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Abstract On the contrary to classical schemes of evolutionary optimisations algo-
rithms, single population Cooperative Co-evolution techniques (CCEAs, also called
“Parisian” approaches) make it possible to represent the evolved solution as an ag-
gregation of several individuals (or even as a whole population). In other words,
each individual represents only a part of the solution. Thisscheme allows simulat-
ing the principles of Darwinian evolution in a more economicway, which results
in gain in robustness and efficiency. The counterpart however is a more complex
design phase. In this chapter, we detail the design of efficient CCEAs schemes on
two applications related to the modeling of an industrial agri-food process. The ex-
periments correspond to complex optimisations encountered in the modeling of a
Camembert-cheese ripening process. Two problems are considered:

• A deterministic modeling problem, phase prediction, for which a search for a
closed form tree expression is performed using genetic programming (GP).

• A Bayesian network structure estimation problem. The novelty of the proposed
approach is based on the use of a two step process based on an intermediate rep-
resentation calledindependence model. The search for an independence model
is formulated as a complex optimisation problem, for which the CCEA scheme
is particularly well suited. A Bayesian network is finally deduced using a de-
terministic algorithm, as a representative of the equivalence class figured by the
independence model.
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1 Introduction

Cooperative Co-evolution strategies rely on a formulationof the problem as a coop-
erative task, where individuals collaborate in order to build a solution.
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Fig. 1 A Parisian EA: a single population cooperative co-evolution

The large majority of these approaches deals with a co-evolution process that
happens between a fixed number of separated populations. Theidea is to co-evolve
various species that only interact via the evaluation process. [30, 29] were the first to
propose this technique, to co-evolve job-shop schedules using a parallel distributed
algorithm. [53] then popularize the idea of cooperative co-evolution as an optimisa-
tion tool. It is applicable as soon as a decomposition of the problem into subcompo-
nents can be identified. Each component then corresponds to asubpopulation that
evolves simultaneously but in isolation to the other subpopulations. Individuals of
a subpopulation are evaluated by aggregation with individuals of other subpopula-
tions. Multi-species cooperative co-evolution has been applied to various problems
[43, 55, 54, 22, 36, 66], including learning problems [8], and some theoretical analy-
ses have been recently proposed, see [48, 10, 52], or [65] foran analysis considering
a relationship between cooperative co-evolution and evolutionary game theory.

In this work, a different implementation of cooperative co-evolution, the so-
called Parisian approach [17, 47] is used. It is derived fromthe classifier systems
model proposed by [28]. Shown on Figure 1, this approach usescooperation mech-
anisms within asinglepopulation. On the contrary to the previous model, interac-
tions between sub-species are not limited to the evaluationstep, but can also happen
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via genetic operators. An individual of a Parisian population, that represents only a
part of the solution to the problem, can be evaluated at two levels :

• locally, using an independent evaluation (the “local” fitness), if some criteria can
be designed to evaluate partial solutions (for instance, validity conditions),

• globally at each generation, via an aggregation process that builds a solution to
the problem to be solved. Individuals are then rewarded via abonus distribution.

In this way, the co-evolution of the whole population (or a major part of it) is
favoured instead of the emergence of a single best individual, as in classical evo-
lutionary schemes. The motivation is to make a more efficientuse of the genetic
search process within a population, and reduce the computational expense. Success-
ful applications of such a scheme usually rely on a lower costevaluation of the
partial solutions (the individuals of the population), while computing the full evalu-
ation only once at each generation.

The single population approach allows more interaction between subproblems,
but in order to avoid trivial solutions (all individuals arethe same), diversity preser-
vation becomes a very important mechanism, to favour the evolution of subspecies,
that progressively become independent from each other. At least in its early stage, a
Parisian approach relies more on “exploration” mechanismsthan “exploitation”. Ex-
perimental tuning have proven that these two components arebalanced in a different
manner in classical and Parisian approaches, and that fitness sharing is an important
component of Parisian scheme, that ensures an efficient convergence behaviour.

Additionally, we will see in the examples developed in this chapter, that Parisian
schemes necessitate a more complex design phase. We actually need to split a prob-
lem into interdependent subproblems involving componentsof the same nature,
which is not always possible. Questions regarding the relative efficience of different
CCEA approaches, including for instance the single versus multiple population is-
sue are very important, but still open, see for instance [62]for a first attempt in this
direction.

This chapter is focussed on the design step, and presents howParisian approaches
have been developed on two examples provided by the agri-food community. The
chapter is organised as follows. Section 2 describes the industrial process under
study, cheese ripening, and the problems related to expertise modeling in this con-
text. The two examples are then developed:

• section 3 deals with phase estimation using Genetic Programming : for compari-
son purpose, a classical GP approach is first developed, thena Parisian approach,

• section 4 addresses the problem of evolving the structure ofa Bayesian network,
with an encoding based on independence models.

Conclusions and future work are given in section 5.
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2 Modeling agri-food industrial processes

This study is part of the French INCALIN research project1. The goal of this re-
search project was to model agri-food industrial processes. In such food industries,
manufacturing processes consist of successive operationswhose underlying mech-
anisms are still unknown, such as the cheese ripening process. INCALIN was con-
cerned with the understanding of the causal relationships between ingredients and
physico-chemical or microbiological characteristics andon the other hand, sensory
and nutritional properties. The intriguing question is howmicro level properties
determine or influence those on the macro level. The project aimed to explain the
global behaviour of such systems.

Various macroscopic models have embedded expert knowledge, including expert
systems [32, 33, 31], neural networks [35, 46], mechanisticmodels [1, 56], and
dynamic Bayesian networks [6].

The major problem common to these techniques is related to the sparseness of
available data: collecting experimental data is a long and difficult process, and re-
sulting data sets are often not accurate or even erroneous. For example, a complete
cheese ripening process lasts 40 days, and some tests are destructive, that is to say
that a cheese sample is consumed during each analysis. Othermeasurements require
the growing of bacterias in Petri dishes and then counting the number of colonies,
which is very time consuming. Therefore the precision of theresulting model is
often limited by the small number of valid experimental data. Also, parameter esti-
mation procedures have to deal with incomplete, sparse and uncertain data.

2.1 The Camembert-cheese ripening process

“Model cheeses” are produced in laboratories using pasteurized milk inoculated
with Kluyveromyces marxianus(Km), Geotrichum candidum(Gc), Penicillium camem-
berti (Pc) andBrevibacterium auriantiacum(Ba) under aseptic conditions.

• K. marxianusis one of the key flora of Camembert cheese. One of its principal
activity is the fermentation of lactose (notedlo) [14, 15] (curd de-acidification by
lactose consumption). Three dynamics are apparent in the timeline ofK. marx-
ianusgrowth [38, 39]. Firstly, there is an exponential growth during about five
days that corresponds to a decrease of lactose concentration. Secondly, the con-
centration ofK. marxianusremains constant for about fifteen days and then de-
creases slowly.

• G. candidumplays a key role in ripening because it contributes to the develop-
ment of flavour, taste and aroma of cheeses [2, 9, 40]. One of its principal activi-

1 “Cognitive and Viability methods for food quality control” (translation from french), supported
by the French ANR-PNRA fund.
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ties is the consumption of lactate (notedla). Three dynamics are apparent in the
timeline ofG. candidumgrowth [38, 39]. First, there is a latency period of about
three days. Second, there is an exponential growth that corresponds to a decrease
of lactate concentration and thus an increase of pH. Third, the concentration of
G. candidumremains constant to the end of ripening.

During ripening, soft-mould cheese behave like an ecosystem (a bio-reactor),
which is extremely complex to model as a whole. In such a process, human ex-
perts operators have a decisive role. Relationships between microbiological and
physicochemical changes depend on environmental conditions (temperature, rela-
tive humidity ...) [39] and influence the quality of ripened cheeses [27, 38]. A ripen-
ing expert is capable of estimating the current state of somecomplex reactions at
a macroscopic level through its perceptions (for example, sight, touch, smell and
taste). Control decisions are then generally based on subjective but robust expert
measurements. An important factor of parameter regulationis the subjective esti-
mation of the current state of the ripening process. This process is split into four
phases:

• Phase 1 is characterized by the surface humidity evolution of cheese (drying pro-
cess). At the beginning, the surface of cheese is very wet andevolves until it is
rather dry. The cheese is white with an odor of fresh cheese.

• Phase 2 begins with the apparition of aP. camemberti-coat (the white-coat at the
surface of cheese). It is characterised by a first change of color and a “mushroom”
odor development.
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• Phase 3 is characterized by the thickening of the creamy under-rind. P. camem-
berti cover all the surface of cheeses and the color is light brown.

• Phase 4 is defined by strong ammoniac odor perception and the dark brown as-
pect of the rind of cheese.

These four phases are representative of cheese ripening. The expert’s knowledge
is obviously not limited to these four phases, but a correct identification of phases
helps to evaluate the dynamics of ripening and to detect drift from the standard evo-
lution.
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2.2 Modeling expertise on cheese ripening

A major problem, which was addressed in the INCALIN project,is the search for au-
tomatic procedures that mimic the way a human aggregates data through his senses,
to estimate and regulate the ripening of the cheese.

Stochastic optimisation techniques, like evolutionary techniques, have already
been proven successful on several agri-food problems. The interest of evolutionary
optimisation methods for the resolution of complex problems related to agri-food
is demonstrated by various recent publications. For example, [4] used genetic algo-
rithms to identify the smallest discriminant set of variables to be used in certifica-
tion process for an Italian cheese (validation of origin labels). [21] used GP to select
the most significant wavenumbers produced by a Fourier transform infrared spec-
troscopy measurement device, in order to build a rapid detector of bacterial spoilage
of beef. A recent overview on optimisation tools in food industries [61] discusses
works based on evolutionary approaches.

We investigate here the use of cooperative co-evolution schemes (CCEAs) in the
context of cheese ripening, for the modeling of expert knowledge. The next part
(section 3) of this chapter deals with a first problem, which is phase estimation us-
ing Genetic Programming, under the form of a simple deterministic model (closed
formula). Experimental as well as expert analysis made evident a simple relation-
ship between four derivatives and the phase. A simple schemethey use in practice
is based on a multilinear regression model. We will see belowthat a classical GP
approach, that optimises a closed formula, i.e. a non-linear dependency, already im-
proves the recognition rates, and that a Parisian scheme provides similar regognition
rates with simpler structures, while keeping good recognition rates when the learn-
ing set is small.

The second part of this chapter (section 4) deals with a more sophisticated
stochastic model of dependencies: Bayesian Network. The difficult point is now
to address the problem of structure learning for a Bayesian Network (BN). Classical
approaches of evolutionary computation are usually blocked by the problem of find-
ing an efficient representation of a whole Bayesian Network.We will see that the
Parisian scheme allows addressing this issue in an elegant way. In order to validate
the method and compare it to the best approaches of the domain, we used classical
BN benchmarks before testing it on the cheese ripening data,for which no “ground
truth” model exist.
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3 Phase estimation using GP

In previous work on cheese ripening modeling [6, 51], a dynamic Bayesian network
(Figure 2) has been built, using human expert knowledge, to represent the macro-
scopic dynamic of each variable. The phase of the network at time t plays a deter-
minant role for the prediction of the variables at timet +1. Moreover, four relevant
variables have been identified by biologists, the derivative of pH, la (lactate),Km
(Kluyveromyces marxianus) andBa(Brevibacterium auriantiacum) at timet, allow-
ing phase prediction at timet +1. This relates to a way in which experts aggregate
information from their senses.

Fig. 2 Dynamic Bayesian Network representing dynamic variables based on the observation of
ripening phases. The static Bayesian network used for comparison isin the right hand side box

3.1 Phase estimation using a classical GP

A Genetic Programming (GP2) approach is used to search for a convenient formula
that links the four derivatives of micro-organisms proportions to the phase at each
time stept (static model), withouta priori knowledge of the phase att −1.

2 GP is a type of EA where each individual figures a function, represented as a tree structure. Every
tree node is an operator function (+,−,/,∗, . . .) and every terminal node is an operand (a constant
or a variable).
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When available, a functional representation of dependencies between variables
is interesting (for prediction purpose for example). This problem is a symbolic re-
gression one, however the small number of samples and their irregular distribution
makes it difficult. In such a case, probabilistic dependencies (like Bayesian net-
works) seems usually to be more adapted, but are facing the same difficulty (robust
estimation when data are sparse). A first question that couldbe adressed is thus to
know which type of representation is more robust when data are sparse.

Results of GP estimation are compared in the sequel with the performances of a
static Bayesian network, extracted from the DBN of [6], (thepart within the box in
Figure 2), and with a simple learning algorithm (multilinear prediction, see section
3.2.6), that was used by biologists in a first approach.

3.1.1 Overview of the classical GP algorithm

The classical GP algorithm consists first of an initialisation step where an initial pop-
ulation is randomly generated and then of a main loop where the reproduction (mu-
tation and crossovers) and selection mechanism (ranking) are applied. The pseudo
code of such an algorithm is given as follows:

Input : Maximum number of evaluations
Output : Single best individual
Creation of a random initial population
while Maximum number of evaluations not reached do

Create a temporary population tmppop using
selection, mutations and crossover
Compute the fitness of the new temporary
population tmppop
Select the best individuals of the current
population pop+ tmppop

end
Select the best individual of the final population

Algorithm 1 : Classical GP algorithm

3.1.2 Search space

The derivatives of four variables will be considered, namely the derivative ofpH
(acidity), la (lactose proportion),Km andBa (lactic acid bacteria proportions, see
section 2.1), for the estimation of the phase (static problem). The GP will search for

a phase estimator̂Phase(t). That is, a function defined as follows (equation 1):
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̂Phase(t) = f

(

∂ pH
∂ t

,
∂ la
∂ t

,
∂Km

∂ t
,

∂Ba
∂ t

)

(1)

The function set is made of arithmetic operators:{+,−,∗,/, ,̂ log}, with pro-
tected/ andlog, and logical operators{i f ,>,<,=,and,or,xor,not}.

The terminal set is made of the four partial derivatives plusreal constants. The
constant’s values are not limited and randomly initialisedusing one of the following
lawsU [0,1], −U [0,1], N (0,1), randomly chosen. (U is the uniform law, and
N the normal law).

3.1.3 Fitness function

Available data are separated in two sets: learning set and test set. Each is randomly
chosen within the available data set for each run. The 16 available experiments are
randomly split between learning and test sets. The size of the learning set varies
from 10 to 15 experiments, while the size of the corresponding test set vary from 6
to 1 experiments (see section 3.2.6).

The fitness function (equation 2),to be minimised, is made of a factor that mea-
sures the quality of the fitting on the learning set, plus a “parsimony” penalisation
factor in order to minimize the size, measured as the number of nodes (#Nodesin
equation 2), of the evolved structures. The aim of this factor is to avoid bloat. It is
divided by the number of variables (#Variablesin equation 2) involved in the eval-
uated tree in order to favour structures that embed all four variables of the problem.
Human experts use four classes to quantify the behaviour of the ripening process,
and industrial processes are organised accordingly. Another type of classification
(i.e. more or less classes) would have a strong impact on industrial devices. We
choose to remain consistent with this expert approach. Thisis important in future
developments where interfaces with human experts will be built. Experiments also
show that recognition results are better with this constraint.

f itness=

∑
learning set

∣

∣

∣
f
(

∂ pH
∂ t , ∂ la

∂ t , ∂Km
∂ t , ∂Ba

∂ t

)

−Phase(t)
∣

∣

∣
+W#Nodes

#Variables+1
(2)

The parameterW has been experimentally tuned. A large number of combina-
tions were tested and it turned out thatW = 1 is the optimal value in terms of al-
gorithmic performance which favours evolution of structures with roughly 30 to 40
nodes. Bigger structures are so penalised that they are excluded from the population
during the selection process.
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3.1.4 Genetic operators

A classical tree crossover (exchange of subtrees from a randomly chosen node) has
been used with probabilitypc (defined per tree), as a means of evolving the structure
of the tree. Two types of mutations have been used:

• Subtree mutation (mutation of the structure), that randomly rebuilds a new sub-
tree from a randomly chosen node, applied with probabilitypsm (defined per
tree),

• Point mutation (mutation of nodes content), applied with probabilitypcm (also
defined per tree) that does not modify the structure, but randomly changes the
content of each node of the tree within the set of compatible functions or termi-
nals. The probabilities (defined per node) are detailed in Table I . Real values are
considered separately and undergo a real mutation with probability prm as a mul-

tiplicative perturbation according to aχ2 law of parameterN: x′ = x∑N
i=1N (0,1)2

N
prm andN vary linearly according to generations, from 0.1 (first generation) to
0.5 (last generation) forprm, and from 1 to 1000 forN. This allows starting with
rather infrequent large radius mutations and finish with more frequent mutations
with smaller radius.

Table 1 Probabilities of point mutation operators

From to probability
operatoroperator 0.1
variable variable 0.1
variable constant 0.05
constantvariable 0.05
constantconstantprm: 0.1 to 0.5

N: 1 to 1000

Crossover, subtree and point mutation probabilities vary along evolution accord-
ing to the adapting scheme [19] available in the GPLAB toolbox [59]. pc, psm and
pcm are initially fixed to 1

3, and are updated according statistics of success of the
various operators computed on a tuneable window of past generations.

3.2 Phase estimation using a Parisian GP

Instead of searching for a phase estimator as a single monolithic function, phase
estimation can be split into four combined (and simpler) phase detection trees as
shown in Figure 3. The structures searched are binary outputfunctions (or binarised
functions) that characterise one of the four phases. The individuals are split into four
classes such that individuals of classk are good at characterising phasek. Finally,
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a global solution is made of the 5% best (at least one) individuals of each class, in
order to be able to classify the sample into one of the four previous phases via a
voting scheme (detailed at the end of this section).

Fig. 3 Phase estimation using a Parisian GP. Four classes of phase detectorsare defined: individ-
uals of classk are good at characterising phasek.

3.2.1 Overview of the Parisian GP algorithm

Unlike the classical GP algorithm, the output of Parisian GPalgorithm is not a single
individual but a part of the population. The main loop of the Parisian GP algorithm
consists in first applying reproduction and selection mechanism, and then aggregat-
ing the current individuals in order to build a potential solution to the problem. The
following pseudo code illustrates the principles of a Parisian GP:

Input : Maximum number of evaluations
Output : Aggregation of individuals
Creation of a random initial population
while Maximum number of evaluations not reacheddo

Create a temporary population tmppop using selection,
mutations and crossover
Compute the localfitness of the new temporary population
tmppop
Compute the adjustedfitness of the current population
pop+ tmppop via sharing
Select the best individuals of the current population
pop+ tmppop
Compute the globalfitness of the selected population by
aggregating the best individuals

end
Algorithm 2 : Parisian GP algorithm
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3.2.2 Search space

We now search for formulas of type:I
(

∂ pH
∂ t , ∂ la

∂ t , ∂Km
∂ t , ∂Ba

∂ t

)

with real outputs

mapped to binary outputs, via a sign filtering:(I() > 0) → 1 and(I() ≤ 0) → 0.
The functions (except logical ones) and terminal sets, as well as the genetic opera-
tors, are the same as in the global approach above.

Using the available samples of the learning set, four real values can be com-
puted, in order to measure the capability of an individualI to characterise one phase
(equation 3):

k∈ {1,2,3,4} Fk(I) = 3 ∑
i,phase=k

I(sample(i))
#Samplesphase=k

− ∑
i,phase6=k

I(sample(i))
#Samplesphase6=k

(3)

in other words, if I is good for representing phase k, thenFk(I) > 0 andF6=k(I) < 0.

3.2.3 Local fitness

The local adjusted fitness value,to be maximised, starts with a combination of three
factors (equation 4):

max{F1,F2,F3,F4}×
#Ind

#IndPhaseMax
×

NbMaxNodes
NbNodes

∣

∣

∣

∣

if NbNodes>NbMaxNodes
(4)

The first factor is aimed at characterising if individualI is able to distinguish one
of the four phases. The second factor tends to balance the individuals between the
four phases. The parameter #IndPhaseMaxis the number of individuals represent-
ing the phase corresponding to theargmaxof the first factor. The parameter #Ind is
the total number of different individuals in the population. The third factor is a par-
simony factor for avoiding large structures.NbMaxNodeshas been experimentally
tuned, and is currently fixed to 15, so that evolved structures got enough nodes to
characterise the problem, but not too many, to avoid bloat effect. 15 represented a
good tradeoff between accuracy and performance.

However, this is not the final formula of the local adjusted fitness. The two fol-
lowing subsection add two more factors, a penalising factor(µ) for individuals with
too many neighbours (diversity preservation via a sharing scheme) and a bonus fac-
tor bonusα for the best individuals.

3.2.4 Sharing distance

The set of measurements{F1,F2,F3,F4}, that measures the ability of an individual
to characterise each phase, provides a simplified representation of the search space
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in R4. As the aim of a Parisian evolution is to evolve distinct sub-populations, each
being adapted to one of the four subtasks (to characterise one of the four phases), it
is natural to use an Euclidean distance in this four dimensional phenotype space, as
a basis of a simple fitness sharing scheme as stated in [20].

3.2.5 Aggregation of partial solutions and global fitness

At each generation, the population is shared in four classescorresponding to the
phase each individual characterises the best (the argmax ofmax{F1,F2,F3,F4} for
each individual). In other words, the population is split into four sub-populations
(one for each class) within the population. The 5% best of each class are used via a
voting scheme to decide the phase of each tested sample (see Figure 3). The global
fitness measures the proportion of correctly classified samples on the learning set
(equation 5):

GlobalFit =

∑
learning set

CorrectEstimations

#Samples
(5)

The global fitness is then distributed to individuals who participated in the vote
according to the following formula:LocalFit′ = LocalFit× (GlobalFit+0.5)α .

As GlobalFit ∈ [0,1], multiplying by (GlobalFit + 0.5) > 1 corresponds to a
bonus. The parameterα varies along generations, for the first generations (a third
of the total number of generations)α = 0 (no bonus), and thenα linearly increases
from 0.1 to 1, in order to help the population to focus on the four peaks of the search
space.

Several fitness measures are used to rate individuals. Namely

• the raw fitnessraw f itness, which is the set of four values{F1,F2,F3,F4}, that
measure the ability of the individual to characterise each phase,

• the local fitnesslocal f itness= max(raw f itness) which represents the best char-
acterised phase,

• and the adjusted fitnessad j f itness= local f itness
µ × #IndPhaseMax

#Ind × #NodesMax
#Nodes ×

bonusα , which includes sharing, balance, parsimony and global fitness bonus
terms.

Two sets of indicators are computed at each generation (see Figure 5):

• The sizes of each class, that show if each phase is equally characterised by the
individuals of the population.

• The discrimination capability for each phase, computed on the 5% best individ-

uals of each class as the minimum of:∆ = maxi∈[1,2,3,4]{Fi}−
∑k6=argmax{Fi}

{Fk}

3

The higher the value of∆ , the better the phase is characterised.
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3.2.6 Experimental analysis

Available data were collected from 16 experiments during 40days for each exper-
iment, yielding 575 valid measurements. The data samples are relatively balanced
except for phase 3, which has a longer duration, thus a largernumber of samples: we
have 57 representatives of phase 1, 78 of phase 2, 247 of phase3 and 93 of phase
4. The derivatives ofpH, la, Km and Ba were averaged and interpolated (spline
interpolation) for some “missing” days. Indeed, due to difficulty to collect experi-
mental data, a few values were missing. Finally, logarithmsof these quantities are
considered.

Table 2 Parameters of the GP methods
GP Parisian GP

Population size 1000 1000
Number of generations 100 50
Function set arithmetic and logical

functions
arithmetic functions only

Sharing no sharing σshare= 1 at the beginning,
then linear decrease from 1 to

0.1
αshare= 1 (constant)

The parameters of both GP methods are detailed in TableII . The code has been
developed in Matlab, using the GPLAB toolbox [59]. Comparative results of the
four considered methods (multilinear regression, Bayesian network, GP and Parisian
GP) are displayed in Figure 4, and a typical GP run is analysedin Figure 5.

The multilinear regression algorithm used for comparison works as follows: the
data are modeled as a linear combination of the four variables:

̂Phase(t) = β1 +β2
∂ pH

∂ t
+β3

∂ la
∂ t

+β4
∂Km

∂ t
+β5

∂Ba
∂ t

The 5 coefficients{β1, . . . ,β5} are estimated using a simple least square scheme.
This model was included in the comparison because it was the model previously
used by the biologists in the INCALIN project.

Experiments show that GP outperforms both multilinear regression and Bayesian
network approaches in terms of recognition rates. Additionally the analysis of a typ-
ical Parisian GP run shows that it evolves much simpler structures than the classical
GP. The average size of evolved structures is around 30 nodesfor the classical GP
approach and between 10 and 15 for the Parisian GP.

It has also to be noted in Figure 5 that co-evolution is balanced between the four
phases. The third phase is the most difficult to characterise. This is in accordance
with human experts’ judgement, for which this phase is also the most ambiguous to
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Fig. 4 Average (left) and standard-deviation (right) of recognition percentage on 100 runs for the
4 tested methods, the abscissa represent the size of the test-set

characterise.

The development of a cooperative co-evolution GP scheme (Parisian evolution)
seems very attractive, as it allows the evolution of simplerstructure in less genera-
tions, and yield results that are easier to interpret. Moreover, the computation time
is almost equivalent to both presented methods (100 generations for a classical GP
against 50 generations for a Parisian one), as one “Parisian” generation necessitates
more complex operations, all in all). One can expect a more favourable behaviour
for the Parisian scheme on more complex issues than the phaseprediction prob-
lem, as the benefit of splitting the global solutions into smaller components may be
higher and may yield computational shortcuts (see for example [17]).
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Fig. 5 A typical run of the Parisian GP:
- (a): the evolution with respect to generation number of the 5%best individuals for each phase: the
upper curve of each of the four graphs is for the best individual, the lower curve is for the “worst
of 5% best” individuals.
- (b) left: the distribution of individuals for each phase: thecurves are very irregular but numbers
of representatives of each phases are balanced.
- (b) right: discrimination indicator∆ , which shows that the third phase is the most difficult to
characterise.
- (c): evolution of the recognition rates of learning and testset. The best-so-far recognition rate on
learning set is tagged with a star.
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4 Bayesian Network Structure learning using CCEAs

Bayesian networks structure learning is a NP-Hard problem [13], which has appli-
cations in many domains, as soon as one tries to analyse a large set of samples in
terms of statistical dependence or causal relationship. Inagri-food industries for ex-
ample, the analysis of experimental data using Bayesian networks helps to gather
technical expert knowledge and know-how on complex processes [6].

Evolutionary techniques were used to solve the Bayesian network structure learn-
ing problem, and were facing crucial problems like:

• Bayesian network representation (an individual being a whole structure like in
[37], or a sub-structures like in [45]),

• Fitness function choice like in [45].

Various strategies were used, based on evolutionary programming [3], immune al-
gorithms [34], multi-objective strategies [58], lamarkian evolution [64] or hybrid
evolution [67].

We propose here to use an alternate representation, independence models, in or-
der to solve the Bayesian network structure learning in two steps. Independence
model learning is still a combinatorial problem, but it is easier to embed within
an evolutionary algorithm. Furthermore, it is suited to a cooperative co-evolution
scheme, which allows obtaining computationally efficient algorithms.

4.1 Recall of some probability notions

The joint distribution ofX andY is the distribution of the intersection of the random
variablesX andY, that is, of both random variablesX andY occurring together. The
joint probability of X andY is written P(X,Y). Theconditional probabilityis the
probability of some random variableX, given the occurrence of some other random
variableY and is writtenP(X|Y).

To say that two random variables arestatistically independentintuitively means
that the occurrence of one random variable makes it neither more nor less probable
that the other occurs. If two random variablesX andY are independent, then the
conditional probability ofX givenY is the same as the unconditional probability of
X, that isP(X) = P(X|Y).

Two random variablesX andY are said to beconditionally independentgiven a
third random variableZ if knowing Y gives no more information aboutX once one
knowsZ. Specifically,P(X|Z) = P(X|Y,Z). In such a case we say thatX andY are
conditionally independent givenZ and write itX ⊥⊥Y | Z.
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4.2 Bayesian networks

A Bayesian Network (BN) is a “graph-based model of a joint multivariate proba-
bility distribution that captures properties of conditional independence between ran-
dom variables” as defined by [25]. On the one hand, it is a graphical representation
of the joint probability distribution and on the other hand,it encodes probabilistic
independences between variables. For example, a Bayesian network could repre-
sent the probabilistic relationships between diseases andsymptoms. Given symp-
toms (resp. diseases), the network can be used to compute theprobabilities of the
presence of various diseases (resp. symptoms). These computations are called prob-
abilistc inference.

Formally, a Bayesian network is represented by a directed acyclic graph (DAG)
whose nodes are random variables, and whose missing edges encode conditional
independences between the variables.

E A

B D

C

Fig. 6 Directed Acyclic Graph

The set of parent nodes of a nodeXi is denoted bypa(Xi). In a Bayesian network,
the joint probability distribution of the random variablescan be written using the
graph structure as the product of the conditional probability distributions of each
node given its parents:

P(X1,X2, . . . ,Xn) =
n
∏
i=1

P(Xi |pa(Xi))

For instance, the joint distribution represented as a Bayesian network in Figure 6
can be written :P(A,B,C,D,E) = P(A) ·P(B|E,A) ·P(C|B) ·P(D|A) ·P(E).

The very graph is called the structure of the Bayesian network and the values of
conditional probabilities (e.g.P(A = 0)) for each node are called the parameters of
the network.

4.2.1 Uses of Bayesian networks

Using a Bayesian network can save considerable amounts of memory, if the depen-
dencies in the joint distribution are sparse. For example, anaive way of storing the
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conditional probabilities of 10 binary variables as a tablerequires storage space for
210 = 1024 values. If the local distributions of no variable depends on more than
3 parent variables, the Bayesian network representation only needs to store at most
10∗23 = 80 values. One advantage of Bayesian networks is that it is intuitively eas-
ier for a human to understand (a sparse set of) direct dependencies and local distri-
butions than complete joint distribution. The graph structure of a Bayesian network
also allows to dramatically speed up the probabilistic inference in Bayesian network
(i.e. the computation ofP(Xi |Xj)).

Lastly, more than just a computing tool, Bayesian networks can be used to rep-
resent causal relationships and appear to be powerful graphical models of causality.

4.2.2 Parameter and structure learning

The Bayesian network learning problem has two branches: theparameterlearning
problem (in other words, how to find the probability tables ofeach node) and the
structurelearning problem (in other words, how to find the graph representing the
Bayesian network), following the decomposition of the two constitutive parts of a
Bayesian network: its structure and its parameters.

There already exists algorithms specially suited to the parameter learning prob-
lem, like expectation-maximisation (EM) that is used for finding maximum likeli-
hood estimates of parameters.

Learning the structure is a more challenging problem because the number of pos-
sible Bayesian network structures (NS) grows superexponentially with the number
of nodes [57]. For example,NS(5) = 29281 andNS(10) = 4.2×1018. A direct ap-
proach is intractable for more than 7 or 8 nodes, it is thus necessary to use heuristics
in the search space.

In a comparative study by [23], authors identified some currently used structure
learning algorithms, namelyPC [60] or IC/IC∗ [50] (causality search using statisti-
cal tests to evaluate conditional independence),BN Power Constructor (BNPC)[11]
(also uses conditional independence tests) and other methods based on scoring cri-
terion, such asMinimal weight spanning tree (MWST)[16] (intelligent weighting of
the edges and application of the well-known algorithms for the problem of the min-
imal weight tree),K2 [18] (maximisation ofP(G|D) using Bayes and a topological
order on the nodes),Greedy search[12] (finding the best neighbour and iterate) or
SEM [24] (extension of the EM meta-algorithm to the structure learning problem).
However that may be, the problem of learning an optimal Bayesian network from a
given dataset is NP-hard [13].
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4.2.3 The PC algorithm

PC, the reference causal discovery algorithm, was introduced by [60]. A similar al-
gorithm, IC, was proposed simultaneously by [50]. It is based on chi-square tests
to evaluate the conditional independence between two nodes. It is then possible to
rebuild the structure of the network from the set of discovered conditional inde-
pendences. PC algorithm starts from a fully connected network and every time a
conditional independence is detected, the corresponding edge is removed. Here are
the first detailed steps of this algorithm:

• Step 0: Start with a complete undirected graphG
• Step 1: Test all conditional independences of order 0 (i.ex⊥⊥ y | /0 wherex andy

are two distinct nodes ofG). If x⊥⊥ y then remove the edgex−y.
• Step 2: Test all conditional independences of order 1 (i.ex⊥⊥ y | zwherex, y, and

z are three distinct nodes ofG). If x⊥⊥ y | z then remove the edgex−y.
• step 3: Test all conditional independences of order 2 (i.ex⊥⊥ y | {z1,z2} wherex,

y, z1 andz2 are four distinct nodes ofG). If x⊥⊥ y | {z1,z2} then remove the edge
x−y.

• . . .
• Step k: Test all conditional independences of orderk (i.e x ⊥⊥ y | {z1,z2, . . . ,zk}

wherex,y,z1,z2, . . . ,zk arek+ 2 distinct nodes ofG). If x ⊥⊥ y | {z1,z2, . . . ,zk}
then remove the edge betweenx−y.

• Next steps take particular care to detect some structures called V-structures(see
section 4.2.4) and recursively detect orientation of the remaining edges.

The first stage is learning associations between variables for constructing an
undirected structure. This requires a number of conditional independence test grow-
ing exponentially with the number of nodes. This complexityis reduced to polyno-
mial complexity by fixing the maximal number of parents a nodecan have. It is of
the order ofNk, whereN is the size of the network andk is the upper bound on the
fan-in. This implies that the value ofk must remain small when dealing with big
networks. In practice,k is often limited to 3. This value will be used in the sequel.

4.2.4 Independence models

In this work, we do not work directly on Bayesian networks buton a more general
model calledIndependence Model(IM), which can be seen as the underlying model
of Bayesian networks and defined as follows:

• Let N be a non-empty set of variables, thenT(N) denotes the collection of all
triplets〈X,Y|Z〉 of disjoint subsets ofN, X 6= /0 andY 6= /0. The class of elemen-
tary tripletsE(N) consists of〈x,y|Z〉 ∈ T(N), wherex,y ∈ N are distinct and
Z ⊂ N\{x,y}.
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• Let P be a joint probability distribution overN and〈X,Y|Z〉 ∈ T(N). 〈X,Y|Z〉
is called anindependence statement(IS) if X is conditionally independent ofY
givenZ with respect toP (i.e.,X ⊥⊥Y | Z)

• An independence model (IM) is a subset ofT(N): each probability distribution
P defines an IM, namely, the model{〈X,Y|Z〉 ∈ T(N) ; X ⊥⊥ Y | Z}, called the
independence model3 induced byP.

As we have seen, a Bayesian network represents a factorisation of a joint proba-
bility distribution, but there can be many possible structures that represents the same
probability distribution.

For instance, the tree structures in Figure 7 encode the sameindependence state-
mentA⊥⊥ B |C. However, the structure in Figure 8, calledV-structure(or collider),
is not Markov equivalent to the three first ones.

A B

C

A B

C

A B

C

P(A|C)P(B|C)P(C) P(A|C)P(B|C)P(C) P(A|C)P(B)P(C|B)
A⊥⊥ B |C A⊥⊥ B |C A⊥⊥ B |C

Fig. 7 Markov equivalent structures

A B

C

P(A)P(B)P(C|A,B)
NOT(A⊥⊥ B |C) butA⊥⊥ B

Fig. 8 V-structure

Two structures are said to beMarkov equivalentif they represent the same In-
dependence Model. Particularly, an algorithm to learn the structure of a Bayesian
network can not choose between two markov-equivalent structures.

To summarize, an independence model is the set of all the independence state-
ments, that is the set of all〈X,Y|Z〉 satisfied byP, and different Markov-equivalent
Bayesian networks induce the same independence model. By following the paths in
a Bayesian network, it is possible (even though it can be combinatorial) to find a

3 For more details about Independence Models and their properties, see [49].
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part of its independence model using algorithms based on directional separation (d-
separation) or moralization criteria. Reciprocally, an independence model is a guide
to produce the structure of a Bayesian network.

Consequently, as the problem of finding an independence model can be turned
to an optimisation problem, we investigate here the use of anevolutionary algo-
rithm. More precisely, we build an algorithm that let a population of triplets〈X,Y|Z〉
evolve until the whole population comes near to the independence model, which cor-
responds to a cooperative co-evolution scheme.

4.3 Evolution of an Independence Model

As in section 3, our algorithm (Independence Model ParisianEvolutionary Algo-
rithm - IMPEA) is aParisiancooperative co-evolution. However, in a pure Parisian
scheme (Figure 1), a multi-individuals evaluation (globalfitness computation) is
done at each generation and redistributed as a bonus to the individuals who partic-
ipated in the aggregation. Here, IMPEA only computes the global evaluation at the
end of the evolution, and thus do not use any feedback mechanism. This approach,
which is an extreme case of the Parisian CCEA, has already been used with success
for example in real-time evolutionary algorithms, such as thefliesalgorithm [41].

IMPEA is a two steps algorithm. First, it generates a subset of the independence
model of a Bayesian network from data by evolving elementarytriplets 〈x,y|Z〉,
wherex andy are two distinct nodes andZ is a subset of the other ones, possibly
empty. Then, it uses the independence statements that it found at the first step to
build the structure of a representative network.

4.3.1 Search space and local fitness

Individuals are elementary triplets〈x,y|Z〉. Each individual is evaluated through a
chi-square test of independence which tests the null hypothesisH0: “The nodesx
andy are independent givenZ”. The chi-square statisticχ2 is calculated by finding
the difference between each observedOi and theoreticalEi frequencies for each of
then possible outcomes, squaring them, dividing each by the theoretical frequency,

and taking the sum of the results:χ2 = ∑n
i=1

(Oi−Ei)
2

Ei
. The chi-square statistic can

then be used to calculate ap-value pby comparing the value of the statisticχ2 to a
chi-square distribution withn−1 degrees of freedom, as represented on Figure 9.

p represents the probability to make a mistake if the null hypothesis is not ac-
cepted. It is then compared to a significance levelα (0.05 is often chosen as a cut-off
for significance) and finally the independence is rejected ifp< α. The reader has to
keep in mind that rejectingH0 allows one to conclude that the two variable are de-
pendent, but not rejectingH0 means that one cannot conclude that these two variable
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Fig. 9 Chi-square test of independence

are dependent (which is not exactly the same as claiming thatthey are independent).
Given that the higher the p-value, the stronger the independence,p seems to be a
good candidate to represent the local fitness (which measures the quality of individ-
uals). Nevertheless, this fitness suffers from two drawbacks:

• When dealing with small datasets, individuals with long constraining setZ tends
to have good p-values only because dataset is too small to getenough samples to
test efficiently the statementx⊥⊥ y | Z.

• Due to the exponential behaviour of the chi-square distribution, its tails vanishes
so quickly that individuals with poor p-values are often rounded to 0, making
then indistinguishable.

First, p has to be adjusted in order to promote independence statements with
smallZ. This is achieved by setting up a parsimony term as a positivemultiplicative
malusparcim(#Z) which decrease with #Z, the number of nodes inZ. Then, when
p< α we replace the exponential tail with something that tends tozero slower. This
modification of the fitness landscape allows avoidingplateauswhich would prevent
the genetic algorithm to travel all over the search space. Here is the adjusted local
fitness4:

Ad jLocalFitness=

{

p× parcim(#Z) i f p ≥ α
α × parcim(#Z)×

X2
α

X2 i f p < α

4 Note:This can be viewed as an “Ockham’s Razor” argument.
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4.3.2 Genetic operators

The genome of an individual, being〈x,y|Z〉 wherex andy are simple nodes andZ
is a set of nodes is straightforward: It consists in an array of three cells (see Figure
10), the first one containing the index of the nodex, the second cell containing the
index ofy and the last one is the array of the indexes of the nodes inZ.

Fig. 10 Representation of〈x,y|Z〉

This coding implies specific genetic operators because of the constraints resting
upon a chromosome: there must not be doubles appearing when doing mutations
or crossovers. A quick-and-dirty solution would have been to first apply classical
genetic operators and then apply arepair operatora posteriori. Instead, we propose
wise operators (which do not create doubles), namely two types of mutations and an
robust crossover.

• Genome content mutation
This mutation operator involves a probabilitypmG that an arbitrary node will be
changed from its original state. In order to avoid the creation of doubles, this
node can be muted into any nodes inN except the other nodes of the individual,
but including itself (see Figure 11).

Fig. 11 Genome content mutation

• Add/remove mutation
The previous mutation randomly modifies the content of the individuals, but does
not modify the length of the constraining setZ. We introduce a new mutation
operator calledadd/remove mutation, represented on Figure 12, that allows ran-
domly adding or removing nodes inZ. If this type of mutation is selected, with
probability PmAR, then new random nodes are either added with a probability
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PmAdd or removed with 1−PmAdd. These probabilities can vary along genera-
tions. Moreover, the minimal and the maximal number of nodesallowed inZ can
evolve as well along generations, for tuning the growth ofZ.

Fig. 12 Add/remove mutation

• Crossover
The crossover consists in a simple swapping mechanism between x, y and Z.
Two individuals〈x,y|Z〉 and〈x′,y′|Z′〉 can exchangex or y with probability pcXY

andZ with probability pcZ (see Figure 13). When a crossover occurs, only one
swapping amongx↔ x′, y↔ y′, x↔ y′, y↔ x′ andZ↔ Z′ is selected via a wheel
mechanism which implies that 4pcXY + pcZ = 1. If the exchange is impossible,
then the problematic nodes are automatically muted in orderto keep clear of
doubles.

4.4 Sharing

So as not to converge to a single optimum, but enable the genetic algorithm to iden-
tify multiple optima, we use a sharing mechanism that maintains diversity within
the population by creatingecological niches. The complete scheme is described in
[20] and is based on the fact that fitness is considered as a shared resource, that is
to say that individuals having too many neighbours are penalised. Thus we need a
way to compute the distance between individuals so that we can count the number
of neighbours of a given individual. A simple Hamming distance was chosen: two
elementary triplets〈x,y|Z〉 and〈x′,y′|Z′〉 are said to be neighbours if they test the
same two nodes (i.e.,{x,y} = {x′,y′}), whateverZ. Finally, dividing the fitness of
each individual by the number of its neighbours would resultin sharing the pop-
ulation into sub-populations whose size is proportional tothe height of the peak
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Fig. 13 Robust crossover

they are colonising [26]. Instead, we take into account the relative importance of an
individual with respect to its neighbourhood, and the fitness of each individual is
divided by the sum of the fitnesses of its neighbours [42]. This scheme allows one
to equilibrate the sub-populations within peaks, whatevertheir height.

4.5 Immortal archive and embossing points

Recall that the aim of IMPEA is to construct a subset of the independence model,
and thus the more independence statements we get, the better. Using a classical
Parisian Evolutionary Algorithm scheme would allow evolving a number of inde-
pendence statements equal to the population size. In order to be able to evolve larger
independence statements sets, IMPEA implements animmortal archivethat gather
the best individuals found so far. An individual〈x,y|Z〉 can become immortal if any
of the following rules applies:

• Its p-value is equal to 1 (or numerically greater than 1− ε, whereε is the preci-
sion of the computer)

• Its p-value is greater than the significance level andZ = /0
• Its p-value is greater than the significance level and〈x,y| /0〉 is already immortal
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This archive serves two purposes: the most obvious one is that at the end of the
generations, not only we get all the individuals of the current population but also all
the immortal individuals, which can make a huge difference.But this archive also
plays a very important role asembossing points: when computing the sharing coef-
ficient, immortal individuals that are not in the current population are added to the
neighbours counting. Therefore a region of the search spacethat has already been
explored but that has disappeared from the current population ismarked as explored
since immortals individuals count as neighbours and thus penalise this region, en-
couraging the exploration of other zones.

4.5.1 Clustering and partial restart

Despite the sharing mechanism, we experimentally observedthat some individuals
became over-represented within the population. Thereforewe add a mechanism to
reduce this undesirable effect: if an individual has too many redundant representa-
tives then the surplus is eliminated and new random individuals are generated to
replace the old ones.

4.6 Description of the main parameters

The Table 3 describes the main parameters of IMPEA and their typical values or
range of values, in order of appearance in the text above. Some of these parameters
are scalars, like the number of individuals, and are constant along the whole evolu-
tion process. Others parameters, like the minimum or maximum number of nodes
in Z, are arrays indexed by the number of generations, allowing these parameter to
follow a profile of evolution.

4.7 Bayesian network structure estimation

The last step of IMPEA consist in reconstructing the structure of the Bayesian net-
work. This is achieved by aggregating all the immortal individuals and only thegood
onesof the final population. An individual〈x,y|Z〉 is said to begood if its p-value
does not allow rejecting the null hypothesisx ⊥⊥ y | Z. There are two strategies in
IMPEA: a pure one, calledP-IMPEA, which consists in strictly enforcing indepen-
dence statements and a constrained one, called C-IMPEA, which adds a constraint
on the number of desired edges.
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Name Description
Typical
value

MaxGens Number of generations 50. . .200
Ninds Number of individuals 50. . .500
Alpha Significance level of theχ2 test 0.01. . .0.25

Parcim (#Z)
Array of parsimony coefficient (decreases with the

length ofZ)
0.5. . .1

PmG Probability of genome content mutation 0.1/(2+#Z)

PmAR Probability of adding or removing nodes inZ 0.2. . .0.5

PmAdd (#Gen)
Array of probability of adding nodes inZ along

generations
0.25. . .0.75

MinNodes
(#Gen)

Array of minimal number of nodes inZ along
generations

0. . .2

MaxNodes
(#Gen)

Array of maximal number of nodes inZ along
generations

0. . .6

Pc Probability of crossover 0.7
PcXY Probability of swappingx andy 1/6
PcZ Probability of swappingZ 1/3

Epsilon Numerical precision 10−5

MaxRedundant
Maximal number of redundant individuals in the

population
1. . .5

Table 3 Parameters of IMPEA. Values are chosen within their typical range depending on the size
of the network and the desired computation time.

4.7.1 Pure conditional independence

Then, as in PC, P-IMPEA starts from a fully connected graph, and for each individ-
ual of the aggregated population, applies the rule“x ⊥⊥ y | Z ⇒ no edge between x and y”

to remove edges whose nodes belong to an independence statement. Finally, the re-
maining edges (which have not been eliminated) constitute the undirected structure
of the network.

4.7.2 Constrained edges estimation

C-IMPEA needs an additional parameter which is the desired number of edges in the
final structure. It proceeds by accumulation: it starts froman empty adjacency matrix
and for each〈x,y|Z〉 individual of the aggregated population, it adds its fitnessto the
entry(x,y). An example of a matrix obtained this way is shown on Figure 14.

At the end of this process, if an entry (at the intersection ofa row and a column)
is still equal to zero, then it means that there was no independence statement with
this pair of nodes in the aggregated population. Thus these entries exactly corre-
spond to the strict application of the conditional independences. If an entry has a
low sum, then it is an entry for which IMPEA found only a few independence state-
ments (and/or independence statements with low fitness) andthus there is a high
expectancy of having an edge between its nodes. Therefore toadd more edges in the
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Fig. 14 Accumulated adjacency matrix of a network with 27 nodes (from Insurance network).

final structure (up to the desired number of edges), we just have to select edges with
the lowest values and construct the corresponding network.

This approach seems to be more robust since it allows some “errors” in the chi-
square tests, but strictly speaking, if an independence statement is discovered, there
cannot be any edge between the two nodes.

4.8 Experiments and results

Prior to a test on the the cheese-ripening data, the experimental analysis has been
first performed on simulated data, where the true BN structure is known. A first ex-
periment has been done on a toy-problem (section 4.8.1) in order to analyse the be-
haviour of IMPEA on a case where the complexity of the dependencies is controlled
(i.e. where there is one independence statement that involves a long conditional set
Z). A second test has been made on a classical benchmark of the domain, the insur-
ance network (section 4.8.2), where input data are generated from a real-world BN.
The test on cheese ripening data is detailed in section 4.8.3.

4.8.1 Test case: comb network

To evaluate the efficiency of IMPEA, we forge a test-network which looks like a
comb. A n-comb network hasn+ 2 nodes:x, y, andz1,z2, . . . ,zn, as one can see
on Figure 15. The Conditional Probability Tables (CPT) are filled in with a uniform
law. It can be seen as a kind of classifier: given the inputz1,z2, . . . ,zn, it classifies the
output asx or y. For example, it could be a classifier that accepts a person’ssalary
details, age, marital status, home address and credit history and classifies the person
as acceptable/unacceptable to receive a new credit card or loan.
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Fig. 15 A n-comb network

The interest of such a network is that its independence modelcan be generated
(using semi-graphoid rules) from the following independence statements:

∀i, j such asi 6= j,zi ⊥⊥ zj

x⊥⊥ y | {z1,z2, . . . ,zn}

Thus it has only one complex independence statement and a lotof simple (short)
ones. In particular, the only way to remove the edge betweenx andy using statistical
chi-square tests is to test the triplet〈x,y | {z1,z2, . . . ,zn}〉. This cannot be achieved by
the PC algorithm as soon ask < n (recall thatk is limited to 3 due to combinatorial
complexity).

Typical run: We choose to test P-IMPEA with a simple 6-comb network. It has
been implemented using an open source toolbox, theBayes Net Toolbox for Matlab
[44] available athttp://bnt.sourceforge.net/. We draw our inspiration
from PC and initialise the population with individuals withan empty constraining
set and let it grow along generations up to 6 nodes, in order tofind the independence
statementx⊥⊥ y | {z1, . . . ,z6}. As shown on Figure 16, the minimal number of nodes
allowed inZ is always 0, and the maximal number is increasing on the first two third
of the generations and is kept constant to 6 on the last ones. The average number
of nodes in the current population is also slowly rising up but remains rather small
since in this example, there are a lot of smalleasy to findindependence statements
and only a single big one.

The correct structure (Figure 17) is found after 40 (out of 50) generations.
The Figure 18 represents the evolution of the number of errors along generations.

The current evolved structure is compared with the actual structure: anaddededge
is an edge present in the evolved structure but not in the actual comb network, and
a deletededge is an edge that has been wrongly removed. The total number of
errors is the sum of added and deleted edges. Note that even ifthe number of errors
of the discovered edges is extracted at each generation, it is by no means used by
IMPEA or reinjected in the population because this information is only relevant in
that particular test-case where the Bayesian network that generated the dataset is
known.
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Fig. 16 Evolution of Minimal, Maximal and Average number of nodes inZ along generations
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Fig. 17 Final evolved structure for the comb network
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Fig. 18 Evolution of the number of erroneous edges of the structure along generations

Statistical results: The previous example gives an idea of the behaviour of P-
IMPEA, but to compare it fairly with PC we must compare them not only over mul-
tiple runs but also with respect to the size of the dataset. Sowe set up the following
experimental protocol:

• A 4-comb network is created and we use the same Bayesian network (structure
and CPT) throughout the whole experiment.

• We chose representative sizes for the dataset:
{500,1000,2000,5000,10000}, and for each size, we generate the corresponding
number of cases from the comb network.

• We run 100 times both PC and P-IMPEA, and extract relevant information (see
Tables 4 and 5):
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– How many edges were found? Among these, how many were erroneous?
(added or deleted)

– What is the percentage of runs in which thex−y edge is removed?

• PC is tuned with a fan-ink limited to 3 (a larger fan-in is not used as PC is per-
forming a full combinatorial research) and P-IMPEA is tunedwith 50 generation
of 50 individuals in order to take the same computational time as PC. 50 genera-
tion are more than enough to converge to a solution due to the small size of the
problem. Both algorithms share the same significance levelα.

The actual network contains 8 edges and 6 nodes. Therefore the number of possi-
ble alternative is 26 = 64 and if we roughly want to have 30 samples per possibility,
we would need approximatively 64∗ 30≈ 2000 samples. That explains why per-
formances of the chi-square test are very poor with only 500 and 1000 cases in the
dataset. Indeed, when the size of the dataset is too small, PCremoves thex−y edge
(see the last column of Table 4) while it does not even test〈x,y | {z1,z2,z3,z4}〉
because it is limited byk to 3 nodes inZ.
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Fig. 19 Number of erroneous edges (added+deleted) for PC and P-IMPEA, depending on the size
of the dataset

Regarding the global performance, the Figure 19 puts up the average number of
erroneous nodes (eitheraddedor deleted) of both algorithms. As one can expect, the
number of errors decreases with the size of the dataset, and it is clear that P-IMPEA
clearly outperforms PC in every case.

Cases Edges Added Removed Errors x-y?
500 5.04±0.85 0.38±0.50 3.34±0.78 3.72±1.01 97%
1000 6.50±1.24 0.66±0.71 2.16±1.01 2.82±1.23 83%
2000 8.09±1.18 1.27±0.80 1.18±0.68 2.45±0.91 39%
5000 9.71±0.74 1.93±0.57 0.22±0.46 2.15±0.73 0%
10000 9.84±0.58 1.84±0.58 0±0 1.84±0.58 0%

Table 4 Averaged results of PC algorithm after 100 runs

Finally, if one has a look to the average number of discoverededges, it is al-
most equal to 8 (which is the actual number of edges in the 4-comb structure) for
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Cases Edges Added Removed Errors x-y?
500 6.64±0.79 0.05±0.21 1.73±1.90 1.78±1.94 100%
1000 7.32±0.91 0.18±0.50 0.78±1.01 0.96±1.24 100%
2000 8.87±1.04 0.24±0.51 0.29±0.60 0.53±0.82 97%
5000 8.29±0.32 0.30±0.59 0.03±0.17 0.33±0.63 90%
10000 8.27±0.31 0.27±0.54 0±0 0.27±0.54 89%

Table 5 Averaged results of P-IMPEA algorithm after 100 runs

P-IMPEA (Table 5) whereas it is greater than 9 for the PC algorithm since it can’t
remove thex−y edge (Table 4).

4.8.2 Classical benchmark: the Insurance Bayesian network

Insurance is a network for evaluating car insurance risks developped by [7]. The
Insurance Bayesian network contains 27 variables and 52 arcs. It is a large instance.
A database of 50000 cases generated from the network has beenused for the exper-
iments below.

Once again, we start from a population with smallZ and let it increase up to
4 nodes. The Figure 20 illustrates this growth: the average size of the number of
nodes inZ of the current population follows the orders given by the minimum and
the maximum values.
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Fig. 20 Evolution of Minimal, Maximal and Average number of nodes inZ along generations

Concerning the evolution of the number of erroneous edges represented on Fig-
ure 21, it quickly decreases during the first half of the generation (the completely
connected graph has more than 700 edges) and then stagnates.At the end, P-IMPEA
finds 39 edges out of 52 among which there is no added edge, but 13 which are
wrongly removed. It is slightly better thanPC which also wrongly removes 13
edges, but which adds one superfluous one.

The best results are obtained with C-IMPEA and a desired number of edges equal
to 47. Then, only 9 errors are made (see Table 6). When asking for 52 edges, the
actual number of edges in the Insurance network, it makes 14 errors (7 additions
and 7 deletions).
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Fig. 21 Evolution of the number of erroneous edges of the structure along generations

Algorithm EdgesAdded RemovedErrors
PC 40 1 13 14

P-IMPEA 39 0 13 13
C-IMPEA 47 2 7 9
C-IMPEA 52 7 7 14

Table 6 Number of detected edges for all algorithms

4.8.3 Real Dataset: Cheese ripening data from the INCALIN project

The last step is to test our algorithm on real data. Our aim is to compare the result of
IMPEA with a part of the dynamic Baysian network, already described at section 3,
built with human expertise in the scope of the INCALIN project. We are interested
in the part of the network that predicts the current phase knowing the derivatives of
some bacteria proportions. We used the same data as in the first part of the report
(see section 3.2.6), made of the derivatives ofpH, la, Km andBa and estimation of
the current phase done by an expert.

After 10 generations of 25 individuals each, P-IMPEA converges to a network
whose structure is almost the same as the one proposed by expert. As one can see
on the right of Figure 22, no extra edge is added, but one edge is missing, between
the derivative ofla and the phase.

4.9 Analysis

We compared performances on the basis of undirected graphs produced by both
algorithms. The edge directions estimation has not been yetprogrammed in IMPEA,
this will be done in future developments, using a low combinatorial strategy similar
to PC. Comparisons between both algorithms do not depend on this step.

The two experiments of section 4.8 prove that IMPEA favourably compares to
PC, actually, besides the fact that IMPEA relies on a convenient problem encoding,
PC performs a deterministic and systematic search while IMPEA uses evolutionary
mechanisms to prune computational efforts and to concentrate on promising parts
of the search space. The limitation of PC according to problem size is obvious in the
first test (Comb network): PC is unable to capture a complex dependency, even on a



36 Olivier Barrière, Evelyne Lutton et al.

(a) Dynamic Bayesian Network proposed by
cheese ripening experts.

dkm dla

dpH dBa

phase(t+1)

(b) Results of P-IMPEA.

Fig. 22 Comparison between the model proposed by experts and the networkfound by IMPEA on
a real dataset from the INCALIN project.

small network. Additionally it is to be noticed that IMPEA better resists to a current
problem of real life data, that is the insufficient number of available samples.
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5 Conclusion

Parisian CCEAs and cooperative co-evolution in general, when applicable, yield ef-
ficient and robust algorithms. As we have seen in this chapter, the main concern
is the design of adequate representations for cooperative co-evolution schemes, in
other words, representations that allow a collective evolution mechanism. One has
to build an evolution mechanism that uses pieces of solutions instead of complete
solutions as individual. It is also needed to evaluate the pieces of solutions (local
fitness) before being able to select the best pieces that can be considered as compo-
nents of a global solution.

In the example of section 3, we first designed a classical GP, where the phase
estimator was searched as a single best “monolithic” function. Although it already
outperforms the previous other methods, we obtained additional improvements by
splitting the phase estimation into four combined (and simpler) “phase detectors”.
We actually used additional a priori informations about theproblem. The structures
evolved here were binary output functions that characterised one of the four phases.
Their aggregation was made via a robust voting scheme. The resulting phase de-
tector has almost the same recognition rate as the classicalGP but with a lower
variance, evolves simpler structure during less generations, and yield results that are
easier to interpret.

In section 4, the cooperative coevolution algorithm IMPEA has allowed over-
coming a known drawback of the classical approach, that is tofind an efficient rep-
resentation of a direct acyclic graph. We have shown that thecooperative scheme
is particularly adapted to an alternate representation of Bayesian Networks: Inde-
pendence Models (IM). IM represent data dependencies via a set of Independence
Statements (IS) and IS can directly be considered as individuals of a CCEA.

The major difficulty, which is to build a Bayesian Network representative at each
generation has been overcome for the moment by a scheme that only built a global
solution at the end of the evolution (second step of IMPEA). Future work on this
topic will be focused on an improvement of the global fitness management within
IMPEA. The major improvement of IMPEA is that it only performs difficult com-
binatorial computations when local mechanisms have pushedthe population toward
“interesting” area of the search space, thus avoiding to make complex global compu-
tations on obviously “bad” solutions. In this sense, CCEAs take into account a priori
information to avoid computational waste, in other words, complex computations in
unfavourable areas of the search space.

Table 7 gives an overview of the features of the two CCEAs schemes presented
in this chapter. There are some major differences between the two approaches.

• With respect to the nature of the cooperation within the population: the Parisian
phase prediction is relying on components that are structured in 4 clusters (each
individual only votes for the phase it characterises the best), while IMPEA col-
lects the best individuals of its population in an archive tobuild the global inde-
pendence model.
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Parisian Phase Prediction IMPEA
Individuals Phase predictors IS : Independence Statements〈x,y|Z〉

Population/groups Classifier IM : Independence Model
Nb of cooperating 4 variable

components
Aggregation clustering + selection of the 5% best at the end of the evolution only
Local fitness capability to characterise a phase adjustedp-value

max{F1,F2,F3,F4} × pressure toward
× pressure toward simple structure small conditional parts

Global fitness voting scheme none
+ evaluation on the learning set

Sharing Euclidean distance on{F1,F2,F3,F4} Hamming distance on{x,y}
Specific features variable population size archive

inflation / deflation embossing points

Table 7 Features of the two Parisian schemes

• With respect to the synchonisation of the global fitness calculation: the Parisian
phase prediction computes a global fitness at each generation and use a bonus
distribution mechanism, while IMPEA only relies on local calculations at each
generation. The global calculation is made only once at the end of the evolution.

It is interesting to note that IMPEA may be considered as an incomplete Parisian
scheme, as it does not use any global calculation. Future work on this algorithm will
be aimed at evaluating if a global calculation may accelerate its convergence and ro-
bustness. Note however that for instance the fly algorithm [63, 41] does not use any
global fitness either, but is able to provide extremely rapidresults: the cooperation
mechanisms may operate in some cases without global fitness.

The common characteristics of these two examples is that thecooperative scheme
has allowed representing in an indirect way some complex structures (classification
rules in the first example and Bayesian Networks in the secondone). This way of
exploiting the artificial evolution scheme is versatile enough to facilitate the integra-
tion of constraints and the development of various strategies (archive and emboss-
ing points as in section 4, or variable population size as stated in [5] for instance).
The experiments described in this chapter join previous studies on “Parisian evo-
lution”, that experimentally proved that very efficient algorithms can be built on
this cooperation-coevolution basis, in terms of rapidity [41], or in terms of size and
complexity of the problems [17, 63].
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Lyon, France (2008)

52. Popovici, E., Jong, K.D.: The effects of interaction frequency on the optimization performance
of cooperative coevolution. In: Proceedings of Genetic andEvolutionary Computation Con-
ference, GECCO 2006. Seattle, Washington, USA (2006)

53. Potter, M., Jong, K.D.: A cooperative coevolutionary approach to function optimization. In:
Parallel Problem Solving from Nature (PPSN III), Lecture Notes in Computer Science 866,
pp. 249–257. Springer, Jerusalem, Israel (1994)

54. Potter, M., Jong, K.D.: Cooperative coevolution: An architecture for evolving coadapted sub-
components. Evolutionary Computation8(1), 1–29 (2000)

55. Potter, M., Jong, K.D.: The coevolution of antibodies forconcept learning. In: Parallel Prob-
lem Solving from Nature (PPSN V), Lecture Notes in Computer Science 1498, pp. 530–539.
Springer, Amsterdam, The Netherlands (2008)

56. Riahi, M., Trelea, I., Leclercq-Perlat, M., Picque, D.,Corrieu, G.: Model for changes in weight
and dry matter during the ripening of a smear soft cheese under controlled temperature and
relative humidity. International Dairy Journal17, 946–953 (2000)

57. Robinson, R.: Counting unlabeled acyclic digraphs. In: Combinatorial Mathematics V: Pro-
ceedings of the Fifth Australian Conference, pp. 28–43. Springer, Melbourne, Australia (2000)

58. Ross, J., Zuviria, E.: Evolving dynamic bayesian networks with multi-objective genetic algo-
rithms. Applied Intelligence26(1), 13–23 (2007)

59. Silva, S.: GPLAB A Genetic Programming Toolbox for MATLAB,
http://gplab.sourceforge.net/ (2008)

60. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, second edn. The
MIT Press (2001)

61. Tarantilis, C., Kiranoudis., C.: Operational research andfood logistics. Journal of Food Engi-
neering70(3), 253–255 (2005)



42 Olivier Barrière, Evelyne Lutton et al.

62. Tonda, A., Lutton, E., Squillero, G.: Lamps : A test problemfor cooperative coevolution. In:
NICSO 2011, the 5th International Workshop on Nature InspiredCooperative Strategies for
Optimization, October 20-22, Cluj Napoca, Romania (2011)

63. Vidal, F., Lazaro-Ponthus, D., Legoupil, S., Louchet, J.,Lutton, E., Rocchisani, J.M.: Artificial
evolution for 3d PET reconstruction. In: Proceedings of the 9th international conference on
Artificial Evolution (EA’09). Strasbourg, France (2009)

64. Wang, S., Li., S.: Learning bayesian networks by lamarckian genetic algorithm and its appli-
cation to yeast cell-cycle gene network reconstruction from time-series microarray data. In:
Proceedings of BioADIT 2004 : Biologically inspired approaches to advanced information
technology, pp. 49–62. Lausanne, Suisse (2004)

65. Wiegand, R., Liles, W., Jong, K.D.: Analyzing cooperativecoevolution with evolutionary
game theory. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,
pp. 1600–1605. Honolulu, Hawaii (2000)

66. Wiegand, R., Potter, M.: Robustness in cooperative coevolution. In: GECCO ’06: Proceedings
of the 8th annual conference on Genetic and evolutionary computation. Seattle, Washington,
USA (2006)

67. Wong, M., Leung, K.: An efficient data mining method for learning bayesian networks using
an evolutionary algorithm-based hybrid approach. IEEE transactions on evolutionary compu-
tation8, 378–404 (2004)


	Cooperative coevolution  for agrifood process modeling
	Olivier Barrière, Evelyne Lutton,   Pierre-Henri Wuillemin,   Cédric Baudrit, Mariette Sicard and Nathalie Perrot
	Introduction
	Modeling agri-food industrial processes
	The Camembert-cheese ripening process
	Modeling expertise on cheese ripening

	Phase estimation using GP
	Phase estimation using a classical GP
	Phase estimation using a Parisian GP

	Bayesian Network Structure learning using CCEAs
	Recall of some probability notions
	Bayesian networks
	Evolution of an Independence Model
	Sharing
	Immortal archive and embossing points
	Description of the main parameters
	Bayesian network structure estimation
	Experiments and results
	Analysis

	Conclusion
	References



