the choice of the Hough
space parameterization. Two main orientations have appeared in the
literature. following the 1-to- m or the m-to-1 transforms: they are
chronologically:

The 1-to-m approach with:

+ Kender [9] in 1979 who uses, directly on the image plane. circles
passing through the origin. and proposes either a search in a
tridimensional space or two successive transforms:

. Ballard and Brown (2] in 1982, who propose a (k/r.#) pa-
rameterization. with & constant, for the image primitives. which
permits restriction of parameter space:

'L. B. Alberi, "De pictura” (manuscript 1435), printed in Basl (Swiss),
1540.

2E. Panovsky. "Die Perspektive als symbolische Form,” Berlin, 1927.

3G. Monge, “Géométrie descriptive.” Legons données aux Ecoles Normales
de I'an Il de la République, Paris. 1798.

4J. V. Poncelet. “Traité des propriétés projectives des figures.” Paris, 1822

0162-8828/94504.00 © 1994 IEEE
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Fig. 2. Construction of the image: N, is the normal vector of the interpre-
tation plane of segment S;.(O.X.1.Z) is the coordinate frame of the 3D
scene, (F.x,y. =) of the camera.

« Bamard [3] in 1983. who first proposed the use of the interpre-
tation planes of the image segments, and the use of the Gaussian
sphere centered on the optical center of the camera as parameter
space. This formulation has the great advantages to represent as
well the finite and infinite vanishing points. to furnish a restricted
Hough space: and

« Quan and Mohr [20] in 1989, who propose an improvement of
the Barnard method using a hierarchical method to divide the
Hough space.

On the other side. equivalent to the m-to-1 approach. the method of
Badler [1] in 1974 and. later. of Magee and Aggarwal [16]. in 1984
which are based on cross products of normal vectors to interpretation
planes, and uses the (§.0) parameterization of the Gaussian

Let us notice, that these two families of methods converge into the
use of the Gaussian sphere as parameter space.

Our concern is to detect vanishing points in man-made envi-
ronments where parallel lines abound. More specifically. we are
interested in detecting the three main orthogonal directions that are
often used as the frame for the construction of human productions:
for instance, it is the case of some outdoor scenes (streets in urban
environment, factories. dockyard. airports in aerial images). of some
indoor scenes (rooms and corridors, offices. and workshops). and
even of consumer products. (Examples of images with such dominant
directions are presented in Figs. 13-15.)

The method we propose is in two steps (Section II); the first ignores
the three-orthogonal-direction hypothesis. and is similar to [3]. The
second exploits the three-orthogonal-direction hypothesis by means
of a second Hough transform. When using the method in [3]. we
underline the intrinsic limitations due mostly to the finite extension of
the image. We show that these limitations may prevent the extraction
of the main directions even in the case of simple objects without
noise. By theoretic analvsis of the role of the image dimension
(Section III), we conclude by proposing a more robust algorithm.
Results are presented on several different images supporting our
demonstration (Section IV). A discussion and a comparison with the
method [20] are given in Section V.

II. PRINCIPLES OF THE METHOD
A. Step 1: Direction Determination

1) Using the Gaussian Sphere: When searching for vanishing
points, instead of looking for the convergence of lines on the image.
we can look for the intersection of circles on the Gaussian sphere
associated to the image [3]. We denote by (0. X. Y. Z) the coordinate
frame associated with the 3D scene. and by { F. .r. y. z) the coordinate
frame of the image. centered on the optical center of the camera (see
Fig. 2).

For each line of the image plane that supports a segment S, of the
image, a great circle can be drawn on the Gaussian sphere I'. centered
on the optical center of the camera. F. This circle represents all the

5

Fig. 3. Gaussian sphere: The great circle represents the interpretation plane
of S; on I". All the U vectors have an image on the supporting line of S,.

Fig. 4. Rectangular cell of size Ao. A6,

0,0) 2%

Fig. 5. Almost-cqual-size cells quantization.

3-D directions U that project on the image line. It is the trace of
the interpretation plane of the line (or of the corresponding segment)
on the Gaussian sphere (Figs. 2 and 3). A direction U that can be

projected on S, is NooU=o

Using the spherlcal coordinates. for a known vector N {#,. 0. 5. all
the possible vectors U (H,.0.). verify the equation of a great c1rc1e
on [:cos(8; —6,)sino, sino, + coso, coso, = 0.

To every line intersection on the image plane corresponds one circle
intersection on the Gaussian sphere. which represents a 3D direction
of the scene, or one vanishing point. With this representation.
problems of infinite vanishing points are avoided. since I is a closed
representation of R%. As the problem is symmetrical with respect
to the (r.y) plane, only one-half of the Gaussian sphere is used:
9, € [0.2x[.0. € [0.5/2[.

2) Quantization of Hough Space: As Barnard [3] noticed. a regu-
lar quantization in 8 and o does not provide cells of equal surfaces
on I'. Therefore, a regular quantization will not allow a straightfor-
ward determination of the maximal direction probability from the
maximal cell count. A postprocessing of cell counts is needed to
determine probabilities. Another solution is to use an equal-size-cell
quantization, a solution reputed not flexible on the sphere since it
uses triangle-shaped cells and constrains the cell size drastically.
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Fig. 6. Failure on a simple artificial case: a. synthetized image segments: {';. detected vertical parallel to the image plane: {'.
first horizontal direction, pointing into the image (all the segments cross each other in a small area near the center of the image);

and U73. second horizontal direction (no associated segments).
For these reasons, we propose a quantization in “semiregular”
rectangular cells, based on a regular quantization in o and an irregular
quantization in 8. On the Gaussian sphere, a cell of size A¢. A8 has
a surface of AS = Af[coso — cos (0 + Ao)]. see Fig. 4. Let N7
be the number of layers between 0 and 7/2 for 0 : Ao = #/(2N7).
For a chosen AS (fixed by the ultimate accuracy we want), we
construct cells on the sphere corresponding to the Fth layer, with a
spacing along 6 equal to
_AS 1
T No cos(k—1)—cos (k)
Such an accumulator on the (6. o) plane has almost-equal-size cells.
Therefore, if the directions [ were in infinite number and distributed
uniformly, a uniform count on each cell would be obtained. Fig. 5
gives an image of this quantization. Thus. the search of accumulation
points on the Gaussian sphere is reduced to the search of local maxima
on this “almost regular” accumulator.

AG(k)

B. Step 2: Three-Orthogonal-Directions Detection

1) Searching for a Vertical Direction: After the previous step, we
have a list of directions U x. each of them corresponding to a possible
vanishing point in the image plane and ranked by their counts in the
accumulator space. Now we want to select. from this set. the most
represented three orthogonal directions. At this point. we make use
of a supplementary assumption that is dictated by the observation of
man-made environments. Not only in man-made environments three
orthogonal directions are often dominant. but also, one of them is
orthogonal to most of the directions of the scene. This direction will
be referred to as vertical’ (and denoted as ) since it is generally
the case.

Thus, we search for a direction V. orthogonal to the greatest
number of [} directions. This stage is done by a second Hough
transform, identical to the first one. For each direction L is drawn the
orthogonal great circle on a second.Gaussian sphere I''. The vertical
T is with high probability at the most represented intersection point
on I'. This method provides the vertical direction even when this
direction is not represented by any segment in the set of Cr.

The next step, to detect the two other directions, is then straight-
forward. The direction T~ provides the first requested direction
Tyt = 51). Then, in the set of L orthogonal to U}. the two
most represented orthogonal directions {2 and U3 are selected.

C. Conclusion

The principles of the detection method presented here appear
sound. Unfortunately, when used carelessly, the detection does not
work correctly. Failures exist not only on complex real scenes when
noise strongly disturbs the signal. but even on simple artificial school

5 Remark: We see from the previous lines, the “vertical” is given, in this
method, as the direction which is the most orthogonal to the other lines: it
does not deal with gravity, and we are not claiming to detect the direction
along which apples fall, unless the scene is favorable!

cases. Fig. 6 shows such an example, where the most important
vanishing direction "> has been interpreted as pointing inside the
image, the vertical {'; is parallel to the image plane. and even, the
third direction U3 does not correspond to any segment. We will see in
the next section that this is mostly due to the limitation of the image.

III. STUDY OF ERRORS

To understand these problems, it is necessary to look carefully at
the possible errors and biases introduced during the Hough transform.
They have three different origins [18]:

- bias due to the finite extension of the image (the image size is
limited) [4], [18];

- errors due to the quantization of the images [8]. [12]. [13], [24];

« errors due to the detection inaccuracy of the image primitives
[6]. [18]. [22]. [23].

In case of vanishing point detection. we have noticed experimen-
tally that the most important is the first error. which favors the
apparition of artifacts. As a result of the finite extension of the
image. the probability to detect a vanishing direction anywhere on
the Gaussian sphere is nonuniform, and the vanishing directions that
give vanishing points inside the image are favored. The second error
source is negligible as long as large enough images are taken. The
third one may receive easy solutions (see Section III-B).

A. Bias Due to Image Limitation

For simplicity, we suppose that the image is circular. A great circle
drawn on the Gaussian sphere is interpreted as the projection on the
Gaussian sphere of the line supporting the image segment. However.
only those lines seen in the image create a circle: thus. only circles
that pass through the projection of the image on I (dotted spherical
cap of Fig. 7) are drawn on I'. This means that with high probability
intersections of circles will be found in this cap. corresponding to
vanishing points inside the image itself. Fortunately this problem
may be solved analytically.

1) A Priori Probability of Direction [: To compensate for a bias
to the positioning of the vanishing point in the image. we use the
hypothesis that we have a uniform distribution of 3D segments in the
scene: that is, every vanishing point has an equal probability to be
found in the image. An exact calculation of the a priori probability of
a direction U in the Hough accumulator has been derived. in the case
of a circular retina (see Appendix I). In the case of a circular image
with projection angle oo on T. this probability being symmetrical
with respect to the visual axis = can be expressed as a function of
the angle o. the angle between the direction U. and the = axis (see
Fig. 8). The detection of a priori probability density of a direction
U is given by

- 1 . W
5([)=‘§ ‘ 1f0('§§_00-
with S = [7/% P(C)dC (1)
2 3 e
S(U) = —= arcsin C_Oh 20|, ifor- > = — oo.
) sin or- 2
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Fig. 7. Projection of a circular image on Gaussian sphere.
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Fig. 8. Probability curves (the simulated curve id is dotted and the theoretical
is continuous) for a circular image d,,,ax = 312 pixels. with a pixel size of
25 x 23 ppeme and a focal length of 40 mm.

Z NL pixels

Fig. 9. Projection of a rectangular image on Gaussian sphere.

In the case of a rectangular retina, the probability is no longer
symmetrical with respect to the : axis; it has a complex expression,
a function of the position of the line with respect to the borders (see
Appendix I).

The surface of probability density is shown in Fig. 10 as a function
of the spherical coordinates of the Gaussian sphere # and 0. We notice
that, here again, the projections inside the retina are favored on the
Gaussian sphere, but now, outside the projection of the image, the
directions # = k(x/2) are slightly favored.

With these tools we may compute the impulse response of the
Hough transform on the first accumulator. It should be spatially
invariant and look like a Dirac function. This is true in case of an
infinite retina, but no longer for the case of a finite-extent retina (see
Appendix 111). A similar estimation of the bias has to be made for the
second Hough transform. whem computing the a priori probability of
a vertical T (see Appendix II). The limitation of the retina has the
effect that the verticals parallel to the image plane are also favored.

2} Verifications with Simulation: These theoretical results are
confirmed by simulations. Simulated images have been built with

433

(a)

(b)

Fig. 10. Probability surfaces for a square image 512 x 512 pixels, with pixel
size of 25 X 25 um and a focal length of 40 mm. (a) Simulated surface. (b)
Theoretical surface.

Error on the direction of a segment.

a U,
_— _— T
—_—— ——

U, U,

Fig. 12. Simple artificial case: The cube «. synthesized image segments; U1
detected vertical: U and U, the two horizontal directions (see Fig. 6).

segment projections on circular or rectangular images of Poisson-law
random 3D lines. Simulated and computed curves and surfaces fit
nicely (Figs. 8 and 10).

3) Correction: Using this probability it becomes possible to elim-
inate the undesirable effect of a restricted retina. Of course. a real 3D
scene is not quite amenable to the previous discussion. A complex
scene is made of segments belonging to the set of three orthogonal
directions, and of segments that are just noise with respect to this
signal. We will consider that this noise is distributed randomly, and,
depending on its relative importance, two solutions are intuitively
possible: We may either subtract a judiciously weighted a priori
probability from the experimentally obtained accumulators or divide
each cell by this probability. ‘

Let A(I..J) be the count of the cell (I.J).J corresponding to
o and I to 6. Let P(I.J) be the probability of apparition of a
vanishing direction in the cell (I.J). computed from the theoretical
formulas. We may create a new accumulator whose cells are either
ALJ)y=K-P(I.J)or A(I.J)/[K - P(I..J)). where v - P(I.J)
is an estimation of the accumulator if there were no vanishing points
in the image (random behavior). The factor K is related to a signal-
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Fig. 13. (a) Origine imoy
U'y. detected vertici:l: 7 - ¢

Fig. 14.
U5 and (3. the two horizontal directions.

(a) Original image (f = 530 mm. pixel size =

to-noise ratio of the image segments: it is experimentally difficult to
estimate. Fortunately, in the second expression it has no influence
on the detection of the maximal counts and thus may be neglected.
We have experimented with both solutions. The second solution.
which does not need any estimation of the noise. has been verified
experimentally as the most efficient. It has been used for the results
presented below.

B. Errors on the Position of the Image Segments

The other noticeable source of errors is due to errors in the location
of image primitives. This effect is smaller than the one due to
the retina limitation, but influences on the accuracy of results. A
quantization error on each extremity of a segment induces an error
on the direction of the segment that can be very important, especially
when the segment length is short (see Fig. 11).

Iannino [6] has proved. in the case of detection of lines and
circles in an image, that there is a threshold, related to the errors
on the primitives. under which it is useless to quantify the Hough
space. Indeed. under this threshold, due to quantization errors on
the image, the detection of local maxima of the accumulator is
mistaken. In the problem of vanishing points detection. the calculus is
not straightforward because of the nonhomogeneity of the errors on
primitives. However, we can estimate easily an ‘approximate mean
value of this threshold [15]. )

As a matter of fact, we have adopted a strategy to update the
cells of the accumulator that are not on a curve (representing the

100 x 100 ). (b) Segments of the image: {7, detected vertical:

great circle and so the interpretation plane). but in a zone around
this curve. representing all the interpretation planes of the possible
real segments enclosed in the hatched area of Fig. 11. The weight.
proportional to the length of the segment. is distributed uniformly
on all the connected cells. This method allows one to take small
segments into account, and to grant greater contidence in long ones.
And. if we are near the lannino threshold. we can assume that for the
long segments we update the minimum number of cells.

[V. EXPERIMENTAL RESULTS

First the result of our algorithm on the school example of Fig. 12
is shown: all the segments are now classified correctly.

The following examples show the results of the algorithm on real
images. First, the results are shown in Fig. 13 of the algorithm run on
an indoor image, taken with a CCD camera. Edges are detected using
a Sobel detector, then thinned. and fitted to segments. The segments
of length less than 10 pixels are rejected. 116 segments are kept for
vanishing points detection. 83 of them are found as participating to
the main directions.

Fig. 14 is a photograph of buildings. taken with a conventional
camera on film and digitized. Two hundred eighty-six segments were
detected on the image and 118 recognized as converging into the
three main vanishing points.

Finally, Fig. 15 is an aerial photograph of industrial buildings; 183
segments. from 266 detected, are recognized as converging to one of
the three vanishing points.
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Fig. 15. (a) Original image (f = 100 mm. pixel size = 25 pum). (b) Segments of the image: U'). detected vertical: U5 and (3.
the two horizontal directions. (¢) Not classified image segments (courtesy MATRA-MS21.

V. DiscUSsION
A. Searching for the Associated Segments

For each of the three directions [x.k € 1.2.3. the associated
image segments are the segments whose normal vectors to the
interpretation plane N, verify N, - T = 0. In fact, due to inaccuracy
all along the processing. we cannot test the equality; we use a
threshold =: \A\.:, -l1k| < =z. It seems reasonable that the threshold varies
with respect to the distance between the segment and the vanishing
point in the image plane. Indeed. for example. when the vanishing
point is in the image, the projections of the real scene segments appear
as very short (and noisy) segments around the vanishing point. So
if = is too large, all the image segments around the vanishing point
verify the criterion (because all the directions in the image plane are
allowed near the vanishing point). and a lot of false segments are
associated. For this reason, we take an = small when the distance
between the segment and the vanishing point is small, and larger
when this distance increases.

B. Calibration of Camera Internal Parameters

The efficiency of the accumulator correction has been shown in the
previous examples, but this efficiency relies on an exact knowledge of
the geometrical setup. More specifically. we need to know the exact
focal length and the center of view to run our algorithm correctly.
If the focal length is mistaken. the results of the search of three
orthogonal scene directions are false, because

1) The three vanishing points have associated vanishing directions
on the Gaussian sphere that are not orthogonal to each other
(see Fig. 16), and

2) The retina projection on the Gaussian sphere is changed, so
that the correction function is altered and does not correct the
accumulator in the right way.

S

For the same reasons. we need to know precisely where the center
of view lies. that is. the intersection of the optical axis with the image
plane. If the center of view is not correctly known. the correction
function is skewed. and the angles are also misinterpreted. It must be
remarked that the lack of precision on the center of view is especially
sensible when vanishing points are in the image or near the limits of
the image. Indeed such vanishing points need very strong criteria to
search for the associated segments.

C. Comparison with Quan and Mohr Method

Quan and Mohr [19]. [20] proposed a method to detect the
vanishing points, which is an extension of the Barnard method [3].
This method works with the help of an accumulator defined on
the Gaussian sphere according to Barnard's principles. but with a
different quantization. Quan and Mohr build the accumulator by
hierarchical division (Li and Lavin method [10], [11}) of the half
Gaussian sphere according to the spherical parameterization (4. o).
They do not mention any correction of bias. The experimentations
of this algorithm® permit us to understand its behavior with bias
due to the finite extension of the retina. It is particularly related to
the minimal resolution Ro used to limit the division of accumulator
cells. In fact, if a minimal resolution Ro near the one we use in our
algorithm (about 1°) is fixed. the false detections due to the limitation
of the retina appear, whereas if the minimal resolution Ro is much
smaller, the most represented vanishing points are detected correctly.
This is because the searched local maxima are very high and fine
peaks so that the bias due to the limitation of the retina does not alter
the detection. Those peaks correspond to the impulse response we
have calculated (see Appendix IID).

6We would like to thank Audigier and Trullen. who programmed the Quan
and Mohr method.
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Yet. in the case of a noisy image. that is. when the segments
are relatively short, the “blurring™ effect on the maxima. due to the
quantization errors, extends the width of the peaks. Thus artifacts
may appear. It is the case of aerial images (Fig. 15) on which we do
not obtain good results with the Quan and Mobhr algorithm.

The Quan and Mohr algorithm needs at least three passes and does
not guarantee the orthogonality of the recovered vanishing directions.
Note that, as a result of these three passes. it is not crucial for them
to have the focal length f: however. Quan and Mohr argue [20] that
the choice of f has an influence on the detection accuracy and that
the exact focal length f is needed to estimate the real 3D direction.
However, their algorithm seems to be less sensitive than ours to the
calibration precision of f.

VI. CoONCLUSION

We have proposed a complete method to improve the detection of
vanishing points, and to detect three orthogonal vanishing directions
even if one is not or nearly not represented among the image
segments. This method works on images of real scenes, where many
segments, some converging to vanishing points and some not, are
detected. It provides excellent results on cases where methods were
failing that do not correct the bias due to limitation of the retina.

APPENDIX |
A PRIORI PROBABILITY DENSITY OF DIRECTION [

A. Circular Image

First, the calculation is made in the case of a circular image
(of radius d,,.x): that is. where all the image lines verifying d <
dyax. V8. are allowed (Fig. 7). oo = arctg(f/dua.) denotes the
maximal angle with = axis of interpretation plane normal of segments
of this image.

0.05 4
probability
of
W,,,_,/ apparition
04

1 1 T 1T T
0 15 30 45 60 75 90

values of ¢ in degrees

Fig. A2. Probability curves (simulated curve is dotted) for a circular image
dmax = 512 pixels, with a pixel size of 25 x 25 um and a focal length of
40 mm.

Suppose each direction of the Gaussian sphere is represented
continuously and uniformly in the image. The probability of detection
of a direction U is related to the “number” of great circles that
pass through the point representing U on the Gaussian sphere. This
probability is proportional to the surface containing all the possible
great circles passing through the projection of the retina and through
the point L.

This surface is either the total Gaussian sphere surface if or- <
(w/2) — og. or. if not. a part of the sphere surface located between
two planes passing through [ and supported by the projection of the
retina (Fig. Al). These two planes make an angle A#f.

Therefore. the probability is proportional to the ratio of this surface
by the surface of the Gaussian sphere: if or- < (7/2) — 0q. S0y =
1:if or- > (7/2) — 00.S(L) = (A#/27). We obtain

1. ifor < = —oo
Siy=¢2 . coson | . -
= arcsin | — i.oifor 2 - —o00
T sinor- | 2
where
-t 5((1)
D)=

(w/2) - :
/ S.U)do
Jo=0

We notice that the value of S(L) does not depend on ¢ as a
result of the spherical symmetry. The exact expression of the a priori
probability density of apparition of a direction U is given by the
normalization of the function S. that is. D. because the allowed zone
is the total Gaussian sphere, SCy=11T points out the image,
S(T) = (A#')/=. The width of the allowed zone depends also on
the position in ¢ of ' there is no more symmetry with respect to
the = axis. Calculus is developed in [15].

APPENDIX II
A PRIORI PROBABILITY DENSITY OF VERTICAL 1

We have made the calculation only in the case of a circular retina.
The T contributing to the apparition of a vertical 1" are located on the
great circle perpendicular to V. Thus. the repartition of T is related
to the repartition of T by

B(\“‘):%/ P(Cyds.  T|5.
T Joya i

C'/4 is a quarter of the great circle that is perpendicular to direction
V". Thus the equation shown at the bottom of the next page applies.
The integral involved in the two formulas is an elliptic integral and
cannot be calculated explicitly. After normalization of the function
R(V'). we obtain the exact expression of the a priori probability
density of a vertical. It is now clear that the vertical lines near the
(r.y) plane are more probable (see Fig. A2). We have also verified
these computations by simulation (in the same condition as above;
see Fig. A2).
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Fig. A3. Impulse response for a circular retina of diameter 512 pixels, pixel
size of 25 X 25 um. and a focal length of 50 mm, for l',o (a) Inside the
projection of the retina. (b) Outside the projection of the retina.

Fig. AS.

Centering of the problem and calculation of Qo'

AppENDIX 11
IMPULSE RESPONSE

The aim of this section is to find the shape of the accumulator on
the Gaussian sphere, when a “signal” is in the image. that is. when a
vanishing direction is represented in the image of the 3D scene. Let
", denote a direction of the scene infinitely represented by segments.
that is, through each point of the image, passes a line. projection of
a 3D line parallel to Co.

A. Hypothesis of an Infinite Retina

Suppose that the image plane is not restricted by a retina, and the
accumulator is thus composed by an infinity of great circles of the
Gaussian sphere consisting each other in lo[ . This configuration

Fig. A6. Repartition of the great circles for a finite retina.
we can calculate it easily in a new coordinate frame (2. y'. '), where
- is parallel to Lo.

The density () depends only on o' (angle of the vector with the
-’ axis) in this new frame. According to the calculation proposed
by Brown [4], we can assume that Q(o') is propomonal to the
length of d.4 of a circle arc C cutbya rmo deﬁned by o' and do’.
divided bv the surface of this ring: Qo) = dA/(27sino’'do’).
Thus Q(o') = 1/(7sino’).

In the onomal coordinate frame. o' is the angle between U'o and
. that is. coso = Lo - [ . This leads to

B. Case of a Finite Retina

We will take the hypothesis of a circular retina for simplicity. The
segments (or lines) representing U exist if and only if their N vector
(normal to their interpretation plane) is such that ox € [Owin.7/2].
Therefore. the great circles covering the Gaussian sphere are not
distributed uniformly. and the 1mpulse response is no more strictly
symmetrical around 5. The fact that N is limited is related directly
to the fact that the great circles must pass through the projection
of the retina on the Gaussian sphere. This projection is a portion
of the sphere centered on the = axis and whose aperture angle is

(7/2) — omin (Fig. Ab).

If o6 < (7/2)—Omin- o is in the prOJecuon of the retina. Because
all the c1rcles cross each other in Co. they- all cut the projection of
the retina. The same calculation holds that was made in the case of
an infinite retina

If 00 > (7/2) — Owin- only the great circles cutting the projection
of the retina are crossing each other in [o. Let Ao’ be the aperture
angle of the allowed zone (i.e.. the angle between the two delimiting
planes). which is symmetrical with respect to the (5.00) plane.
Ao’ = arcsin [cos Omin/ 51N oo].

For T not belonging to the so-defined “part of sphere,” we have
Q) = 0.
If T is such that ' € [0.A8'1U [z — M7 + AdTU 27 ~

A#'.2z].6" is measured in the plane perpendxcular to U and from
the projection of = on this plane. Thus Q(8§'.0") is independent of 6"

dA 1

. Q(HI'OI): 1\H s 'do! - NG s rt
on the entire Gaussian sphere is symmetrical w1th respect to r o. Thus. s o' 1o - SO
=72
+ (77" . €0s 0p )
= arcsin = ds. ifor < oo
R(f’) _ ) o 1 —sin” ssin oy

4 [eresininoo/sinov) coS O ~ 2 (= sin oo .

= arcsin | ————s——= ds+ = = —arcsin { — . ifoyv 2 oo.
o Jo 1 — sin” ssinov T\ 2 sin oy
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The shape of this impulse response is presented in Fig. A3. Its
expression in the original frame is

¢ Hoo<T-oumn Q)= ———u (A1)
wy/1— (Co -T2
o Tfop 2 & = Owin (A2)
- 0.
if [sinosin (8 —6g)| > M 1—(0o T2
S Og
1
Q)= — —. (A3)
2 arcsin [m} 1—-(Lo-0)?
Sinl Og
if | sinosin (6 — )] < —=2min f1 (T T2

$1n 0g

Remark: By integrating (Al), (A2). and (A3) for all the 0o
directions, we obtain exactly (1), which expresses the bias:

w/2 2= . .
/ / QLY =S(T).
JA=0 Jo=0

This result is logical: The bias and the impulse response are two
exhibitions of one phenomenon.

REFERENCES

[1] N. Badler, “Three-dimensional motion from two-dimensional picture se-
quences,” in Proc. 2nd Int. Joint Conf. Pattern Recognirion. Copenhagen.
Denmark, Aug. 13-15. 1974, pp. 157-161.

[2] D. H. Ballard and C. M. Brown. Computer Vision.
NJ: Prentice-Hall, 1982.

[3] S. T. Barnard. “Interpreting perspective images.” Arrificial Intell.. vol.
21, 1983, pp. 435462.

[4] C. M. Brown. “Inherent bias and noise in the Hough transform.” /EEE
Trans. Pattern Anal. Machine Intell.. vol. PAMI-53. no. 5. pp. 493-301.
Sept. 1983.

[S] P. V. C. Hough. "Method and means of recognizing complex patterns.”
U.S. Patent 3.069.654.18. Dec. 1962.

[6] A. lannino. “Hough transform theorv and image processing experi-

ments.” Ph.D. dissertation. Stevens Institute of Technology. 1979.

J. Hllingworth and J. Kiuler. A survey of the Hough transform.”

Comput. Vision, Graphics. Image Processing. vol. 44, pp. 87-116. 1988.

[8] B. Kamgar-Parsi and B. Kamgar-Parsi. “Evaluation of quantization error
in computer vision.” IEEE Trans. Pattern Anal. Machine Intell.. vol.
PAMI-11, pp. 929-940. Sept. 1989.

[9] J. Kender, “Shape from texture: An aggregation transform that maps a
class of textures into surface orientation.” in Proc. [nt. Joint Conf. on
Artificial Intelligence. Tokvo. Japan. Aug. 20-23. 1979, pp. 475—80.

[10] H. Li. M. A. Lavin. and R. J. Le Master. “Fast Hough transform: A
hierarchical approach.” CVGIP 36. 1986. pp. 139-161.

[11] H.Liand M. A. Lavin. "Fast Hough transform based on bintree data
structure,” CVPR 86. pp. 640-642.

[12] J. Lopez-Krahe and R. Villata. “Transformation de Hough discrete et
bornée. Applications a la détection de primitives rectangulaires.” MAR/
87. Paris, La villette. Mai 18-22. 1987. pp. 428.

[13] J. Lopez-Krahe and P. Pousset. “Transformée de Hough discrete et
bornée. Application a la détection de droites paralléles et du réseau
routier,” Colloque TIPI §88. Traitement du Signal, vol. 5. no. 4. pp.
281-289, 1988.

[14] E. Lutton, H. Maitre. and J. Lopez-Krahe. “Determining vanishing
points with Hough transform.” in Proc. SPIE Visual Communications
and Image Processing '90. Lausanne. Switzerland. Oct. 2—, 1990, pp.
420-430. ‘

[15] E. Lutton, “Reconnaissance du point de prise de vue d'une photographie
a partir d’un modgle de scéne.” These de Télécom Paris. S0E005. May
1990.

[16] M. J. Magee and J. K. Aggarwal, “Determining vanishing points from
perspective images.” CVGIP 26, 1984, pp. 256-267.

Englewood Cliffs.

7

[17] H. Maitre, “Un panorama de la transformation de Hough,” Traitement
du Signal, vol. 2, no. 4, pp. 305-317, 1985.

[18] H. Maitre, “Contribution to the prediction of performances of the Hough
transform,” /EEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no.
5. pp. 669-674, Sept. 1986.

{19] L. Quan, R. Mohr, and E. Thirion, “Generating the initial hypothesis
using perspective invariants for a 2D image and 3D model matching,”
in Proc. 9th Int. Conf. Pattern Recognition, Rome, haly, 1988, pp.
872-874.

[20] L. Quan and R. Mohr, “Determining perspective structures using hi-
erarchical Hough transform,” Pattern Recogn. Letr., vol. 9, 1989, pp.
279-286.

[21] H. A. Sedgwick, “LAYOUT2: A production system modeling visual per-
spective information,” in Proc. Ist Int. Conf. Computer Vision, London,
June 8-11, 1987, pp. 223-229.

[22] S. D. Shapiro, “Transformations for the computer detection of curves in
noisy pictures,” CVGIP 4, 1975, pp. 328-338.

[23] S. D. Shapiro and A. Iannino, “Geometric constructions for predicting
Hough transform performance,” /EEE Trans. Pattern Anal. Machine
Intell.. vol. PAMI-1, no. 3, pp. 310-317. July 1979.

[24] 1. D. Svalbe, "Natural representations for straight lines and the Hough
transform on discrete arrays,” JEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-11. pp. 941-950, Sept. 1989.

Morphological Filtering as Template Matching
Ronald Jones and Imants Svalbe

Abstract—Binary morphological operations using single and multiple
structuring elements are implemented using look-up table (LUT) driven
templates. Many complex operations can be implemented in one pipeline
processing cycle for 3*3 regions of support and in four or five cycles for
5*5 regions of support. The basis representation of the operations is used
to specify the required templates.

Index Terms—Binary morphology. morphological basis decomposition,
parallel processing, template matching.

I. INTRODUCTION

Morphologic filtering traditionally combines serial erosions and
dilations to process images in a shape-sensitive way [1]. [2]. It has
long been established that any translation-invariant increasing opera-
tion (such as an open or close) has an equivalent basis representation.
An operation U is then expressed through a single-step process as a
union of erosions by the basis set members [3]. [4]:

MMEUX%A H
A

The basis set {4} lists all of the local data structures for any input
image .Y that will cause pixels to be on or off in the output image.
Simple algorithms exist [5]-{8] to derive the basis representation for
many operations.

Although the data level description of the basis representation
offers insight into the effect of an operation. actually implementing
operations as a union of many sequential individual erosions is
cumbersome. For a large structuring element. the basis set will usually
have many members because the set must exemplify all possible
changes the operation can produce. The size or support of the basis
members also increases with the size of the structuring element and
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