
How to Mislead an Evolutionary Algorithm
using Global Sensitivity Analysis ?

Thomas Chabin1, Alberto Tonda1, and Evelyne Lutton1

UMR 782 GMPA, INRA
1 Av. Lucien Brétignères, 78850 Thiverval-Grignon, FRANCE

thomas.chabin,alberto.tonda,evelyne.lutton@grignon.inra.fr

Abstract. The idea of exploiting Global Sensitivity Analysis (GSA)
to make Evolutionary Algorithms more effective seems very attractive:
intuitively, a probabilistic analysis can prove useful to a stochastic opti-
misation technique. GSA, that gathers information about the behaviour
of functions receiving some inputs and delivering one or several outputs,
is based on computationally-intensive stochastic sampling of a parame-
ter space. Nevertheless, efficiently exploiting information gathered from
GSA might not be so straightforward. In this paper, we present three
mono- and multi-objective counterexamples to prove how naively com-
bining GSA and EA may mislead an optimisation process.

1 Introduction

Sensitivity analysis is the study of how the uncertainty in the output of a math-
ematical function can be apportioned to different sources of uncertainty in its
inputs [19]. In general, Sensitivity Analysis can be applied to any function f ,
Rn → Rp. In practice, this technique is widely exploited by the modeling com-
munity, to analyze the behaviour of models with respect to their parameters,
and to later plan new experiments to reduce the uncertainty on the most sensi-
tive parameters. Indeed, a model can be defined as a function f : Xl,Kn → Ym,
whose objective is to simulate a real physical phenomena. Knowing the initial
conditions represented by the vector Xl, the model produces the final condi-
tions of the studied phenomena, Ym. In real-world cases, the parameters of the
function Kn are not known with precision but rather defined by a range value
of uncertainty. Many sensitivity analysis tools perform a stochastic sampling of
considerable magnitude in the space of parameters, and then exploit statistical
techniques to derive information from this large quantity of data.

It is easy to see the potential interest of data collected through sensitivity
analysis for an optimisation of the parameters of the model: not only sensitivity
analysis provides a fine-grained sampling of a search space, but it also conveys
useful information about how each parameter influences each output. This holds
? This work has been funded by the French National Agency for research (ANR), under

the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011, http://
www.agence-nationale-recherche.fr/



2

true especially for evolutionary optimisation techniques, that are based on a
biased stochastic sampling of the search space. Re-using the extensive amount of
computation performed for a sensitivity analysis to improve the performance of
an evolutionary algorithm (EA) targeting the same search space, sounds not only
sensible, but also extremely appealing. Not surprisingly, the literature already
shows approaches that exploit the synergy between sensitivity analysis and EAs
[7]. However, making use of the information conveyed by sensitivity analysis
might not be as straightforward as it seems.

In this paper, we exhibit three case studies, specifically designed to deceive
an EA exploiting sensitivity analysis data. Experimental results show that even
a state-of-the-art EA is unable to find the optimal parameter configuration for
the problems, if biased by the information provided by sensitivity analysis; on
the contrary, the same algorithm routinely converges on the global optimum if
no aprioristic knowledge is given, thus proving that a naive use of sensitivity
analysis information might actually be harmful to the optimisation process.

The rest of the paper is organized as follows: Section 2 recalls a few basic
concepts of sensitivity analysis, with a particular focus on the analysis of joint
variation of parameter interactions, and lists previous works at the interface
of sensitivity analysis and EAs. Section 3 discusses one of these combination
strategies. Counterexamples and experimental results are illustrated in Section
4, while the implications are discussed in Section 5. Finally, Section 6 concludes
the paper.

2 Background

2.1 Sensitivity analysis: Global and Local

Sensitivity analysis is a technique used to understand how variation in the out-
put of a function can be apportioned qualitatively or quantitatively to different
uncertain input sources. Sensitivity analysis techniques can be broadly classified
as local or global. Local sensitivity analysis (LSA) is the simpler approach, where
only one function variable is perturbed at a time, while the remaining are fixed
to a nominal value. Different studies have shown that limiting the analysis to lo-
cal sensitivities might deliver unreliable results [20, 23]. Thus, global sensitivity
analysis (GSA) [19] that examines the joint variation of variable interactions,
seems to be better suited for complex, nonlinear models.

2.2 Global Sensitivity Analysis

GSA is mainly used for two goals: factor prioritizing, deciding which variable
uncertainty to work on, in order to reduce the uncertainty of the output; and
factor fixing, highlighting which variables can be fixed to an arbitrary value
with few influence on the output. One of the most common approaches has been
developed by Sobol [21]. Impacts of each individual decision variable and its
interactions with other variables on performance objectives are represented with
the following sensitivity indices, taking values in [0, 1].



3

First-order sensitivity indices are used for the factor priority problem. A
first-order index Si is associated to each parameter Ki, and represents the direct
influence of its uncertainty on an output Y :

Si =
V [E(Y |Ki)]

V (Y )

It corresponds to the part of the variance of Y explained directly by the un-
certainty in Ki: V [E(Y |Ki)] is the conditional expectation of Y knowing Ki,
fixed at each possible value within the uncertainty range of Ki. Fixing to its
true value the variable associated to the highest first-order index, would lead to
the greatest reduction in the variance of the output.

Higher-orders sensitivity indices correspond to interaction effects. For
instance, indices of order 3 Sijk are associated to each triplet of parameters
Ki,Kj ,Kk:

Sijk =
V [E(Y |Ki,Kj ,Kk)]

V (Y )

The sum of all n-order indices is always equal to 1. The computation of higher-
order indices is expensive, as there are

(
n
k

)
of such indices for k parameters. In

practice, they are rarely used. They are not considered in this paper.
Total-effect sensitivity indices are used for the factor-fixing problem. A

total-effect index is attributed to each parameter, and it is interpreted as the
sum of all n-order indices involving the considered parameter. A total effect
index STi represents how much the uncertainty of a parameter, combined with
every other uncertainty, is responsible for the output variance:

STi = 1− V [E(Y |K∼i)]
V (Y )

K∼i = K1,K2, ...,Ki−1,Ki+1, ...Kn is the set of all parameters except Ki. There-
fore, if a parameter has a total-effect index near zero, its uncertainty has nearly
no influence on the output variance. For this reason, this parameter can be fixed
to an arbitrary value inside his interval of uncertainty without affecting much
the variance of the output.

2.3 Sensitivity Analysis and Optimisation

In order to compute GSA indices, the search space of a group of parameters is
sampled, aiming at finding the parameters whose variation influences the output
of a function (or a model) the most. It is therefore not surprising that several
attempts have been performed to combine Sensitivity analysis with optimisation
tools, especially those featuring a stochastic sampling of the search space.

A considerable number of research lines exploit LSA to perform what is
termed robust optimisation [2], a set of techniques which seek a certain amount of
robustness against uncertainty, seen as variability in the value of the parameters
of the problem or its solution. Some work, like [1] also propose a multi-objective
strategy to assess the identifiability and LSA of the parameters of a system.



4

In [22], EAs are used to find the worst possible parameter settings for a model,
maximising the distance between experimental data and model predictions. The
results are then exploited to evaluate the influence of each parameter on the
outputs. While surely interesting, this approach lacks the statistical support of
Global Sensitivity Analysis, providing the user with a general impression of the
most influential parameters.

Another research line, presented in two technical reports [17, 16], aims at
using the points sampled by a CMA-ES algorithm [11] during the optimisation
process as the basis for a sensitivity analysis, through a de-biasing of the sam-
pling. In practice, weights are used on the sampling points, on the basis of the
covariance matrix’ determinant at each generation, to express their bias with
respect to a completely random process. This methodology raises several theo-
retical questions that will need to be thoroughly analyzed before its widespread
application.

In [7], the authors present an example where the use of GSA improves the EA
efficiency. They use GSA measurements to reduce the problem’s dimensionality,
first optimising the values of a sub-set of the most sensitive parameters, and then
restarting the evolution from the solutions found in this way, finally optimising
the remaining values. However, preliminary results presented in [3] hint that this
strategy may not always be viable.

3 Adaptive dimensionality reduction based on GSA

The idea of using progressive refinements techniques to perform a search in high
dimensional spaces appeared as attractive for a long time. This very simple idea
is at the origin, for instance, of the messy genetic algorithm scheme proposed by
Goldberg et al. 25 years ago [8] : “Nature did not start with strings of length two
million (an estimate of the number of genes in Homo sapiens) and try to make
man. Instead, simple life forms gave way to more complex life forms, with the
building blocks learned at earlier times used and reused to good effect along the
way.” Messy GAs rely on a variable length bit-string representation of the search
space made of a list of couples (locus, allele value) specifying the value of a bit at
a given place of the genome. In this way some genes may be over-specified (several
possible values) while other may be under-specified (no affected value). Fitness
calculation is then performed after an additionnal stage relying on various rules
for inferring uncomplete string values. This scheme has been extended in various
ways including continuous search spaces [18, 12]. It implements a self-adaptive
progressive refinement, where the selection of primary, “heavy” parameters, is
let to evolution.

Adaptive schemes (in the sense of “non-self-adaptive”) may also be consid-
ered in this context, the critical point being an a priori knowledge of an impor-
tance prioritization of the parameters. Sensitivity analysis may then represent
an attractive solution to deal with parameters importance ordering. The idea
is to identify non-influential parameters, via a sensitivity analysis of the fitness
function with respect to each parameter in the search space. A straightforward



5

strategy for dimensionality reduction is then to ignore non-influential parameters
in a first optimisation stage, like in [7].

4 Experimental analysis

We propose a series of counterexamples for testing the limits of dimensionality
reduction based on GSA, in the same spirit as deceptive functions design [10, 9]:
global information collected through statistical analysis of some features (build-
ing blocks statistics in the case of deceptiveness “à la Goldberg”) yields puzzling
information to the algorithm. Other interpretations may also stem from theo-
retical studies regarding the influence of local regularity features [13, 15]: global
optima are located in very irregular areas, while attractive local optima are lo-
cated inside smooth areas. Statistical features are actually not able to capture
local irregularities and are thus yielding erroneous information to the algorithm
[14].

The strategy that is tested relies on the following statement (factor fixing
approach, see Section 2.2): a low total effect index indicates a non-influential
parameter that can be arbitrarily fixed with only few impact on the fitness func-
tion. To decide which parameters are non-influential, a threshold is arbitrarily
fixed (a low value in the range [0, 1]): parameters that have a total sensitivity
index below this threshold are considered non-influential.

4.1 Algorithms

Three EAs have been tested: (i) CMA-ES, (ii) an explicit population based EA,
implemented with the EASEA package1 [4] and (iii) NSGA-II, a multi-objective
genetic algorithm. The following schemes have been considered for progressive
refinement:

– Approach 1 performs an optimisation of the influential parameters only. Non-
influential parameters are fixed to the middle of their interval of uncertainty.

– Approach 2 is based on [7]. Influential parameters are optimised in a first
stage, like in Approach 1, and then the best point is injected in the initial
population of a second optimisation, this time using all parameters.

CMA-ES. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[11] is a popular EA, widely used for many real-world optimisation problems.
It is known for its robustness and computational efficiency. For Approach 2,
CMA-ES is restarted as follows:

– The mean point is initialised to the best set of influential parameters found
during the first stage, while the values of non-influential parameters are set
to the middle of their interval of uncertainty.

– The standard deviation for each influential parameter is kept to the value
obtained at the last generation of the first stage, and the standard deviation
for non-influential parameters is set to 0.3× (rangemax − rangemin).

1 http://easea.unistra.fr



6

EA. The second algorithm used in our tests is a classical EA, i.e. an explicit
population based EA, programmed in EASEA [4]. For Approach 2, the initial
population of the second stage is seeded with the content of the last generation
of the first stage. The non-influential parameters who were fixed at the middle
of their interval of uncertainty (or search space) are attributed a random value
in their range of uncertainty.

NSGA-II. The Nondominated Sorting Genetic Algorithm [6] is a Multiob-
jective evolutionary algorithm. This algorithm builds a set of non-dominated
solutions that approximates an optimal Pareto front. Thanks to a clever ranking
and to the use of a crowding distance, the population stabilises on an efficient
sampling of the Pareto front. Approach 2 with NSGA-II uses a similar setting
as above, for the EASEA-EA.

4.2 Counterexample I

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ot

al
 S

en
si

tiv
ity

 in
de

x 
va

lu
e

 

 
Total effect indices
First order indices

Fig. 1. Counterexample I. (left) In the fitness landscape, the peak of fit1 is at k2 =
0.0005. The line k2 = 0 is at the bottom of the peak. (right) Sensitivity analysis shows
that k1 is much more influential than k2.

The first counterexample is a function for which a non-influential parame-
ter remains important for the precise location of a global optimum. This can
be achieved with functions having simultaneously waves along some axes (corre-
sponding to influential “shapes”) and thin peaks along other axes. The projection
of the fitness function on the subspace of non-influential parameters then pro-
vides an averaged viewpoint on the fitness landscape that conceals high, thin



7

peaks. We thus propose the following bi-dimensional function (Fig. 1):

fit1(k1, k2) = g(k1, 1.33,−0.5, 0.3) + g(k2, 7.98, 0.0005, 0.05) + h(k1)

where g is a Gaussian: g(k, a, b, c) = a · exp(− (k − b)2

2c2
) and k1, k2 ∈

[
− 1; 1

]
To make optimisation easier with respect to parameter k1, a small gradient,

h(k1) is added to the fitness:

h(k1) =

{
1

1.0005k1 + 1
1.0005 for k1 ≤ 0.0005

− 1
0.9995k1 + 1

0.9995 elsewhere

A global sensitivity analysis, whose results are presented in Fig. 1 reads that
k1 is influential whereas k2 is not, since the total effect index of k2 is far lower
that the total effect index of k1.

EASEA-EA CMA-ES

Population size µ = 200 10

Offsprings size λ = 180 -

Number of generations 35 632

Tournament selection Size = 2 -

BLX-α Crossover p = 1. -

Log normal self adaptive mutation p = 1. τ =
√

2 -

Number of Runs 100 100

Table 1. Settings for the EAs used in Counterexample I

Fig. 2. Counterexample I. Comparison of optimisation runs on k1 and k2, respectively,
using the EASEA-EA(left) and CMA-ES (right). Statistics on 100 runs are displayed
with median in bold and first- and third- quartile in thin lines of the same color.



8

Approach 1 is tested: optimisation is run on parameter k1 only, and the result
is compared to an optimisation on parameter k2 only. Since k1 seems to bear all
influence whereas k2 appears to be non-influential, it is naively expected that
the optimisation on k1 will find a better value than the optimisation on k2. The
algorithms’ settings are reported in table 1. Statistics on 100 runs are displayed
in Fig. 2 for the EASEA-EA and CMA-ES algorithms. In this case, optimising
on the non-influential parameter is unexpectedly a better option than optimsing
on the supposedly most influential parameter.

4.3 Counterexample II

A restart strategy (Approach 2 of Section 4.1) may counterbalance the problems
presented above. We will see however that a restart strategy using GSA may
still be puzzled. This is the purpose of counterexample II (Fig. 3).

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x 

va
lu

e

 

 
Total effect indices
First order indices

Fig. 3. Counterexample II.(left) fit2 has two thin peaks, a very thin one corresponding
to a local optimum at (−0.5, 0.5) and a larger one, global optimum, at (0.5, 0.5). (right)
Sensitivity analysis shows that the total effect index for k1 is much higher than for k2.

fit2(k1, k2) = g(k1, 10.9, 0.5, 0.25) + g(k1, 11,−0.5, 0.25) + g(k2, 1, 0.5, 0.25)
+g2d(k1, k2, 100, 0.5, 0.01, 0.5, 0.01)+g2d(k1, k2, 50,−0.5, 0.0025, 0.5, 0.0025)

k1, k2 ∈
[
− 1; 1

]
, g and g2d are Gaussians:

g(k, a, b, c) = a · exp(− (k − b)2

2c2
)

g2d(k1, k2, a, b, c, d, e) = a · exp(−(
(k1− b)2

2c2
+

(k2− d)2

2e2
))



9

fit2 has a local optimum at (k1 = −0.5; k2 = 0.5), and a global optimum at
(k1 = 0.5; k2 = 0.5). A GSA on Counterexample II (See Fig. 3), shows that k1
can be considered as an influential parameter and k2 as a non-influential one.

A progressive refinement strategy (Approach 2) is compared to a plain opti-
misation (full search space) using a classical EA, with the settings reported in
Table 4.3. Over 100 runs, the full search always finds the global optimum whereas
the restart strategy (Approach 2) always get stuck on the local optimum (Fig.
4.3).

Fig. 4. Counterexample II. Statistics of
100 runs on Counterexample II with a
classical EA.

Population size µ = 2000

Offsprings size λ = 1800

Number of full search : 250
generations Approach 2 : 50

then 200

Tournament selection Size = 2

BLX-α Crossover p = 1.

Log normal self p = 1. τ =
√

2
adaptive mutation

Number of Runs 100

Table 2. Counterexample II. EA parameter
setting, full search space and Approach 2.

This behaviour is due to the fact that the function is deceptive: when consid-
ering only k1 for optimisation, and fixing k2 to 0, the function has a maximum of
11.14 for k1 = −0.5 and a local maximum of 11.04 for k1 = 0.5. Thus, the first-
stage optimisation concentrates the population around the line k1 = −0.5, which
prevents the second stage from finding the global peak positioned at k1 = 0.5.

The same set of experiments has been performed using CMA-ES with two
settings: a first one letting the CMA-ES self-tune its population size, the sec-
ond one using a larger population size with the idea of artificially maintaining
diversity. The results are not reported here, but in both cases, we noticed that
Approach 2 was bringing deceiving information to the algorithm, and delayed
or even prevented convergence.

4.4 Counterexample III

The third counterexample is based on a multi-objective problem, to better shed
light on the potential limits of the method presented in [7]. A bi-objective min-



10

imisation problem on a two parameters space has been derived using the fit2
function. A small offset has been put on parameter k1 for the second objective,
as follows:

fitObj1(k1, k2) = −fit2(k1, k2)

fitObj2(k1, k2) = −fit2(k1 + 0.05, k2)

The theoretical Pareto front is located in the (k1, k2) parameter space, on
the segment

[
(0.45, 0.5); (0.5, 0.5)

]
. A sub-optimal Pareto front also exists on the

segment
[
(−0.55, 0.5); (0.5, 0.5)

]
.

As expected, a GSA on Counterexample III provides similar information on
the behaviour of the two objective functions as for Counterexample II : k1 is
influential on both objectives whereas k2 is not (See Fig. 5).

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x 

va
lu

e

 

 
Total effect indices
First order indices

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x 

va
lu

e

 

 
Total effect indices
First order indices

Fig. 5. Counterexample III. Sensitivity analysis on objective 1 (left) and on objective
2 (right). For both objectives, the total effect index for k1 is much higher than for k2.

The restart strategy is compared to a classical approach, using the NSGA-II
algorithm. The settings for NSGA-II are given in Table 4.4. The restart strategy
always ends up near the sub-optimal Pareto front, whereas the classic strategy
finds solutions near the optimal Pareto front. A typical result is displayed in Fig.
4.4.

For facilitating comparison, two performance metrics have been computed on
100 runs (see Fig. 7). The hypervolume indicator [24] computes the volume of the
dominated portion of the objective space. A high hypervolume value means that
the solutions are well spread along the objective space and/or are close to the
optimal Pareto front. The convergence indicator [5] computes a distance between
the current solution front and a predefined set of good solutions. Here, solutions
have been taken on the theoretical Pareto front. A low value corresponds to a
good approximation of the Pareto front.



11

ve

ve

Fig. 6. Counterexample III. Typical
Pareto front obtained with a classical
NSGA-II and with the two steps restart
strategy.

Population size 250

Number of full search : 250
generations Approach 2 :

50 then 200

Number of 100
Runs

Table 3. Settings for NSGA-II on
Counterexample III.

Fig. 7. Counterexample III. Convergence metric (left) and hypervolume metric
(right) averaged on 100 runs using NSGA-II and a population size of 250.



12

Fig. 8. Various sensitivity analyses on three sub-spaces for Counterexample I: param-
eters influences vary a lot !

5 Discussion

The counterexamples presented in Section 4 shed light on the fact that sensitiv-
ity analysis techniques may deliver misleading information to the optimisation
process. A possible explanation is that GSA is based on a statistical analysis
over a given parameter range. In this way it provides an averaged viewpoint on
each parameter, and it is clear that averaging may hide many fine details that
are important for optimisation purposes. Another problem is due to the fact
that the results of a GSA may drastically vary with the choice of the param-
eter range. It often happens that a parameter is influential on some subspace
and not on another. Fig 8 illustrates this effect for Counterexample I: when
k1, k2 ∈

[
− 1; 1

]
, k1 is the parameter that has almost all the influence, whereas

k2 is almost non-influential. But on other areas, results can be the opposite:
for instance if k1, k2 ∈

[
− 0.1; 0.1

]
, k1 is regarded as non-influential, while k2

becomes predominant.
The question of an efficient use of GSA inside an optimisation procedure is

raised: GSA is, in itself, extremely time consuming, and this cost has not been
taken into account in the previous experiments. It seems obvious that GSA,
based on a stochastic sampling of the full search space or of an area of it, con-
sumes a computational time that may sometimes be better spent by perform-
ing an optimisation process. Additionally, the averaged information provided
by GSA may hide some interesting irregular areas where global optima could



13

be found. Finally, adaptive refinement methods, like Approach 2 presented in
this paper, or the one proposed in [7], need to identify a non-negligible subset
of non-influential parameters, which is not always the case, especially for com-
plex optimisation problems. More progressive strategies may be imagined, but
once again with all the risks tied to an assessment of the relative importance of
parameters averaged over a given area.

6 Conclusions

GSA is a technique able to deliver information on how the uncertainty in the
inputs of a system might influence uncertainty in its outputs. Since this data
is acquired through a stochastic sampling of the search space, different research
lines exploited the intuitive synergy between GSA and EAs, using the informa-
tion to reduce the dimensionality of the search space, or to choose the variables
on which to optimise first.

In this paper, we presented three case studies, specifically designed to pro-
vide deceiving information to sensitivity analysis used during an optimisation
process. As a result, stochastic optimisation biased by this information has been
experimentally proven unable to reach the global optimum. A simple progres-
sive refinement optimisation scheme based on parameter prioritisation such as
in [7] may work on some functions, but there is a risk of falling into a local
optimum, from which escaping might prove to be hard. Even if parameter pri-
oritisation might work better for multi-objective problems, thanks to a better
diversity preservation mechanism necessary for a correct sampling of Pareto
fronts, a multi-objective counterexample is still rather easy to design. This was
the purpose of counterexample III.

An interesting point for further developments could be to determine in which
cases GSA is beneficial. From this study we can conjecture that regularity of the
fitness function may play an important role. If global sensitivity analysis has been
proven to be puzzling to optimisation in some cases, local sensitivity analysis
however remains interesting.Sobol indices computed locally for instance may be
useful for tuning mutations, in the same spirit as what has been developed in
[14], but with an associated computational cost to be taken into account.

References

1. Barichard, V., Hao, J.K.: Resolution d’un probleme d’analyse de sensibilite par
un algorithme d’optimisation multiobjectif. In: 5eme conference francophone de
Modelisation et SIMulation (MOSIM 2004), Nantes. pp. 59–66 (2004)

2. Beyer, H.G., Sendhoff, B.: Robust optimization–a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33), 3190–3218 (2007)

3. Chabin, T., Tonda, A., Lutton, E.: Is global sensitivity analysis useful to evolution-
ary computation? In: Proceedings of the Companion Publication of the 2015 on
Genetic and Evolutionary Computation Conference. pp. 1365–1366. ACM (2015)

4. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Parallel
Problem Solving from Nature PPSN VI. pp. 891–901. Springer (2000)



14

5. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective
optimizations. In: Proceedings of the Fourth Asia-Pacific Conference on Sim-
ulated Evolution and Learning (SEAL’02),(Singapore). pp. 13–20. Proceedings
of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02),(Singapore) (2002)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2),
182–197 (2002)

7. Fu, G., Kapelan, Z., Reed, P.: Reducing the complexity of multiobjective water
distribution system optimization through global sensitivity analysis. Journal of
Water Resources Planning and Management 138(3), 196–207 (2011)

8. Goldberg, D., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

9. Goldberg, D.: Genetic algorithms and walsh fuctions: II. Deception and its analysis.
Complex Systems 3(2), 153–171 (April 1989)

10. Goldberg, D.: Genetic algorithms and walsh functions: I. A gentle introduction.
Complex Systems 3(2), 129–152 (April 1989)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2), 159–195 (2001)

12. Kargupta, H.: The gene expression messy genetic algorithm. In: International Con-
ference on Evolutionary Computation. pp. 814–819 (1996)

13. Leblanc, B., Lutton, E.: Bitwise regularity and ga-hardness. In: ICEC 98, May 5-9,
Anchorage, Alaska (1998)

14. Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the per-
formance of a simple es. In: CEC’06. Vancouver, Canada (July, 16-21 2006)

15. Lutton, E., Véhel, J.L.: Hölder functions and deception of genetic algorithms. IEEE
transactions on Evolutionary computation 2(2), 56–72 (July 1998)

16. Müller, C., Paul, G., Sbalzarini, I.: Sensitivities for free: Cma-es based sensitivity
analysis. Tech. rep., ETH Zurich (2011)

17. Paul, G., Müller, C., Sbalzarini, I.: Sensitivity analysis from evolutionary algorithm
search paths. Tech. rep., ETH Zurich (2011)

18. Rajeev, S., Krishnamoorthy, C.: Genetic algorithms-based methodologies for design
optimization of trusses. Journal of Structural Engineering 123(3), 350–358 (1997)

19. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Global Sensitivity analysis, The Primer. John Wiley
& Sons (2008)

20. Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ-
mental Modelling & Software 25(12), 1508–1517 (2010)

21. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Mathematics and computers in simulation 55(1-3), 271–280
(2001)

22. Stonedahl, F., Wilensky, U.: Evolutionary robustness checking in the artificial
anasazi model. In: AAAI Fall Symposium: Complex Adaptive Systems (2010)

23. Tang, Y., Reed, P., Wagener, T., Van Werkhoven, K., et al.: Comparing sensitivity
analysis methods to advance lumped watershed model identification and evalua-
tion. Hydrology and Earth System Sciences Discussions 11(2), 793–817 (2007)

24. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algo-
rithms—a comparative case study. In: Parallel problem solving from na-
ture—PPSN V. pp. 292–301. Springer (1998)


