
Interactive Random Graph Generation

with Evolutionary Algorithms

Benjamin Bach1, André Spritzer2, Evelyne Lutton1, and Jean-Daniel Fekete1

1 INRIA, France,
{firstname.lastname}@inria.fr,

2 Universidade Federal do Rio Grande do Sul, Brazil,
spritzer@inf.ufrgs.br

Abstract. This article introduces an interactive system called Graph-

Cuisine that lets users steer an Evolutionary Algorithm (EA) to create
random graphs matching a set of user-speci�ed measures. Generating
random graphs with particular characteristics is crucial for evaluating
graph algorithms, layouts and visualization techniques. Current random
graph generators provide limited control of the �nal characteristics of
the graphs they generate. The situation is even harder when one wants
to generate random graphs similar to a given one. This is due to the
fact that the similarity of graphs is often based on unknown parameters
leading to a long and painful iterative process including steps of random
graph generation, parameter changes, and visual inspection. Our system
is based on an approach of interactive evolutionary computation. Fitting
generator parameters to create graphs with de�ned measures is an opti-
mization problem, while judging the quality of the resulting graphs often
involves human subjective judgment. We describe the graph generation
process from a user's perspective, provide details about our evolutionary
algorithm and demonstrate how GraphCuisine is employed to generate
graphs that mimic a given real world network.

1 Introduction

Conducting formal evaluations of graph algorithms, layouts, and visualization
techniques requires the availability of a large number of comparable graphs with
speci�c controllable characteristics. Real world graphs are always desirable when
ecological validity is needed in formal evaluations, but �nding real graphs with
a speci�c set of characteristics is usually hard or impossible. Even when they do
exist, they might not be available in su�cient quantity or variety, or may con-
tain sensitive information requiring more than anonymization to be disclosed.
An alternative to employing real-world graphs is the generation of graphs with
particular properties using random graph generators. However, existing genera-
tors have limited �exibility, which may not be su�cient for formal evaluations
of algorithms and layouts, for example if one wants to evaluate graphs with
an upper bound on the node degrees or a given number of connected compo-
nents. whereas the algorithms and layouts that are to be tested may need more
control�e. g. one connected component or an upper bound on the node degrees.

In this article we introduce GraphCuisine: a novel interactive system that
that lets users steer an Evolutionary Algorithm (EA) to create random graphs
matching user-speci�ed properties. Our system provides three di�erent approaches
to the interactive generation of random graphs: (a) directly setting desired graph
measures (e. g. density between 5% and 10%), (b) selecting �good� examples from
a set of generated graphs for further evolution, and (c) extract properties from an
imported sample graph, still including the possibility of user control. To allow for
these di�erent modes of interactive random graph generation, GraphCuisine
consists of an interactive interface and a graph generation model that combines
di�erent generators and optimizes their parameters with an EA. Graphs are cre-
ated by traversing a pipeline of generators, each acting on the output of the
previous one by adding or removing nodes and edges in very speci�c ways ac-
cording to the generators respective input parameters. The EA then attempts
to �nd sets of parameters that produce graphs that best match the user-de�ned
properties.

GraphCuisine has been designed with three main scenarios in mind:
1. Generate graphs with speci�c graph measures. When designing a new

layout, routing, or edge bundling algorithm, being able to test its behavior
with varying topological properties, described by graph measures (e. g. den-
sity, diameter or clustering-coe�cient) is essential and almost impossible
with current generators.

2. Generate graphs that �look like� a target graph not knowing in ad-
vance the measures that contribute to the graph's structure. When testing
the appropriateness of an algorithm for a speci�c application domain (e. g.
network tra�c) with only a few samples of real graphs available, generating
graphs similar to the samples is important. In that case, selecting the mea-
sures that best characterize the sample graphs requires visualization, human
judgment and interaction.

3. Anonymize a speci�c graph by generating a graph with similar or iden-
tical measures. When a company has con�dential graphs to analyze (e. g.
e-mail exchanges between employees or telephone calls between possible sus-
pects), collaborating with researchers or specialists can be impossible. Gen-
erating graphs as similar as possible as to the interesting con�dential graphs
makes collaborations much simpler.
The paper is structured as follows: after reviewing related work (Section 2),

with a focus on graph generation and network evolution, we present an overview
of GraphCuisine from a user's perspective (Section 3). We then describe the
graph generation and evaluation processes in detail (Section 4), followed by a
usage scenario (Section 5) and a selection of generated graphs (Appendix B.)

2 Related Work

Random Graph Generation. Generators have been developed using di�erent
techniques to construct graphs with varying characteristics. Preferential attach-
ment generators [1�6] add nodes to the network by connecting them to existing

nodes with a particular probability, while rewiring generators [7�9], reconnect
existing edges. Preferential attachment aims to yield networks with power law
degree, rewiring is used to create mostly small world structures. Some rewiring
generators initially place all graph nodes onto a 2D space and consider spatial
distances between nodes when calculating the probability of an edge between
them [7, 8]. Other techniques have been proposed to overcome drawbacks of
preferential attachment and rewiring techniques, mainly to create networks with
more realistic structures. Structural generators �rst create higher level structures
of the graph, such as clusters and recursively model details [10, 11]. A problem
common to most generators is that they focus on producing networks with one
or two particular characteristics, disregarding all the others. Consequently, tech-
niques have been proposed that treat graph generation as a global optimization

problem [12, 13] or using local forces between nodes and edges by evolving the
network [14, 15]. R-Mat tries to model as many characteristics as possible in a
�exible way by partitioning an adjacency matrix into cells, similar to BRITE [4]
and creates edges with di�erent probabilities. The model features several graph
characteristics and comes with an input parameter �tting function. However,
R-Mat generates one graph at a time and only matches few features.

Choosing the appropriate generator and modelling the desired graph char-
acteristics is crucial for several contexts; the lack of expressiveness of existing
generators impacts the generation quality or requires a long sequence of trials
and errors to obtain graphs with a desired structure.

Evolutionary Algorithms are stochastic optimization heuristics that copy,
in a very abstract manner, the principles of natural evolution that let a popu-
lation of individuals be adapted to its environment [16]: they have the major
advantage of making only few assumptions on the function to be optimized.
In short, an EA considers populations of potential solutions exactly like a nat-
ural population of individuals that live, �ght, and reproduce, but the natural
environment pressure is replaced by an �optimization� pressure. In this way, in-
dividuals that reproduce are the best ones with respect to the problem to be
solved. Reproduction consists in generating new solutions via variation schemes
(the genetic operators), that, by analogy with nature, are called mutation if it
involves one individual, or crossover if it involves two parent solutions. A �tness

function, computed on the individuals, is optimized by the EA. Evolutionary
optimization techniques are particularly well suited to complex problems, where
classical methods fail due to the irregularity of the function to optimize or to
the complexity of the search space. In this article, we deal with an interactive
evolutionary algorithm (IEA) as it is applied to the optimization of a quantity
that is partially speci�ed by the user via an interactive interface.

In the �eld of Neuroevolution, EAs have been used to evolve the topology
and edge weights of neural networks in their creation and learning phase. Neu-
roevolution faces two main problems: (1) How to encode neural networks in
genes, and (2) how to design e�ective cross-over operators that do not destroy
desired sub-structures in the networks. There are mainly two approaches: Direct
encoding that requires the design of speci�c genetic operators to ensure e�cient

exploration capabilities of the algorithm [17] or Grammatical Encoding, that rep-
resents the networks in a generative way [18�20], where an individual represents
transformation rules (i. e. how the network is generated), not the network itself.

Grammar-based approaches are similar to ours but di�er in that Neuroevo-
lution aims at optimizing and reproducing one single network that is in turn
judged according to its functionality. We are interested by generating a wide
diversity of solutions to give more options to human judgment.

UIs for Data Generation and Analysis. Few approaches exist that
tightly involve the user in the data generation process. Wong et al. [21] generate
graphs through sketching by using adjacency matrices and adapt pixel-based
drawing techniques to draw edges inside the matrix. Although a node-link rep-
resentation is provided in parallel with the matrix, only the matrix is used for
drawing. Except when drawing cliques, this makes it hard to predict the �nal
layout of the resulting graph in the form of a node link diagram, and, except for
node count and edge count, it is almost impossible to control measures of the
resulting graph. For the general creation of multivariate data, Albuquerque et
al. [22] present interactive approaches using generators and sketching methods
for 1D, 2D and 3D scatterplots. Still, sketching interfaces do not create diverse
data sets, but instead only provide one particular solution.

3 GraphCuisine

GraphCuisine is a random graph generator for undirected graphs that evolves
a population of individuals encoded in chromosomes, each of them representing
a �recipe� to generate a graph. A graph is generated from a chromosome by
running a pipeline of generators, each reading its input parameters from the
chromosome and modifying the graph by systematically adding or removing
nodes and edges. GraphCuisine implements 12 graph generators, each using 2�
5 input parameters and creating basic network structures such as stars, clusters
and several types of noise (see Table 1). The target graph towards which the
graphs (as representatives of individuals) are evolved is encoded as a set of
target measures� such as node count, density and clustering coe�cient. The
�tness of a generated graph is calculated as the distance between actual graph
measures and the target values (see Section 4.2).

Encoding the genome as a set of parameters to apply to simple generators has
several advantages: (1) the genome size remains constant and independent of the
graph size, and (2) the measures used to optimize the graphs are independent
from the number and parameters of the simple generators, allowing new measures
to be added easily, as well as new generators. Having constant-size genomes also
facilitates crossovers to obtain a wider diversity of generated solutions.

The interface of GraphCuisine is made up of �ve major parts (see Fig. 1):
(a) a visualization of 12 representative graphs from the current population (popu-
lation view), (b) an enlarged view of a selected graph (detail view), (c) if desired,
an imported graph from which target measures are extracted (data set view),
(d) an interactive parallel coordinates plot showing the distribution of measures

a b c

d

e

Fig. 1. User Interface of GraphCuisine showing (a) the population view displaying
representative graphs of the current population (population view), (b) a detail view of
selected graph (detail view), (c) an imported graph (data set view), (d) the parallel
coordinates plot showing the distribution of measures in the population (measure view)
and (e) the table with the graph measures of the representative graphs (measures table).
The position of the white markers in the measure view indicate the target measurements
and the red line the measurements of the selected graph.

(a)

!"#$%&'"()*)

+%,-.)

#&/.(-0)

)
)

1$-&'"()"2)-3.)-4")53,%6/.()

7/"00"8./)

9.%.5'"()"2)-4")#&/.(-0)

!"#$%&'"()*:;)
(b)

Fig. 2. (a) Fitness curve showing the evolution of the population �tness in a logarithmic
scale. Better �tness values are closer to 0. The blue line shows the value of the �ttest
individual in the population and the black shows the mean �tness. The stronger black
vertical lines indicate the generations that have been presented to the user and upward
peaks in the blue curve show that the user has changed the target measures, leading
to decreased �tness the current population. (b) Evolution process for one generation
in GraphCuisine.

in the whole population (measure view), and (e) a table showing all measures of
the representative graph (measure table).

The user can switch between adjacency matrix and node-link representations
for all the graphs on the population view (a) since some structural characteristics
are more visible on one or the other. The measure view (d) shows a parallel coor-
dinate visualization where each measure is an axis over a color coded rectangle;
the width indicating the weight of the measure in the �tness computation. As in
standard parallel coordinates, each poly-line represents a graph in the current
population and connects all the graph's measures. Vertical axes show the value
range of each measure as set by the user.

A vertical line plot draws the distribution of node degrees for each graph,
right of gray degree measure axis. It shows how much the graphs converge or
diverge in this measure. Tick marks on the axis lines indicate the desired minimal
and maximal values, while the white circle indicates the desired target value
for the population All the values can be adjusted interactively by dragging the
marks. Views in GraphCuisine are coordinated with brushing&linking: moving
the mouse over a poly-line highlights the corresponding graph in the population
and table views, and vice-versa. To initialize the graph generation, the user can
choose among the following options:

Random initialization: The population is created from a random set of gen-
erator parameters for each chromosome and random target measures, pro-
viding a base for a more exploratory generation.

Set target measures directly : The values for the desired graph measures can
be set interactively by adapting the minimal, maximal and target values as
well as the measure weight directly in the measure view.

Graph templates: Templates are prede�ned sets of generator parameters and
measures selected to create graphs with particular characteristics such as
small-sized, medium-sized or large-sized, or that are dense or sparse, with
a power law degree distribution, or small world. Templates are chosen from
a menu where complementary templates can be selected at a time. New
templates can be de�ned by the user for later reuse. Based on a template,
an initial population is created.

Load an existing graph: To mimic an existing graph, the graph is imported
and shown in the data set view (Fig. 1(c)). Its measures are computed,
displayed in the measure view, and serve as target values for the evolution.
The measures and their weights can immediately be modi�ed by the user or
at any time during the evolution; they can also be reset to the value of the
loaded graph.

Generating graphs with GraphCuisine consists of two alternating phases.
After the initialization and selection of the target measures, the evolution of the
generator parameters is started and a machine solution is created by optimizing
the initial population of graphs to �t the target values. After a few generations,
we select 12 representative graphs, the three �ttest and nine at random for
purposes of diversity; they are displayed in the population view and the measure
table. The measure view is then updated to display the values from the whole

population. The saturation of the green bars in the population view indicates
the �tness of each graph and adapts immediately if the user changes the target
measures in the measure view. This feedback is required for the user to know
which graphs are considered similar by the system with the current settings.

Alternatively to changing measures in the respective view, users can select
graphs they judge good directly from the population view by clicking on them.
Multiple graphs can be selected and the target measures are set to re�ect the
chosen graphs. Measure weights are updated according to the variance of their
respective values in the selected graphs�the more a particular measure di�ers,
the lower it is weighted and vice-versa (see Section 4.3). The evolution can then
run for a further step with the new measures being taken into account. The
number of generations as well as other parameters of the EA can be adjusted by
the user at any time, allowing for control of the evolution behavior (populations
size, generations, elitism, etc.). Disabling generators prevents the graph from
containing particular characteristics and setting their parameters directly gives
additional freedom in specifying graphs.

Behavior and convergence of the �tness of the whole population is monitored
in the chart shown in Fig. 2(a). It shows minimal (the best), maximal (the worst)
and the average �tness through all generations using a logarithmic scale. In order
to avoid previous graphs being lost during the evolution process,GraphCuisine
keeps a The system can be reset to any generation to try alternative evolutions.
Additionally, the chromosome of any generated graph can be saved as template
to initialize new populations later on.

4 Generation and Evolution

As explained in the previous section, each individual in GraphCuisine's EA
corresponds to a graph. It is encoded in a generative way, that is as chromosome

each of which fully speci�es a sequence of generators and their parameters. The
creation of a graph from a chromosome and the evaluation of its �tness is done
in four steps, illustrated in Fig. 3.

G1 G2 G3

1) CHROMOSOME

T T T
Nodes
Edges
Density
Diameter
Conn. Components
Clusters
Avg. Node Degree
Avg. Cluster Coe$.

3) GRAPH
MEASURES

4) FITNESS FUNCTION

0.24+

seed a1 a2 a3p11 p12 p21 p22 p23 p24 p33p31 p32 p34 p35
44 2 0.3 5 3 1.3 0.9 101 0 0.4 1.4

2) GENERATORS

Target Measures

Measure Weights

11
16
0.29
3
1
2
2.9
0.21

Fig. 3. Graph creation process: (1) Parameters encoded in genes of a chromosome, (2)
employ graph generators, (3) extract graph measures, and (4) calculate �tness value.

We implemented two speci�c types of generators in GraphCuisine: Motif
generators and noise generators. They are applied in two steps: Motif generators
start by creating topological patterns, such as clusters, stars, paths, and cycles.
The generators parameters specify subgraph speci�c properties (e. g. the degree
of a star's central node) and how many instances of it should be created (see
Table 1). Noise generators are applied in a second step to break these regularities,
making structures more varied and less predictable by adding or removing nodes
and edges. Nodes and edges can be inserted randomly with di�erent node degree
distributions: uniform, power-law, logarithmic or exponential. Nodes and edges
to be removed are either chosen randomly or according to some criterion, such as
eliminating isolated nodes (degree 0). These two steps are conceptually similar
to some structural generators but the motifs and noise we produce are more
varied and generalized.

Parameters for noise generators de�ne how many nodes or edges the graph
should have (and thus how many should be added or removed) as a means to
control the approximate size of the graph. More speci�c properties exist, such
as the probability of connecting two given nodes by an edge. The count of nodes
and edges to be inserted and which nodes should be connected depend on what
is already in the graph. As such, if applied in a di�erent order, the same noise
generators with the same parameters will produce completely di�erent graphs.

4.1 Chromosome Structure: Internal Encoding of an Individual

Each chromosome is divided into two blocks. The �rst is a single gene with
an integer value, which serves as a seed for the random number generator that
ensures consistent random values for the generation. The second and third blocks
stand for the motif and noise generators, respectively. They are both represented
in the same way: the �rst gene contains a boolean value indicating whether the
corresponding generator is active or not and the second gene contains a value
specifying the execution order of the generator in the creation pipeline (Fig. 3).
Finally, the other genes of each generator contain its input parameters.

4.2 Fitness Function: Quality Assessment of an Individual

The computation of the �tness of each chromosome/graph is based on the set
of target graph measures M = {mi|mi ∈ R, i ∈ [0, n]}, with tolerance bounds
mi ∈ [mini,maxi], and importance weights wi ∈ [0, 1]. For a graph Gk each
measure in M is computed as: Mk = (m0,k, . . . ,mn,k) where mi,k is the ith

graph measure. The �tness(Gk) ∈ R+ of the graph Gk is its distance to the
optimal solution, i. e. the following weighted sum:

�tness(Gk) =
∑

i∈[0,n]

wi ∗
∣∣ mi − mi,k

maxi −mini

∣∣
Normalization is necessary to weight and sum up measures equally. Currently,

GraphCuisine supports the following measures: node count, edge count, density,

graph diameter, number of clusters, number of connected components, average
clustering coe�cient, and average node degree.

4.3 Interactive Evolution

As mentioned in Section 3, the population view allows selecting good solutions
by visual inspection. This feature is based on the assumption that node link
diagrams or matrix representations allow humans to quickly compare graphs and
match some of their visible structure e�ectively although with limited accuracy.
When selecting multiple graphs Gs = {G0, . . . , Gs}, GraphCuisine tries to
infer what characteristics are important to the user. The target value for each
measure mi is taken to be the average of measures from all selected graphs:
mi = mi,k. The weights wi are adjusted to re�ect the diversity or similarity of
the single graph measures using the standard deviation of the normalized graph
measures mi,k:

wi = stddev(m′
i,0, . . . ,m

′
i,s) with m′

i,k =
mi − mi,k

maxi −mini

Each time the user has changed the target measures or weights, the mutation
rate is increased for one generation in order to explore new solutions.

4.4 Implementation

GraphCuisine is implemented in Java using the JGAP library3. By default,
the graph generation process begins with a randomly generated population of
50 individuals, which is evolved for 5 generations in each evolution cycle. These
values were chosen to keep a balance between population diversity and accept-
able running time for each cycle, an important issue for GraphCuisine due to
its interactive nature. In order not to lose good solutions over time, we guarantee
that each generation keeps 30% of the individuals from the previous generation
(elitism). Fig. 2(b) illustrates how one generation is evolved; a set of very �t
graphs is selected (parents) to create o�spring individuals by application of the
genetic operators. The components of the evolutionary algorithm are the follow-
ing:
� A tournament selection of size 5 that randomly chooses 5 individuals from
the population with uniform probability, and keeps the best one as parent.
The process is repeated twice to select two parents for a crossover.

� A one-point crossover that creates two o�springs by swapping all the genes
of the parents that comes after a randomly selected position in the genome.

� A simple random mutation that selects 5% of the genes of each individual
and replaces them by random values.
Crossover and mutation are applied in a cascade, that means that 70% of the

new individuals are created by applying a crossover, and then all new individuals
undergo a mutation that alters 5% of its genes.

3 http://jgap.sourceforge.net

The generator's performance is essentially limited by the measure computa-
tion; creation, mutation and crossover times are negligible. When a measure's
weight is set to 0, the measure is not computed, allowing for tradeo�s between
generation speed and expressive power. Number of clusters and clustering coef-
�cient are currently the most expensive measures.

Extending the set of measures and generators consists in adding new imple-
mentations of generators and measures, adding the generators' parameters to
the chromosome, adding the measures to the �tness function and updating the
interface. Including measures into the interface boils down to adding columns to
the table and dimensions to the parallel coordinates plot, respectively.

5 Example Scenario: Anonymizing a Network

Imagine, an HIV spreading network must be anonymized while keeping the char-
acteristic structures present so that it can be given to students in epidemiology
for analyses. By importing the network in GraphCuisine, its measures are
calculated and automatically set as target measures. The graph population is
randomly initialized to guarantee diversity. After a �rst evolution step of 5 gen-
erations, the representative graphs are shown in the population view and the
statistics table. The parallel coordinates in the measure view shows that the
distribution of measure values for all the 50 graphs in the current population
has already converged well towards the target values.

The user can then decide to increase the graph size and, proportionally,
the number of clusters. This is done by setting the desired size and the target
number of clusters in the measure panel. Since these two seem to be the most
important measures for this evolution, the user slightly increases the weight
of these measures by varying the width of the colored rectangles in the parallel
coordinates plot. After another evolution cycle, the graphs have grown and show
a proportionally higher number of clusters. The degree of optimization and the
similarity between generated graphs and the original one can be controlled by
adjusting the number of generations in the evolution step.

If desired, the user can continue to re�ne the graphs for example by selecting
favorite representative graphs from the population view and running another
evolution cycle for obtaining graphs similar to the selected ones. Since selecting
graphs causes the target measures to re�ect the measures of the selection, they
might slightly diverge from those of the imported graph. When a desired result
has been reached, generated graphs can then be exported. Figure 1 shows the
imported HIV network (right), the generated graphs (left), as well as a particular
selected graph (center) with its measures highlighted in red in the measure view.
The �tness view (Fig. 2(a)) shows the convergence of the population �tness
declining, except when the target measures have been changed by the user. The
pure evolution time (20 generations) was 6.52 minutes, for a population size of
50. Further examples of graphs generated with GraphCuisine are shown in
Appendix B.

6 Conclusion and Future Work

This article describes GraphCuisine, a system that generates random graphs
according to user speci�ed graph measures, using Evolutionary Algorithms. We
encode graphs using a generative model where several generators are run in
sequence, each taking as input a set of parameters. We store the parameters and
execution order in the genome of the EA engine and evolve it to produce graphs
matching the set of target measures.

GraphCuisine's parameter encoding has several advantages for our speci�c
goal compared to directly encoding graphs in the genome: it is e�cient, both in
space and computation time. One genome can potentially generate an unlimited
number of similar random graphs. Changing the parameters through mutation
generates more diversity than direct encoding. Diversity in turn leads to faster
convergence of the evolution and can introduce interesting unexpected results
still matching the constraints.

From a practical perspective, computing some of the measures is expensive
in time but cannot be avoided if it plays a role in the �tness function. However,
although we designed GraphCuisine for interactive manipulation, it can run as
many generations as needed without human intervention, relieving the human
from trials and errors to generate graphs with speci�c measures. Furthermore,
simple strategies can be used to �rst generate smaller graphs with the required
measures and then growing the size while controlling that the graph measures
still match the requirements.

Currently, GraphCuisine implements a small set of well de�ned generators
and measures which is easily extensible and we are in the process of investigat-
ing other generators as well as measures. One useful extension we are working
on, is to consider measure distributions instead of mean values, e. g. for node
degree. The EA would support to match distributions with little change, but
the interface would require more work to e�ectively letting the user specify the
distributions.

In our experience GraphCuisine's EA converges rapidly. However, we want
to conduct more formal studies to better understand the behavior of our gener-
ators compared to existing ones in terms of convergence and expressive power.
Such a formal study would also help to balance speed of convergence of the evo-
lution against diversity in the population. In addition, we will conduct usability
evaluations to assess and potentially improve the interactions in term of user
control and expressive power on the generation process.

References

1. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6 (1959)
290�297

2. Waxman, B.: Routing of multipoint connections. Selected Areas in Communica-
tions, IEEE Journal on 6(9) (1988) 1617�1622

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439) (1999) 509�512

4. Medina, A., Matta, I., Byers, J.: On the origin of power laws in internet topologies.
SIGCOMM Comput. Commun. Rev. 30(2) (April 2000) 18�28

5. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs.
Experimental Mathematics 10(1) (2001) 53�66

6. Pandurangan, G., Raghavan, P., Upfal, E.: Using pagerank to characterize web
structure. In: Proceedings of the 8th Annual International Conference on Com-
puting and Combinatorics. COCOON '02, London, UK, Springer-Verlag (2002)
330�339

7. Watts, D., Strogatz, S.: Collective dynamics of 'small-world' networks. Nature
393(6684) (1998) 440�442

8. Kleinberg, J.: Navigation in a small world - It is easier to �nd short chains between
points in some networks than others. Nature 406(6798) (2000) 845�845

9. Eppstein, D., Wang, J.: A steady state model for graph power laws. 2nd Interna-
tional Workshop on Web Dynamics (2002)

10. Doar, M.: A better model for generating test networks. In: Global Telecommuni-
cations Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global
Prosperity. (1996) 86�93

11. Calvert, K., Doar, M., Zegura, E.: Modeling Internet topology. Communications
Magazine, IEEE 35(6) (1997) 160�163

12. Frank, O., Strauss, D.: Markov Graphs. Journal of the American Statistical Asso-
ciation 81(395) (1986) 832�842

13. Carlson, J.M., Doyle, J.: Highly optimized tolerance: a mechanism for power laws
in designed systems. Phys. Rev. E 60 (Aug 1999) 1412�1427

14. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.H.: Heuristically optimized
trade-o�s: A new paradigm for power laws in the internet. In: Proceedings of
the 29th International Colloquium on Automata, Languages and Programming.
ICALP '02, London, UK, Springer-Verlag (2002) 110�122

15. Berger, N., Borgs, C., Chayes, J., D'Souza, R., Kleinberg, R.: Competition-induced
preferential attachment. In: Automata, Languages and Programming, Microsoft
Corp, Redmond, WA 98052 USA (2004) 208�221

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(1989)

17. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2) (2002) 99�127

18. Kitano, H.: Designing Neural Networks Using Genetic Algorithms with Graph
Generation System. Complex Systems 4 (1990) 461�476

19. Gruau, F.: Neural Network Synthesis using Cellular Encoding and Genetic Algo-
rithms. PhD thesis, Laboratoire de l'Informatique du Parallelisme, Ecole Normale
Superieure de Lyon, France (1994)

20. Suchorzewski, M.: Evolving scalable and modular adaptive networks with de-
velopmental symbolic encoding. Evolutionary Intelligence 4 (2011) 145�163
10.1007/s12065-011-0057-0.

21. Wong, P.C., Foote, H., Mackey, P., Perrine, K., Chin Jr., G.: Generating graphs for
visual analytics through interactive sketching. IEEE Transactions on Visualization
and Computer Graphics 12(6) (November 2006) 1386�1398

22. Albuquerque, G., Löwe, T., Magnor, M.: Synthetic generation of high-dimensional
datasets. IEEE Transactions on Visualization and Computer Graphics 17(12)
(2011) 2317�2324

A Appendix: Graph Generators in GraphCuisine

Generator Description Parameters

Cluster Create dense subgraphs. Number of clusters (integer), ideal
cluster size (integer), size variability
(double), density (double).

Path Sequence of nodes in which there is
always an edge from one node to the
next.

Number of paths (integer), ideal path
length (integer), length variability
(double). Star and end nodes are cho-
sen randomly from the graph.

Cycle Closed path. The start/end node is
an existing nodes.

Number of cycles (integer), ideal
cycle size (integer), size variability
(double).

Star Tree with one central node and a
given number of leaves.

Number of stars (integer), ideal cen-
tral node degree (integer), central
node degree variability (double).

Edge Noise Adds edges linking randomly chosen
nodes.

Ideal number of edges the graph
should have (integer).

Eppstein Wang
Power Law Noise

Adds or removes edges according to
the model by Eppstein & Wang [9].

Number of iterations (integer).

Exponential
Edge Noise

Adds edges while trying to achieve an
exponential degree distribution.

Ideal number of edges the graph
should have (integer).

Logarithmic
Edge Noise

Adds edges while trying to achieve a
logarithmic degree distribution.

Ideal number of edges the graph
should have (integer).

Node Noise Adds nodes until the target count for
the graph is reached.

Ideal number of nodes the graph
should have (integer).

Orphan Cleanup
Noise

Removes nodes with degree 0. Percentage of orphans to be removed
(double).

Random Edge
Cleanup Noise

Removes randomly chosen edges. Percentage of edges to be removed
(double).

Random Node
Cleanup Noise

Removes randomly chosen nodes. Percentage of nodes to be removed
(double).

Table 1. GraphCuisine's Motif (above) and noise generators (below).

B Appendix: Examples of Generated Graphs

(a) (b) (c)

Graph Node
Count

Edge
Count

Density Diameter Clusters Avg Degree Avg Clust.
coe�cient

(a) 161 191 0.014 9 49 2.37 0.018
(b) 213 457 0.020 15 43 4.30 0.230
(c) 283 273 0.007 11 34 1.93 0.213

Fig. 4. Examples of Graphs from a Random Chromosome Initialization.

(a) (b) (c)

Graph Node
Count

Edge
Count

Density Diameter Clusters Avg Degree Avg Clust.
coe�cient

(a) 140 733 0.075 7.0 11 10.471 0.621
(b) 161 379 0.029 10.0 12 4.708 0.251
(b) 146 420 0.039 7.0 10 5.753 0.273

Fig. 5. Examples of small world Networks created with GraphCuisine.

(a) 212, 298, 0.133 (b) 108, 176, 0.031 (c) 266, 205, 0.006

Graph Node
Count

Edge
Count

Density Diameter Clusters Avg Degree Avg Clust.
coe�cient

(a) 208 285 0.013 14 31 2.740 0.209
(b) 190 243 0.013 9 35 2.557 0.167
(c) 296 396 0.009 14 35 2.675 0.163

Fig. 6. Scale free Networks using, among others,the Eppstein-Wang generator.

(a) (b) (c)

Graph Node
Count

Edge
Count

Density Diameter Clusters Avg Degree Avg Clust.
coe�cient

(a) 673 751 0.003 17.0 � 2.231 �
(b) 600 750 0.004 9.0 � 2.5 �
(c) 745 752 0.002 22.0 � 2.018 �

Fig. 7. 3 randomly picked graphs from the same population showing convergence across
almost all measures after 5 generations (population size=50). Measures showing "�"
have been disabled in order to increase evolution speed.

