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Abstract On the contrary to classical schemes of evolutionary ogtitions algo-

rithms, single population Cooperative Co-evolution teéghes (CCEAs, also called
“Parisian” approaches) make it possible to represent thi/ed solution as an ag-
gregation of several individuals (or even as a whole popnatIn other words,

each individual represents only a part of the solution. Balseme allows simulat-
ing the principles of Darwinian evolution in a more economigy, which results

in gain in robustness and efficiency. The counterpart howisva more complex
design phase. In this chapter, we detail the design of aftic€@EAs schemes on
two applications related to the modeling of an industriai-égpd process. The ex-
periments correspond to complex optimisations encoudtieréhe modeling of a
Camembert-cheese ripening process. Two problems aredevedi

e A deterministic modeling problem, phase prediction, forichha search for a
closed form tree expression is performed using geneticraroging (GP).

e A Bayesian network structure estimation problem. The rigvaf the proposed
approach is based on the use of a two step process based darameitiate rep-
resentation callethdependence moderThe search for an independence model
is formulated as a complex optimisation problem, for which CCEA scheme
is particularly well suited. A Bayesian network is finallydieeed using a de-
terministic algorithm, as a representative of the equivedeclass figured by the
independence model.
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1 Introduction

Cooperative Co-evolution strategies rely on a formulatibthe problem as a coop-
erative task, where individuals collaborate in order tddaisolution.

Extraction of the solution Initialisation

N

PARENTS
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P Selection
, Mutation
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[ Feedback to individuals]
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[ Aggregate solutions ]
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Fig. 1 A Parisian EA: a single population cooperative co-evolution

The large majority of these approaches deals with a co-Boolyrocess that
happens between a fixed number of separated populationgddédés to co-evolve
various species that only interact via the evaluation Eed@0, 29] were the first to
propose this technique, to co-evolve job-shop scheduiag asparallel distributed
algorithm. [53] then popularize the idea of cooperativesgotution as an optimisa-
tion tool. It is applicable as soon as a decomposition of telpm into subcompo-
nents can be identified. Each component then correspondsitbpmpulation that
evolves simultaneously but in isolation to the other sulnpetons. Individuals of
a subpopulation are evaluated by aggregation with indalglof other subpopula-
tions. Multi-species cooperative co-evolution has begliag to various problems
[43],55, 54, 22, 36, 66], including learning problems [8}d@ome theoretical analy-
ses have been recently proposed, see [48, 10, 52], or [6&8hfanalysis considering
a relationship between cooperative co-evolution and ¢evlary game theory.

In this work, a different implementation of cooperative eémlution, the so-
called Parisian approach [17, 47] is used. It is derived ftbenclassifier systems
model proposed by [28]. Shown on Figure 1, this approach esggeration mech-
anisms within asingle population. On the contrary to the previous model, interac-
tions between sub-species are not limited to the evaluatam but can also happen
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via genetic operators. An individual of a Parisian popolatithat represents only a
part of the solution to the problem, can be evaluated at twelde

e locally, using an independent evaluation (the “local” fégk if some criteria can
be designed to evaluate partial solutions (for instandaitysaconditions),

e globally at each generation, via an aggregation procesdthials a solution to
the problem to be solved. Individuals are then rewarded Wiaraus distribution.

In this way, the co-evolution of the whole population (or ajongoart of it) is
favoured instead of the emergence of a single best indiljidsain classical evo-
lutionary schemes. The motivation is to make a more efficiesat of the genetic
search process within a population, and reduce the conipadexpense. Success-
ful applications of such a scheme usually rely on a lower evsiuation of the
partial solutions (the individuals of the population), vehtomputing the full evalu-
ation only once at each generation.

The single population approach allows more interactiomnvbet subproblems,
but in order to avoid trivial solutions (all individuals attee same), diversity preser-
vation becomes a very important mechanism, to favour thiiggn of subspecies,
that progressively become independent from each otheeast in its early stage, a
Parisian approach relies more on “exploration” mechanitias “exploitation”. Ex-
perimental tuning have proven that these two componentsadaaced in a different
manner in classical and Parisian approaches, and thatfishasing is an important
component of Parisian scheme, that ensures an efficienemgemvce behaviour.

Additionally, we will see in the examples developed in thigpter, that Parisian
schemes necessitate a more complex design phase. Weyaneed|to split a prob-
lem into interdependent subproblems involving componeifitthe same nature,
which is not always possible. Questions regarding theivelafficience of different
CCEA approaches, including for instance the single versuitipte population is-
sue are very important, but still open, see for instance @24 first attempt in this
direction.

This chapter is focussed on the design step, and present8drisian approaches
have been developed on two examples provided by the agidommunity. The
chapter is organised as follows. Section 2 describes thastridl process under
study, cheese ripening, and the problems related to egpartodeling in this con-
text. The two examples are then developed:

e section 3 deals with phase estimation using Genetic Pragiagn: for compari-
son purpose, a classical GP approach is first developedatRarisian approach,

e section 4 addresses the problem of evolving the structuaeBafyesian network,
with an encoding based on independence models.

Conclusions and future work are given in section 5.
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2 Modeling agri-food industrial processes

This study is part of the French INCALIN research pnﬂbdthe goal of this re-
search project was to model agri-food industrial procedsesuch food industries,
manufacturing processes consist of successive operatioose underlying mech-
anisms are still unknown, such as the cheese ripening mod¢SALIN was con-
cerned with the understanding of the causal relationshgpsden ingredients and
physico-chemical or microbiological characteristics andhe other hand, sensory
and nutritional properties. The intriguing question is himicro level properties
determine or influence those on the macro level. The projewtdito explain the
global behaviour of such systems.

Various macroscopic models have embedded expert knowleddeding expert
systems|[32, 33, 31], neural networks [35, 46], mechanisticlels [1, 56], and
dynamic Bayesian networks [6].

The major problem common to these techniques is relatedetgghrseness of
available data: collecting experimental data is a long affatdt process, and re-
sulting data sets are often not accurate or even erroneousxmple, a complete
cheese ripening process lasts 40 days, and some tests aretiles that is to say
that a cheese sample is consumed during each analysis.r¢hsurements require
the growing of bacterias in Petri dishes and then countiegntimber of colonies,
which is very time consuming. Therefore the precision of tbgulting model is
often limited by the small number of valid experimental d#&kso, parameter esti-
mation procedures have to deal with incomplete, sparse acerain data.

2.1 The Camembert-cheese ripening process

“Model cheeses” are produced in laboratories using pagtsimilk inoculated
with Kluyveromyces marxiankm), Geotrichum candidur(Gc), Penicillium camem-
berti (Pc) andBrevibacterium auriantiacur(Ba) under aseptic conditions.

e K. marxianusis one of the key flora of Camembert cheese. One of its prihcipa
activity is the fermentation of lactose (notex [14, 15] (curd de-acidification by
lactose consumption). Three dynamics are apparent inrteditie of K. marx-
ianusgrowth [38, 39]. Firstly, there is an exponential growthidgrabout five
days that corresponds to a decrease of lactose concentr&goondly, the con-
centration ofK. marxianusremains constant for about fifteen days and then de-
creases slowly.

e G. candidunplays a key role in ripening because it contributes to theeibg
ment of flavour, taste and aroma of cheeses [2, 9, 40]. One pfiitcipal activi-

1 “Cognitive and Viability methods for food quality controltranslation from french), supported
by the French ANR-PNRA fund.
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ties is the consumption of lactate (not@). Three dynamics are apparent in the
timeline of G. candidungrowth [38, 39]. First, there is a latency period of about
three days. Second, there is an exponential growth thagsjmonds to a decrease
of lactate concentration and thus an increase of pH. THielcbncentration of
G. candidunremains constant to the end of ripening.

During ripening, soft-mould cheese behave like an ecosygte bio-reactor),
which is extremely complex to model as a whole. In such a @®ckuman ex-
perts operators have a decisive role. Relationships betwaerobiological and
physicochemical changes depend on environmental conditi@mperature, rela-
tive humidity ...) [39] and influence the quality of ripenetkeeses [27, 38]. A ripen-
ing expert is capable of estimating the current state of sooneplex reactions at
a macroscopic level through its perceptions (for exampthtstouch, smell and
taste). Control decisions are then generally based on diugebut robust expert
measurements. An important factor of parameter regulasidhe subjective esti-
mation of the current state of the ripening process. Thiggss is split into four
phases:

e Phase 1is characterized by the surface humidity evoluficheese (drying pro-
cess). At the beginning, the surface of cheese is very weeaoldes until it is
rather dry. The cheese is white with an odor of fresh cheese.

e Phase 2 begins with the apparition dP.acamemberitoat (the white-coat at the
surface of cheese). It is characterised by a first changdafand a “mushroom”
odor development.
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e Phase 3 is characterized by the thickening of the creamyrinivde P. camem-
berti cover all the surface of cheeses and the color is light brown.

e Phase 4 is defined by strong ammoniac odor perception andatkébtbwn as-
pect of the rind of cheese.

These four phases are representative of cheese ripeniagxXpert's knowledge
is obviously not limited to these four phases, but a corméenfification of phases
helps to evaluate the dynamics of ripening and to detedtfdoiin the standard evo-
lution.
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2.2 Modeling expertise on cheeseripening

A major problem, which was addressed in the INCALIN projexthe search for au-
tomatic procedures that mimic the way a human aggregatagttatugh his senses,
to estimate and regulate the ripening of the cheese.

Stochastic optimisation techniques, like evolutionamshtéques, have already
been proven successful on several agri-food problems. beest of evolutionary
optimisation methods for the resolution of complex protdenslated to agri-food
is demonstrated by various recent publications. For exan] used genetic algo-
rithms to identify the smallest discriminant set of var@bto be used in certifica-
tion process for an Italian cheese (validation of origirelah [21] used GP to select
the most significant wavenumbers produced by a Fourierftvensinfrared spec-
troscopy measurement device, in order to build a rapid tlate€ bacterial spoilage
of beef. A recent overview on optimisation tools in food istties [61] discusses
works based on evolutionary approaches.

We investigate here the use of cooperative co-evolutioarsels (CCEAS) in the
context of cheese ripening, for the modeling of expert kealge. The next part
(section 3) of this chapter deals with a first problem, whicplase estimation us-
ing Genetic Programming, under the form of a simple detestimmodel (closed
formula). Experimental as well as expert analysis madeesxid simple relation-
ship between four derivatives and the phase. A simple schiayeuse in practice
is based on a multilinear regression model. We will see belat a classical GP
approach, that optimises a closed formula, i.e. a non4lidependency, already im-
proves the recognition rates, and that a Parisian schera@psosimilar regognition
rates with simpler structures, while keeping good recagmitates when the learn-
ing set is small.

The second part of this chapter (sectidn 4) deals with a mophisticated
stochastic model of dependencies: Bayesian Network. Tiieuli point is now
to address the problem of structure learning for a Bayes&wbrk (BN). Classical
approaches of evolutionary computation are usually blddkethe problem of find-
ing an efficient representation of a whole Bayesian Netw@dr&.will see that the
Parisian scheme allows addressing this issue in an elegantnvorder to validate
the method and compare it to the best approaches of the dowrinsed classical
BN benchmarks before testing it on the cheese ripening ftatajhich no “ground
truth” model exist.
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3 Phase estimation using GP

In previous work on cheese ripening modeling [6, 51], a dyicdayesian network
(Figurel 2) has been built, using human expert knowledgegjoessent the macro-
scopic dynamic of each variable. The phase of the networiknatttplays a deter-
minant role for the prediction of the variables at time 1. Moreover, four relevant
variables have been identified by biologists, the derieati’pH, la (lactate),Km
(Kluyveromyces marxianus) argh (Brevibacterium auriantiacum) at tinhgallow-

ing phase prediction at tintet 1. This relates to a way in which experts aggregate
information from their senses.

Time slice t Time slice t+1

Fig. 2 Dynamic Bayesian Network representing dynamic variables baseteoobservation of
ripening phases. The static Bayesian network used for comparigothis right hand side box

3.1 Phase estimation using a classical GP

A Genetic Programming (@Papproach is used to search for a convenient formula
that links the four derivatives of micro-organisms proms to the phase at each
time stept (static model), withoué priori knowledge of the phase &t 1.

2 GP is a type of EA where each individual figures a functionie@spnted as a tree structure. Every
tree node is an operator functios (—, /,*,...) and every terminal node is an operand (a constant
or a variable).
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When available, a functional representation of dependsriméween variables
is interesting (for prediction purpose for example). Thislgfem is a symbolic re-
gression one, however the small number of samples and theguiar distribution
makes it difficult. In such a case, probabilistic dependen¢like Bayesian net-
works) seems usually to be more adapted, but are facing the g#ficulty (robust
estimation when data are sparse). A first question that doiladressed is thus to
know which type of representation is more robust when daasparse.

Results of GP estimation are compared in the sequel withelfenmances of a
static Bayesian network, extracted from the DBN of [6], (@t within the box in
Figure 2), and with a simple learning algorithm (multilingaediction, see section
[3.2.6), that was used by biologists in a first approach.

3.1.1 Overview of the classical GP algorithm

The classical GP algorithm consists first of an initialisattep where an initial pop-
ulation is randomly generated and then of a main loop wheregproduction (mu-
tation and crossovers) and selection mechanism (ranknegdaplied. The pseudo
code of such an algorithm is given as follows:

Input: Maxi mum nunber of eval uations
Output: Si ngl e best i ndi vi dual
Creation of a randominitial population

while Maxi mum nunber of eval uati ons not reached do
Create a tenporary popul ati on tmppop usi ng

selection, nutations and crossover
Conpute the fitness of the new tenporary
popul ati on tmppop
Sel ect the best individuals of the current
popul ati on pop+tmppop
end
Sel ect the best individual of the final population

Algorithm 1: Classical GP algorithm

3.1.2 Search space

The derivatives of four variables will be considered, nantbe derivative ofpH
(acidity), la (lactose proportion)Km andBa (lactic acid bacteria proportions, see
section 2.1), for the estimation of the phase (static prajpl@he GP will search for

a phase estimatéthasét). That is, a function defined as follows (equation 1):
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P@;ﬂ): ‘ (de dla dKm dBa)

ot ot ot ot )
The function set is made of arithmetic operatdfs:, —,*,/,”,log}, with pro-
tected/ andlog, and logical operator&if, >, <,=,and, or,xor,not}.

The terminal set is made of the four partial derivatives pkad constants. The
constant’s values are not limited and randomly initialissohg one of the following
laws % [0,1], —% [0,1], .# (0,1), randomly chosen# is the uniform law, and
A the normal law).

3.1.3 Fitness function

Available data are separated in two sets: learning set andee Each is randomly
chosen within the available data set for each run. The 16adlaiexperiments are
randomly split between learning and test sets. The sizeefdhrning set varies
from 10 to 15 experiments, while the size of the correspantist set vary from 6
to 1 experiments (see section 3.2.6).

The fitness function (equation 2 be minimisedis made of a factor that mea-
sures the quality of the fitting on the learning set, plus asjaony” penalisation
factor in order to minimize the size, measured as the numbeodes (#odesin
equation 2), of the evolved structures. The aim of this faist@o avoid bloat. It is
divided by the number of variables\(#riablesin equation 2) involved in the eval-
uated tree in order to favour structures that embed all fatiables of the problem.
Human experts use four classes to quantify the behavioureofipening process,
and industrial processes are organised accordingly. A&ndipe of classification
(i.e. more or less classes) would have a strong impact orsiridldevices. We
choose to remain consistent with this expert approach. iShmportant in future
developments where interfaces with human experts will bk, lixperiments also
show that recognition results are better with this constrai

dt » ot ot 0 at

f(‘)pH dia dKm ﬁBa) —Phaseét)‘—kW#Nodes

learning set

fithess= n 2
#Variables+ 1 @
The parametew has been experimentally tuned. A large number of combina-
tions were tested and it turned out thit= 1 is the optimal value in terms of al-
gorithmic performance which favours evolution of struesiwith roughly 30 to 40
nodes. Bigger structures are so penalised that they anededtfrom the population

during the selection process.



Cooperative coevolution for agrifood process modeling 11

3.1.4 Genetic operators

A classical tree crossover (exchange of subtrees from amlydchosen node) has
been used with probabilitg. (defined per tree), as a means of evolving the structure
of the tree. Two types of mutations have been used:

e Subtree mutation (mutation of the structure), that randomly rebuilds a nela+ su
tree from a randomly chosen node, applied with probabitigy (defined per
tree),

e Point mutation (mutation of nodes content), applied with probabiliy, (also
defined per tree) that does not modify the structure, butaantyl changes the
content of each node of the tree within the set of compatilnhetions or termi-
nals. The probabilities (defined per node) are detailed ntella Real values are
considered separately and undergo a real mutation withapitily p,, as a mul-
tiplicative perturbation according toyé law of parameteN: X' = XM
prm andN vary linearly according to generations, fromL{first generation) to
0.5 (last generation) fopym, and from 1 to 1000 foN. This allows starting with
rather infrequent large radius mutations and finish witherfoequent mutations
with smaller radius.

Table 1 Probabilities of point mutation operators
From to probability

operatofoperato 0.1
variable| variable 0.1
variable constant 0.05

constantvariable 0.05
constantconstantpyy: 0.1 to 0.5
N: 1 to 1000

Crossover, subtree and point mutation probabilities veoggevolution accord-
ing to the adapting scheme [19] available in the GPLAB torlf%9]. pc, psm and
Pcm are initially fixed to%, and are updated according statistics of success of the
various operators computed on a tuneable window of pastrggoes.

3.2 Phase estimation using a Parisian GP

Instead of searching for a phase estimator as a single ntioiediiinction, phase
estimation can be split into four combined (and simpler)gghdetection trees as
shown in Figuré 3. The structures searched are binary ofitpations (or binarised
functions) that characterise one of the four phases. Theiéhls are split into four
classes such that individuals of cldsare good at characterising phdse=inally,
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a global solution is made of the 5% best (at least one) indal&lof each class, in
order to be able to classify the sample into one of the fouvipts phases via a
voting scheme (detailed at the end of this section).

population
of phase
detectors

ability to characterize a phase | 4 specialized class

estimated
phase

tested
sample

global solution voting scheme

class 1 class2 class3 class 4

Fig. 3 Phase estimation using a Parisian GP. Four classes of phase dedeetdeined: individ-
uals of clask are good at characterising phase

3.2.1 Overview of the Parisian GP algorithm

Unlike the classical GP algorithm, the output of Parisiana@@rithm is not a single

individual but a part of the population. The main loop of treisian GP algorithm

consists in first applying reproduction and selection maism, and then aggregat-
ing the current individuals in order to build a potentialig@n to the problem. The

following pseudo code illustrates the principles of a Ran<GP:

Input: Maxi mum nunber of eval uations

Output: Aggr egati on of individuals

Creation of a randominitial population

while Maximum number of evaluations not reactul

Create a tenporary popul ati on tmppop usi ng sel ecti on,
nut ati ons and crossover

Compute the local fitness of the new tenporary popul ation
tmppop

Comput e the adjustedfitness of the current popul ation
pop+tmppopvi a sharing

Sel ect the best individuals of the current popul ation
pop+tmppop

Comput e the gl obal fitness of the selected popul ati on by
aggregating the best individuals

end
Algorithm 2 : Parisian GP algorithm
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3.2.2 Search space

.[0pH dla dKm JBa ;
We now search for formulas of type.(w,ﬁ,7,7> with real outputs

mapped to binary outputs, via a sign filtering() > 0) — 1 and(I() <0) — 0.
The functions (except logical ones) and terminal sets, disase¢he genetic opera-
tors, are the same as in the global approach above.

Using the available samples of the learning set, four rellegacan be com-
puted, in order to measure the capability of an individual characterise one phase
(equation 3):

| (sampléi)) I(sampléi))
ke{1,2,3,4 1)=3 “Samoles. . #SampleSnasex 3
S { 1459, } Fk( ) | przeck #Sam p|e§has&k i,phgseék #Sam p|e§hase:/k @

in other words, if | is good for representing phase k, thgfh) > 0 andF(l) < 0.

3.2.3 Local fithess

The local adjusted fitness value,be maximisedstarts with a combination of three
factors (equation 4):

#Ind o NbMaxNode
#lndPhaseMax NbNodes |if noNodes NbMaxNodes

max{Fy,F>,Fs,Fa} x 4

The first factor is aimed at characterising if individlia able to distinguish one
of the four phases. The second factor tends to balance theduals between the
four phases. The parametdn#PhaseMads the number of individuals represent-
ing the phase corresponding to ugmaxof the first factor. The parameteld is
the total number of different individuals in the populatidme third factor is a par-
simony factor for avoiding large structuréébMaxNodehas been experimentally
tuned, and is currently fixed to 15, so that evolved strustga enough nodes to
characterise the problem, but not too many, to avoid bldatefl5 represented a
good tradeoff between accuracy and performance.

However, this is not the final formula of the local adjusteddss. The two fol-
lowing subsection add two more factors, a penalising fagtpfor individuals with
too many neighbours (diversity preservation via a sharathgmie) and a bonus fac-
tor bonug¢' for the best individuals.

3.2.4 Sharing distance

The set of measuremen{s;, F,, F3,F4}, that measures the ability of an individual
to characterise each phase, provides a simplified repegganbf the search space
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in R, As the aim of a Parisian evolution is to evolve distinct gaipulations, each
being adapted to one of the four subtasks (to charactersefahe four phases), it
is natural to use an Euclidean distance in this four dimeraiphenotype space, as
a basis of a simple fitness sharing scheme as stated|in [20].

3.2.5 Aggregation of partial solutions and global fithess

At each generation, the population is shared in four clasee®gsponding to the
phase each individual characterises the best (the argmiaax(fF, />, F3,F4} for
each individual). In other words, the population is splibifiour sub-populations
(one for each class) within the population. The 5% best ofi ekass are used via a
voting scheme to decide the phase of each tested samplei¢see B). The global
fithess measures the proportion of correctly classified &ssmgn the learning set
(equation 5): o

CorrectEstimations
learning set

#Samples

GlobalFit = (5)

The global fitness is then distributed to individuals whatipgrated in the vote
according to the following formuld:ocalFit' = LocalFit x (GlobalFit+0.5)7.

As GlobalFit € [0,1], multiplying by (GlobalFit+ 0.5) > 1 corresponds to a
bonus. The parameter varies along generations, for the first generations (a third
of the total number of generationg)= 0 (no bonus), and them linearly increases
from 0.1to 1, in order to help the population to focus on the four geEkhe search
space.

Several fithess measures are used to rate individuals. Mamel

e the raw fitnessawfitness which is the set of four value§F;, R, Fs,Fa}, that
measure the ability of the individual to characterise edwisp,

¢ the local fitnessocal fitness= max(raw fitnesg which represents the best char-
acterised phase, .

e and the adjusted fitnesa jfitness= '¢aftness, AndhaseMax, #Nodeshiax,

bonu¢', which includes sharing, balance, parsimony and globa¢$grbonus
terms.

Two sets of indicators are computed at each generation {gaeefs):

e The sizes of each class, that show if each phase is equaligatbesed by the
individuals of the population.
e The discrimination capability for each phase, computedhens® best individ-

uals of each class as the minimum Af= maxc(1 234 {F} — w

The higher the value A, the better the phase is characterised.
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3.2.6 Experimental analysis

Available data were collected from 16 experiments duringldgs for each exper-
iment, yielding 575 valid measurements. The data samptesetatively balanced
except for phase 3, which has a longer duration, thus a latgaber of samples: we
have 57 representatives of phase 1, 78 of phase 2, 247 of Brast 93 of phase
4. The derivatives opH, la, Km and Ba were averaged and interpolated (spline
interpolation) for some “missing” days. Indeed, due to diffiy to collect experi-
mental data, a few values were missing. Finally, logaritlufthese quantities are
considered.

Table 2 Parameters of the GP methods

GP Parisian GP
Population size 1000 1000
Number of generations 100 50
Function set arithmetic and logical arithmetic functions only
functions
Sharing no sharing Oshare= 1 at the beginning,
then linear decrease from 1 {o
0.1
Oshare= 1 (constant)

The parameters of both GP methods are detailed in ThblEhe code has been
developed in Matlab, using the GPLAB toolbox [59]. Comp&etesults of the
four considered methods (multilinear regression, Bayeséwork, GP and Parisian
GP) are displayed in Figure 4, and a typical GP run is analiys&tyure 5.

The multilinear regression algorithm used for comparisonks as follows: the
data are modeled as a linear combination of the four vaisable

—— JdpH dla JdKm JBa
Phasét) = By + BZW + &W +,347 + BSW
The 5 coefficientq B, ...,Bs} are estimated using a simple least square scheme.
This model was included in the comparison because it was tigdehpreviously
used by the biologists in the INCALIN project.

Experiments show that GP outperforms both multilinearesgjion and Bayesian
network approaches in terms of recognition rates. Additilgrthe analysis of a typ-
ical Parisian GP run shows that it evolves much simpler siras than the classical
GP. The average size of evolved structures is around 30 rfod#se classical GP
approach and between 10 and 15 for the Parisian GP.

It has also to be noted in Figure 5 that co-evolution is badrtmetween the four
phases. The third phase is the most difficult to charactefisis is in accordance
with human experts’ judgement, for which this phase is digomost ambiguous to
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average percentage of correct classification on 100 runs standard deviation of percentage of correct classification on 100 runs

N
S

——&— BayesianNetwork
MultilinearRegression
F —+— GeneticProgramming
—*— ParisianGP

N
@

o
o

i
kN

N
N

N
)

—o&— BayesianNetwork

MultiinearRegression
—+— GeneticProgramming
—*— ParisianGP

average percentage of correct classification

standard deviation of percentage of correct classification
©

)

ES
s
-

4 3 2 1
number of experiences in validation set number of experiences in validation set

Fig. 4 Average (left) and standard-deviation (right) of recogmitpercentage on 100 runs for the
4 tested methods, the abscissa represent the size of the test-set

characterise.

The development of a cooperative co-evolution GP schemis{@a evolution)
seems very attractive, as it allows the evolution of simptascture in less genera-
tions, and yield results that are easier to interpret. Maggdhe computation time
is almost equivalent to both presented methods (100 gémesdbr a classical GP
against 50 generations for a Parisian one), as one “Pdrpgareration necessitates
more complex operations, all in all). One can expect a moreuiable behaviour
for the Parisian scheme on more complex issues than the jphegietion prob-
lem, as the benefit of splitting the global solutions into Benaomponents may be
higher and may yield computational shortcuts (see for eXafif]).
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Fig. 5 A typical run of the Parisian GP:

- (2): the evolution with respect to generation number of theb®%i individuals for each phase: the
upper curve of each of the four graphs is for the best indivjdba lower curve is for the “worst
of 5% best” individuals.

- (b) left: the distribution of individuals for each phase: theves are very irregular but numbers
of representatives of each phases are balanced.

- (b) right: discrimination indicator, which shows that the third phase is the most difficult to
characterise.

- (c): evolution of the recognition rates of learning and et The best-so-far recognition rate on
learning set is tagged with a star.
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4 Bayesian Network Structure learning using CCEAs

Bayesian networks structure learning is a NP-Hard problEsh fwhich has appli-
cations in many domains, as soon as one tries to analyseeadat@f samples in
terms of statistical dependence or causal relationshiggtinfood industries for ex-
ample, the analysis of experimental data using Bayesiamanks$ helps to gather
technical expert knowledge and know-how on complex praefs.

Evolutionary technigues were used to solve the Bayesiammnkistructure learn-
ing problem, and were facing crucial problems like:

e Bayesian network representation (an individual being alevstructure like in
[37], or a sub-structures like in [45]),
e Fitness function choice like in [45].

Various strategies were used, based on evolutionary progiag [3], immune al-
gorithms [34], multi-objective strategies [58], lamankiavolution [64] or hybrid
evolution [67].

We propose here to use an alternate representation, indiepesmodels, in or-
der to solve the Bayesian network structure learning in ttepss Independence
model learning is still a combinatorial problem, but it isses to embed within
an evolutionary algorithm. Furthermore, it is suited to apmerative co-evolution
scheme, which allows obtaining computationally efficidgbathms.

4.1 Recall of some probability notions

The joint distribution oX andY is the distribution of the intersection of the random
variablesX andY, that is, of both random variablésandY occurring together. The
joint probability of X andY is written P(X,Y). The conditional probabilityis the
probability of some random variab} given the occurrence of some other random
variableY and is writtenP(X|Y).

To say that two random variables atatistically independerihtuitively means
that the occurrence of one random variable makes it neitloge mor less probable
that the other occurs. If two random variabésandY are independent, then the
conditional probability oiX givenY is the same as the unconditional probability of
X, that isP(X) = P(X]Y).

Two random variableX andY are said to beonditionally independerdiven a
third random variabl€ if knowing Y gives no more information abodt once one
knowsZ. Specifically,P(X|Z) = P(X]Y,Z). In such a case we say thétandY are
conditionally independent givediand write itX LY | Z.
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4.2 Bayesian networks

A Bayesian Network (BN) is a “graph-based model of a joint timatiate proba-
bility distribution that captures properties of condit@independence between ran-
dom variables” as defined by [25]. On the one hand, it is a dcaphepresentation
of the joint probability distribution and on the other haitdencodes probabilistic
independences between variables. For example, a Bayesiaork could repre-
sent the probabilistic relationships between diseasesamptoms. Given symp-
toms (resp. diseases), the network can be used to compupedbabilities of the
presence of various diseases (resp. symptoms). These taifops are called prob-
abilistc inference.

Formally, a Bayesian network is represented by a directgdiagraph (DAG)
whose nodes are random variables, and whose missing edgedeeconditional
independences between the variables.

®

Fig. 6 Directed Acyclic Graph

The set of parent nodes of a nogds denoted bypa(X;). In a Bayesian network,
the joint probability distribution of the random variablean be written using the
graph structure as the product of the conditional probghilistributions of each
node given its parents:

n
P(X1,X2, ..., %n) = _|‘|1P(Xi|pa(Xi))
1=
For instance, the joint distribution represented as a Bagewtwork in Figure 6
can be written P(A,B,C,D,E) = P(A) - P(B|E,A) - P(C|B) - P(D|A) - P(E).
The very graph is called the structure of the Bayesian nétand the values of
conditional probabilities (e.d?(A = 0)) for each node are called the parameters of
the network.

4.2.1 Uses of Bayesian networks

Using a Bayesian network can save considerable amountsrabmeif the depen-
dencies in the joint distribution are sparse. For exampi&iee way of storing the
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conditional probabilities of 10 binary variables as a taklguires storage space for
210 — 1024 values. If the local distributions of no variable degeon more than
3 parent variables, the Bayesian network representatilynneeds to store at most
10% 2% = 80 values. One advantage of Bayesian networks is that itiigiirely eas-
ier for a human to understand (a sparse set of) direct depeigdeand local distri-
butions than complete joint distribution. The graph stueetof a Bayesian network
also allows to dramatically speed up the probabilisticrefiee in Bayesian network
(i.e. the computation dP(X;|X;)).

Lastly, more than just a computing tool, Bayesian netwosss loe used to rep-
resent causal relationships and appear to be powerful igadphodels of causality.

4.2.2 Parameter and structure learning

The Bayesian network learning problem has two branchegdh@meterlearning
problem (in other words, how to find the probability tableseath node) and the
structurelearning problem (in other words, how to find the graph repméag the
Bayesian network), following the decomposition of the tvamstitutive parts of a
Bayesian network: its structure and its parameters.

There already exists algorithms specially suited to thampater learning prob-
lem, like expectation-maximisation (EM) that is used fodfing maximum likeli-
hood estimates of parameters.

Learning the structure is a more challenging problem bexthesnumber of pos-
sible Bayesian network structures (NS) grows superexg@igrwith the number
of nodes [57]. For exampl&yS(5) = 29281 andNS(10) = 4.2 x 10'8. A direct ap-
proach is intractable for more than 7 or 8 nodes, it is thugs&sary to use heuristics
in the search space.

In a comparative study by [23], authors identified some auilyaised structure
learning algorithms, nameRC [60] or IC/IC* [50] (causality search using statisti-
cal tests to evaluate conditional independenB#) Power Constructor (BNP{)1]
(also uses conditional independence tests) and other detiased on scoring cri-
terion, such aMinimal weight spanning tree (MWS[)E] (intelligent weighting of
the edges and application of the well-known algorithms lferpgroblem of the min-
imal weight tree)K2 [18] (maximisation ofP(G|D) using Bayes and a topological
order on the nodesfzreedy searcHil2] (finding the best neighbour and iterate) or
SEM[24] (extension of the EM meta-algorithm to the structurariéng problem).
However that may be, the problem of learning an optimal Bayesetwork from a
given dataset is NP-hard [13].
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4.2.3 The PC algorithm

PC, the reference causal discovery algorithm, was intrediby [60]. A similar al-
gorithm, IC, was proposed simultaneously by [50]. It is lahea chi-square tests
to evaluate the conditional independence between two ndtdeshen possible to
rebuild the structure of the network from the set of discedeconditional inde-
pendences. PC algorithm starts from a fully connected né&tand every time a
conditional independence is detected, the correspondigg is removed. Here are
the first detailed steps of this algorithm:

e Step 0: Start with a complete undirected gr&ph

e Step 1: Test all conditional independences of order (iley | ® wherex andy
are two distinct nodes @). If x L y then remove the edge-.

e Step 2: Test all conditional independences of order Xx(iley | zwherex, y, and
zare three distinct nodes &). If x L y | zthen remove the edge-y.

e step 3: Test all conditional independences of order Z(iley | {z1,z} wherex,
Yy, z1 andz are four distinct nodes db). If x 1L y| {z1,2} then remove the edge

X—V.

e Step k: Test all conditional independences of oldére x L y| {z,2,...,z}
wherex,y,z,2, ...,z arek+ 2 distinct nodes oBG). If x Ly | {z,2,...,z}
then remove the edge between y.

e Next steps take particular care to detect some structutiesl dastructuregsee
section 4.2.4) and recursively detect orientation of timeaieing edges.

The first stage is learning associations between variallesdnstructing an
undirected structure. This requires a number of conditimuependence test grow-
ing exponentially with the number of nodes. This compleistyeduced to polyno-
mial complexity by fixing the maximal number of parents a node have. It is of
the order ofNK, whereN is the size of the network arldis the upper bound on the
fan-in. This implies that the value & must remain small when dealing with big
networks. In practice is often limited to 3. This value will be used in the sequel.

4.2.4 Independence models

In this work, we do not work directly on Bayesian networks bnta more general
model calledndependence Mod€@M), which can be seen as the underlying model
of Bayesian networks and defined as follows:

e Let N be a non-empty set of variables, th€(N) denotes the collection of all
triplets (X,Y|Z) of disjoint subsets o, X # 0 andY # 0. The class of elemen-
tary tripletsE(N) consists of(x,y|Z) € T(N), wherex,y € N are distinct and

Z C N\ {x,y}.
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e Let P be a joint probability distribution ovel and (X,Y|Z) € T(N). (X,Y|Z)
is called anndependence stateme®) if X is conditionally independent of
givenZ with respect td® (i.e., X LY | Z)

e An independence model (IM) is a subsetTgiN): each probability distribution
P defines an IM, namely, the modg{X,Y|Z) e T(N) ; X LY | Z}, called the
independence mo@ehduced byP.

As we have seen, a Bayesian network represents a factorista joint proba-
bility distribution, but there can be many possible stroesithat represents the same
probability distribution.

For instance, the tree structures in Figure 7 encode the salependence state-
mentA I B| C. However, the structure in Figure 8, calléestructure(or collider),
is not Markov equivalent to the three first ones.

P(AIC)P(B[C)P P(AIC)P(BIC)P P(AIC)P(B)P(C|B)

AJLB|C AJLB\C AJLB\C

Fig. 7 Markov equivalent structures

P(A)P(B)P(C|A,B)
NOT(A_L B|C) butA L B

Fig. 8 V-structure

Two structures are said to Béarkov equivalentf they represent the same In-
dependence Model. Particularly, an algorithm to learn thécture of a Bayesian
network can not choose between two markov-equivalent tstres.

To summarize, an independence model is the set of all thep@mdience state-
ments, that is the set of glK,Y|Z) satisfied byP, and different Markov-equivalent
Bayesian networks induce the same independence modelllByifog the paths in
a Bayesian network, it is possible (even though it can be qmatdxial) to find a

3 For more details about Independence Models and their piepesee [49].



Cooperative coevolution for agrifood process modeling 23

part of its independence model using algorithms based ewtiinal separation (d-
separation) or moralization criteria. Reciprocally, atdpendence model is a guide
to produce the structure of a Bayesian network.

Consequently, as the problem of finding an independence Incadebe turned
to an optimisation problem, we investigate here the use ofvartutionary algo-
rithm. More precisely, we build an algorithm that let a pagidn of triplets(X,Y|Z)
evolve until the whole population comes near to the indepeod model, which cor-
responds to a cooperative co-evolution scheme.

4.3 Evolution of an Independence Model

As in sectiori 3, our algorithm (Independence Model Parigiaolutionary Algo-
rithm - IMPEA) is aParisiancooperative co-evolution. However, in a pure Parisian
scheme (Figure|1), a multi-individuals evaluation (globiadess computation) is
done at each generation and redistributed as a bonus todivedirals who partic-
ipated in the aggregation. Here, IMPEA only computes théalevaluation at the
end of the evolution, and thus do not use any feedback mexhaiiihis approach,
which is an extreme case of the Parisian CCEA, has alreadyussa with success
for example in real-time evolutionary algorithms, suchtefliesalgorithm [41].

IMPEA is a two steps algorithm. First, it generates a subk#teoindependence
model of a Bayesian network from data by evolving elementapjets (x,y|Z),
wherex andy are two distinct nodes ard is a subset of the other ones, possibly
empty. Then, it uses the independence statements thatnit fatithe first step to
build the structure of a representative network.

4.3.1 Search space and local fithess

Individuals are elementary triplets,y|Z). Each individual is evaluated through a
chi-square test of independence which tests the null hgsathly: “The nodesx
andy are independent givezi’. The chi-square statistig? is calculated by finding
the difference between each obser@dand theoreticak; frequencies for each of
then possible outcomes, squaring them, dividing each by the¢hieal frequency,

and taking the sum of the resultg? = S @ The chi-square statistic can

then be used to calculatepavalue pby comparing the value of the statisié to a
chi-square distribution with— 1 degrees of freedom, as represented on Figure 9.

p represents the probability to make a mistake if the null higesis is not ac-
cepted. Itis then compared to a significance lew€.05 is often chosen as a cut-off
for significance) and finally the independence is rejectgdkifa. The reader has to
keep in mind that rejectinglp allows one to conclude that the two variable are de-
pendent, but not rejectingy means that one cannot conclude that these two variable
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Probability density function

Fig. 9 Chi-square test of independence

are dependent (which is not exactly the same as claiminghbgiare independent).
Given that the higher the p-value, the stronger the indegecelp seems to be a
good candidate to represent the local fitness (which meathueeguality of individ-
uals). Nevertheless, this fitness suffers from two drawback

e When dealing with small datasets, individuals with long ¢raising seZ tends
to have good p-values only because dataset is too small engegh samples to
test efficiently the statemertL y | Z.

e Due to the exponential behaviour of the chi-square didtiobuits tails vanishes
so quickly that individuals with poor p-values are oftenmdad to 0, making
then indistinguishable.

First, p has to be adjusted in order to promote independence stat&nvéh
smallZ. This is achieved by setting up a parsimony term as a positivéiplicative
malusparcim#Z) which decrease withZ the number of nodes iB. Then, when
p < a we replace the exponential tail with something that tend®to slower. This
modification of the fithess landscape allows avoiddtefeauswhich would prevent
the gnetic algorithm to travel all over the search spacee l4ethe adjusted local
fitness:

px parcim#Z) ifp>a

Ad jLocalFitness=
J {axparcim(#Z)x);éifp<a

4 NoteThis can be viewed as an “Ockham’s Razor” argument.
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4.3.2 Genetic operators

The genome of an individual, being, y|Z) wherex andy are simple nodes ard
is a set of nodes is straightforward: It consists in an arfahree cells (see Figure
[10), the first one containing the index of the nod¢he second cell containing the
index ofy and the last one is the array of the indexes of the nodgs in

X y Z={z,z,..2}

X |y |4 :%4:i..:2

Fig. 10 Representation afx, y|Z)

This coding implies specific genetic operators becauseeotdmstraints resting
upon a chromosome: there must not be doubles appearing vdileg hutations
or crossovers. A quick-and-dirty solution would have befirst apply classical
genetic operators and then applyepair operatora posteriori. Instead, we propose
wise operators (which do not create doubles), namely twesty mutations and an
robust crossover.

e Genome content mutation
This mutation operator involves a probability,g that an arbitrary node will be
changed from its original state. In order to avoid the coeatf doubles, this
node can be muted into any nodedNirexcept the other nodes of the individual,
but including itself (see Figure 11).

X y Z1 ZZ Zk
Pre
v
:> x|y |7 |z :%
eN\{x,y,z.,..., z}

Fig. 11 Genome content mutation

e Add/remove mutation
The previous mutation randomly modifies the content of tdéviduals, but does
not modify the length of the constraining sét We introduce a new mutation
operator callecddd/remove mutatigmepresented on Figure 12, that allows ran-
domly adding or removing nodes i If this type of mutation is selected, with
probability Phar then new random nodes are either added with a probability
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Pmadg Or removed with - Pyage These probabilities can vary along genera-
tions. Moreover, the minimal and the maximal number of nadiesved inZ can
evolve as well along generations, for tuning the growtH# of

X y Z, 7 Z,
max size
D x|ylzizi. .. .§i.iz
Addp
mAdd eN\{x,y,z1 z,.., zk}
min size
X y Z, Z
Remove1
_pm/\dd

Fig. 12 Add/remove mutation

e Crossover
The crossover consists in a simple swapping mechanism batwey and Z.
Two individuals(x, y|Z) and(x,y'|Z") can exchangg or y with probability pcxy
andZ with probability pcz (see Figure 13). When a crossover occurs, only one
swapping among < X,y « Y, x+<VY,y« X andZ «— Z' is selected via a wheel
mechanism which implies thatpdxy + pcz = 1. If the exchange is impossible,
then the problematic nodes are automatically muted in cimdeep clear of
doubles.

4.4 Sharing

So as not to converge to a single optimum, but enable theigexigbrithm to iden-
tify multiple optima, we use a sharing mechanism that maistdiversity within
the population by creatingcological nichesThe complete scheme is described in
[20] and is based on the fact that fitness is considered asradshesource, that is
to say that individuals having too many neighbours are pesl Thus we need a
way to compute the distance between individuals so that wecoant the number
of neighbours of a given individual. A simple Hamming distarwas chosen: two
elementary tripletgx,y|Z) and (X,y'|Z') are said to be neighbours if they test the
same two nodes (i.e{x,y} = {X,¥'}), whateverZ. Finally, dividing the fitness of
each individual by the number of its neighbours would resultharing the pop-
ulation into sub-populations whose size is proportionalh® height of the peak
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X Y|4 i% 2

' 1 1 1] 1
X y Z,:7%, a
y Y|4 | % 2

' 1] 1] 1]
X x| % i%, zy

. | automatic mutation
H 1] 1 1]
if xe{x',z 2 2,...,zk}

Fig. 13 Robust crossover

they are colonising [26]. Instead, we take into account éftive importance of an
individual with respect to its neighbourhood, and the fitneEeach individual is
divided by the sum of the fithesses of its neighbours [42]sBtheme allows one
to equilibrate the sub-populations within peaks, whatéveir height.

4.5 Immortal archive and embossing points

Recall that the aim of IMPEA is to construct a subset of theepehdence model,
and thus the more independence statements we get, the hidieg a classical

Parisian Evolutionary Algorithm scheme would allow evalyia number of inde-
pendence statements equal to the population size. In artberdble to evolve larger
independence statements sets, IMPEA implementmarortal archivethat gather

the best individuals found so far. An individu@gd y|Z) can become immortal if any
of the following rules applies:

e Its p-value is equal to 1 (or numerically greater than 4, whereg is the preci-
sion of the computer)

e lts p-value is greater than the significance level Z2rd 0

e Its p-value is greater than the significance level &ng|0) is already immortal
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This archive serves two purposes: the most obvious onetisthhe end of the
generations, not only we get all the individuals of the catrgopulation but also all
the immortal individuals, which can make a huge differeridet this archive also
plays a very important role asnbossing pointsvhen computing the sharing coef-
ficient, immortal individuals that are not in the current plgtion are added to the
neighbours counting. Therefore a region of the search ghatdnas already been
explored but that has disappeared from the current popuolamarked as explored
since immortals individuals count as neighbours and thuslise this region, en-
couraging the exploration of other zones.

4.5.1 Clustering and partial restart

Despite the sharing mechanism, we experimentally obse¢hadome individuals

became over-represented within the population. Thereferadd a mechanism to
reduce this undesirable effect: if an individual has too yn@udundant representa-
tives then the surplus is eliminated and new random indalglare generated to
replace the old ones.

4.6 Description of the main parameters

The Table 3 describes the main parameters of IMPEA and theical values or
range of values, in order of appearance in the text aboveeSdihmese parameters
are scalars, like the number of individuals, and are conhstang the whole evolu-
tion process. Others parameters, like the minimum or maximumber of nodes
in Z, are arrays indexed by the number of generations, allowiage parameter to
follow a profile of evolution.

4.7 Bayesian network structure estimation

The last step of IMPEA consist in reconstructing the strieetf the Bayesian net-
work. This is achieved by aggregating all the immortal indlisals and only thgood
onesof the final population. An individualx,y|Z) is said to begoodif its p-value
does not allow rejecting the null hypothesidl y | Z. There are two strategies in
IMPEA: a pure one, calle®-IMPEA which consists in strictly enforcing indepen-
dence statements and a constrained one, called C-IMPEAhveltids a constraint
on the number of desired edges.
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Name Description Typical
value
MaxGens Number of generations 50...200
Ninds Number of individuals 50...500
Alpha Significance level of the? test 0.01...0.25
Parcim (#2) Array of par5|monly coefficient (decreases with thg 05 1
ength ofZ)
PmG Probability of genome content mutation 0.1/(2+#2)
PmAR Probability of adding or removing nodesn 0.2...0.5
PmAdd (#Gen Array of probability of ad_dlng nodes i along 025 075
generations
MinNodes Array of minimal number of nodes ifi along
i 0...2
(#Gen) generations
MaxNodes Array of maximal number of nodes ihalong
; 0...6
(#Gen) generations
Pc Probability of crossover 0.7
PcXY Probability of swapping andy 1/6
Pcz Probability of swapping 1/3
Epsilon Numerical precision 10°
MaxRedundan Maximal number of redur_1dant individuals in the 1.5
population

Table 3 Parameters of IMPEA. Values are chosen within their typicadeedepending on the size
of the network and the desired computation time.

4.7.1 Pure conditional independence

Then, as in PC, P-IMPEA starts from a fully connected grapH,far each individ-
ual of the aggregated population, applies the rule y | Z = no edge between x and y”
to remove edges whose nodes belong to an independenceestaté&mally, the re-
maining edges (which have not been eliminated) constihgaihdirected structure
of the network.

4.7.2 Constrained edges estimation

C-IMPEA needs an additional parameter which is the desivedber of edges in the
final structure. It proceeds by accumulation: it starts feosnempty adjacency matrix
and for eachx, y|Z) individual of the aggregated population, it adds its fitrtedbe
entry (x,y). An example of a matrix obtained this way is shown on Figure 14

At the end of this process, if an entry (at the intersectioa adw and a column)
is still equal to zero, then it means that there was no inddgere statement with
this pair of nodes in the aggregated population. Thus theses exactly corre-
spond to the strict application of the conditional indepamzes. If an entry has a
low sum, then it is an entry for which IMPEA found only a few emkndence state-
ments (and/or independence statements with low fithnessjharsdthere is a high
expectancy of having an edge between its nodes. Therefaddtmore edges in the
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Fig. 14 Accumulated adjacency matrix of a network with 27 nodes (frosutance network).

final structure (up to the desired number of edges), we just taaselect edges with
the lowest values and construct the corresponding network.

This approach seems to be more robust since it allows soma&$&in the chi-
square tests, but strictly speaking, if an independentemstt is discovered, there
cannot be any edge between the two nodes.

4.8 Experiments and results

Prior to a test on the the cheese-ripening data, the expetanagnalysis has been
first performed on simulated data, where the true BN stredgiknown. A first ex-
periment has been done on a toy-problem (section 4.8.1dier do analyse the be-
haviour of IMPEA on a case where the complexity of the depeaigs is controlled
(i.e. where there is one independence statement that evalVong conditional set
Z). A second test has been made on a classical benchmark adriegrd the insur-
ance network (sectidn 4.8.2), where input data are genkefiata a real-world BN.
The test on cheese ripening data is detailed in section.4.8.3

4.8.1 Test case: comb network

To evaluate the efficiency of IMPEA, we forge a test-netwoitkich looks like a
comh A n-comb network has + 2 nodes, y, andz,z,...,z,, as one can see
on Figure 15. The Conditional Probability Tables (CPT) dtediin with a uniform
law. It can be seen as a kind of classifier: given the izpu, . . . , z,, it classifies the
output asx or y. For example, it could be a classifier that accepts a persafésy
details, age, marital status, home address and credityhestal classifies the person
as acceptable/unacceptable to receive a new credit capdor |
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Fig. 15 A n-comb network

The interest of such a network is that its independence nmadebe generated
(using semi-graphoid rules) from the following indepentiestatements:

Vi, jsuchas # j,z L z
XLy|{z,2,...,z:}

Thus it has only one complex independence statement andcd $inple (short)
ones. In particular, the only way to remove the edge betwesrly using statistical
chi-square tests is to test the trip{gty | {z1, 22, ...,z }). This cannot be achieved by
the PC algorithm as soon &s< n (recall thatk is limited to 3 due to combinatorial
complexity).

Typical run: We choose to test P-IMPEA with a simple 6-comb network. It has
been implemented using an open source toolboxBtnges Net Toolbox for Matlab
[44] available aht t p: // bnt . sour cef or ge. net /. We draw our inspiration
from PC and initialise the population with individuals witim empty constraining
set and let it grow along generations up to 6 nodes, in ord@mddhe independence
statemenk I y| {z,...,Z}. As shown on Figure 16, the minimal number of nodes
allowed inZ is always 0, and the maximal number is increasing on the fucsthird
of the generations and is kept constant to 6 on the last ofesaferage number
of nodes in the current population is also slowly rising upetmains rather small
since in this example, there are a lot of sneby to findndependence statements
and only a single big one.

The correct structure (Figure 17) is found after 40 (out ofd#herations.

The Figuré 18 represents the evolution of the number of £ alming generations.
The current evolved structure is compared with the actuatstre: araddededge
is an edge present in the evolved structure but not in theabctumb network, and
a deletededge is an edge that has been wrongly removed. The total muwohbe
errors is the sum of added and deleted edges. Note that etvenriimber of errors
of the discovered edges is extracted at each generatianbyt no means used by
IMPEA or reinjected in the population because this infoliorats only relevant in
that particular test-case where the Bayesian network tha¢mgted the dataset is
known.
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Fig. 17 Final evolved structure for the comb network
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Fig. 18 Evolution of the number of erroneous edges of the structuregadenerations

Statistical results: The previous example gives an idea of the behaviour of P-
IMPEA, but to compare it fairly with PC we must compare therhardy over mul-
tiple runs but also with respect to the size of the datasetvé&set up the following
experimental protocol:

e A 4-comb network is created and we use the same Bayesian mefstoucture
and CPT) throughout the whole experiment.

e \We chose representative sizes for the dataset:
{500,2100Q 2000 500Q 10000, and for each size, we generate the corresponding
number of cases from the comb network.

e We run 100 times both PC and P-IMPEA, and extract relevaotinétion (see
Tables 4 and 5):
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— How many edges were found? Among these, how many were eusfe
(added or deleted)
— What is the percentage of runs in which they edge is removed?

e PC is tuned with a fan-il limited to 3 (a larger fan-in is not used as PC is per-
forming a full combinatorial research) and P-IMPEA is tumégth 50 generation
of 50 individuals in order to take the same computationaétas PC. 50 genera-
tion are more than enough to converge to a solution due totfad size of the
problem. Both algorithms share the same significance kvel

The actual network contains 8 edges and 6 nodes. Thereforaithber of possi-
ble alternative is 2= 64 and if we roughly want to have 30 samples per possibility,
we would need approximatively 6430 ~ 2000 samples. That explains why per-
formances of the chi-square test are very poor with only 5@D1#000 cases in the
dataset. Indeed, when the size of the dataset is too smaterR@ves thex—y edge
(see the last column of Table 4) while it does not even {rst| {z,2,23,21})
because it is limited bl to 3 nodes irz.

P-IMPEA

Erroneous edges
N
T
I
I
|
I

—

0 . . . )
500 1000 2000 5000 10000

Size of the dataset

Fig. 19 Number of erroneous edges (added+deleted) for PC and P-IM&&pending on the size
of the dataset

Regarding the global performance, the Figure 19 puts upwbege number of
erroneous nodes (eithaddedor deleted of both algorithms. As one can expect, the
number of errors decreases with the size of the datasett endear that P-IMPEA
clearly outperforms PC in every case.

Cases Edges Added Removed Errors X-y?
500 | 5.04+0.85 | 0.38+0.50 | 3.34+0.78 | 3.72+1.01 | 97%
1000 | 6.50£1.24 | 0.66+£0.71 | 2.16+£1.01 | 2.82+1.23 | 83%
2000 | 8.09+1.18 | 1.27+0.80 | 1.18+0.68 | 2.45+0.91 | 39%
5000 | 9.71+0.74 | 1.93+0.57 | 0.22+0.46 | 2.15+0.73 | 0%
10000| 9.84+0.58 | 1.84+0.58 0+0 1.84+0.58 | 0%

Table 4 Averaged results of PC algorithm after 100 runs

Finally, if one has a look to the average number of discovedgks, it is al-
most equal to 8 (which is the actual number of edges in therdbcstructure) for
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Cases Edges Added Removed Errors X-y?
500 | 6.64+0.79 | 0.05+0.21 | 1.73+1.90 | 1.78+1.94 | 100%
1000 | 7.32+0.91 | 0.18+0.50 | 0.78+1.01 | 0.96+1.24 | 100%
2000 | 8.87+1.04 | 0.24+0.51 | 0.294+0.60 | 0.53+0.82 | 97%
5000 | 8.29+0.32 | 0.30+0.59 | 0.03+0.17 | 0.33+0.63 | 90%
10000| 8.27+0.31 | 0.27+0.54 0+0 0.27+0.54 | 89%

Table 5 Averaged results of P-IMPEA algorithm after 100 runs

P-IMPEA (Table 5) whereas it is greater than 9 for the PC #lgor since it can’t
remove thex—y edge (Table 4).

4.8.2 Classical benchmark: the Insurance Bayesian network

Insurance is a network for evaluating car insurance risk®ldpped by [7]. The
Insurance Bayesian network contains 27 variables and 52lars a large instance.
A database of 50000 cases generated from the network hasibegifor the exper-
iments below.

Once again, we start from a population with smaland let it increase up to
4 nodes. The Figurfe 20 illustrates this growth: the average af the number of
nodes inZ of the current population follows the orders given by theimimm and
the maximum values.

Nodes
N

mean - — —- -min — — —max

0 50 100 150 200
Generations

Fig. 20 Evolution of Minimal, Maximal and Average number of nodeZialong generations

Concerning the evolution of the number of erroneous edgeesented on Fig-
ure[ 21, it quickly decreases during the first half of the gatien (the completely
connected graph has more than 700 edges) and then stagitdbesend, P-IMPEA
finds 39 edges out of 52 among which there is no added edge 3bwhith are
wrongly removed. It is slightly better thaRC which also wrongly removes 13
edges, but which adds one superfluous one.

The best results are obtained with C-IMPEA and a desired euofliedges equal
to 47. Then, only 9 errors are made (see Table 6). When askirsefedges, the
actual number of edges in the Insurance network, it makesrbdse(7 additions
and 7 deletions).
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Fig. 21 Evolution of the number of erroneous edges of the structurggadenerations

Algorithm [Edge§ Added|{Removed Errors
PC 40 1 13 14
P-IMPEA | 39 0 13 13
C-IMPEA | 47 2 7 9
C-IMPEA | 52 7 7 14

Table 6 Number of detected edges for all algorithms

4.8.3 Real Dataset: Cheese ripening data from the INCALIN poject

The last step is to test our algorithm on real data. Our aim é®@tpare the result of
IMPEA with a part of the dynamic Baysian network, alreadyaliéed at section3,
built with human expertise in the scope of the INCALIN prdjéd/e are interested
in the part of the network that predicts the current phasevikmpthe derivatives of
some bacteria proportions. We used the same data as in thediitof the report
(see section 3.2.6), made of the derivativepf la, KmandBaand estimation of
the current phase done by an expert.

After 10 generations of 25 individuals each, P-IMPEA cogesrto a network
whose structure is almost the same as the one proposed bif.ékp@®ne can see
on the right of Figure 22, no extra edge is added, but one edgésising, between
the derivative ofa and the phase.

4.9 Analysis

We compared performances on the basis of undirected graplsiged by both
algorithms. The edge directions estimation has not beeprggtammed in IMPEA,
this will be done in future developments, using a low comturial strategy similar
to PC. Comparisons between both algorithms do not deperti®atep.

The two experiments of section 4.8 prove that IMPEA favolyr@ompares to
PC, actually, besides the fact that IMPEA relies on a commrproblem encoding,
PC performs a deterministic and systematic search whileBMBses evolutionary
mechanisms to prune computational efforts and to condentra promising parts
of the search space. The limitation of PC according to praldlize is obvious in the
first test (Comb network): PC is unable to capture a compl@eddency, even on a
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(@) Dynamic Bayesian Network proposed by (b) Results of P-IMPEA.

cheese ripening experts.

Fig. 22 Comparison between the model proposed by experts and the ndowokby IMPEA on
a real dataset from the INCALIN project.

small network. Additionally it is to be noticed that IMPEAtter resists to a current
problem of real life data, that is the insufficient numberditable samples.
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5 Conclusion

Parisian CCEAs and cooperative co-evolution in generagndpplicable, yield ef-
ficient and robust algorithms. As we have seen in this chagitermain concern
is the design of adequate representations for cooperatiher@ution schemes, in
other words, representations that allow a collective dimiumechanism. One has
to build an evolution mechanism that uses pieces of solstiostead of complete
solutions as individual. It is also needed to evaluate tleegs of solutions (local
fithess) before being able to select the best pieces thatecaortsidered as compo-
nents of a global solution.

In the example of sectidn 3, we first designed a classical Geyaevthe phase
estimator was searched as a single best “monolithic” foncthlthough it already
outperforms the previous other methods, we obtained additimprovements by
splitting the phase estimation into four combined (and &mpgphase detectors”.
We actually used additional a priori informations abouthagblem. The structures
evolved here were binary output functions that charaadrime of the four phases.
Their aggregation was made via a robust voting scheme. Thétirgg phase de-
tector has almost the same recognition rate as the classRdut with a lower
variance, evolves simpler structure during less generstiand yield results that are
easier to interpret.

In section 4, the cooperative coevolution algorithm IMPE#s allowed over-
coming a known drawback of the classical approach, thatfindlan efficient rep-
resentation of a direct acyclic graph. We have shown thattioperative scheme
is particularly adapted to an alternate representationayeBian Networks: Inde-
pendence Models (IM). IM represent data dependencies & af $ndependence
Statements (IS) and IS can directly be considered as ingilgcbf a CCEA.

The major difficulty, which is to build a Bayesian Network repentative at each
generation has been overcome for the moment by a schementigdiwilt a global
solution at the end of the evolution (second step of IMPEAIltUFe work on this
topic will be focused on an improvement of the global fithessagement within
IMPEA. The major improvement of IMPEA is that it only perfosndifficult com-
binatorial computations when local mechanisms have putteegopulation toward
“interesting” area of the search space, thus avoiding taensaknplex global compu-
tations on obviously “bad” solutions. In this sense, CCE#tinto account a priori
information to avoid computational waste, in other worasnplex computations in
unfavourable areas of the search space.

Table/ 7 gives an overview of the features of the two CCEAs meisepresented
in this chapter. There are some major differences betweaetwih approaches.

e With respect to the nature of the cooperation within the fatn: the Parisian
phase prediction is relying on components that are stredtur 4 clusters (each
individual only votes for the phase it characterises the)beshile IMPEA col-
lects the best individuals of its population in an archivétdd the global inde-
pendence model.
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Parisian Phase Prediction IMPEA
Individuals Phase predictors IS : Independence Statemeiisy|Z)
Population/groups| Classifier IM : Independence Model
Nb of cooperating 4 variable
components
Aggregation clustering + selection of the 5% bgst at the end of the evolution only
Local fitness capability to characterise a phasg adjustedp-value
max{F1, R, F3,Fa} x pressure toward
X pressure toward simple structure small conditional parts
Global fitness voting scheme none
+ evaluation on the learning set
Sharing Euclidean distance ofF1, R, Fs,Fa} Hamming distance ofix,y}
Specific features variable population size archive
inflation / deflation embossing points

Table 7 Features of the two Parisian schemes

e With respect to the synchonisation of the global fithessutation: the Parisian
phase prediction computes a global fitness at each gerresim use a bonus
distribution mechanism, while IMPEA only relies on localadations at each
generation. The global calculation is made only once at tigkoé the evolution.

It is interesting to note that IMPEA may be considered as aoritplete Parisian
scheme, as it does not use any global calculation. Futurk evothis algorithm will
be aimed at evaluating if a global calculation may accetdtatconvergence and ro-
bustness. Note however that for instance the fly algoriti3n48] does not use any
global fitness either, but is able to provide extremely rap#lilts: the cooperation
mechanisms may operate in some cases without global fitness.

The common characteristics of these two examples is thatihygerative scheme
has allowed representing in an indirect way some complexistres (classification
rules in the first example and Bayesian Networks in the secom). This way of
exploiting the artificial evolution scheme is versatile egb to facilitate the integra-
tion of constraints and the development of various strate@archive and emboss-
ing points as in sectiagn| 4, or variable population size aedtim [5] for instance).
The experiments described in this chapter join previoudistuon “Parisian evo-
lution”, that experimentally proved that very efficient atghms can be built on
this cooperation-coevolution basis, in terms of rapidd{][ or in terms of size and
complexity of the problems [17, 63].
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