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ABSTRACT
We propose a cooperative-coevolution – Parisian trend – al-
gorithm, IMPEA (Independence Model based Parisian EA),
to the problem of Bayesian networks structure estimation. It
is based on an intermediate stage which consists of evaluat-
ing an independence model of the data to be modelled. The
Parisian cooperative coevolution is particularly well suited
to the structure of this intermediate problem, and allows to
represent an independence model with help of a whole popu-
lation, each individual being an independence statement, i.e.
a component of the independence model. Once an indepen-
dence model is estimated, a Bayesian network can be built.
This two level resolution of the complex problem of Bayesian
network structure estimation has the major advantage to
avoid the difficult problem of direct acyclic graph represen-
tation within an evolutionary algorithm, which causes many
troubles related to constraints handling and slows down al-
gorithms. Comparative results with a deterministic algo-
rithm, PC, on two test cases (including the Insurance BN
benchmark), prove the efficiency of IMPEA, which provides
better results than PC in a comparable computation time,
and which is able to tackle more complex issues than PC.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical anal-
ysis—Optimization; I.2.6 [Computing Methodologies]:
Artificial intelligence—Learning

Keywords
Bayesian Network Structure learning, Cooperative Coevolu-
tion, Independence Model, Parisian Evolution

1. INTRODUCTION
Bayesian networks structure learning is a NP-Hard prob-

lem [5], which has applications in many domains, as soon as
we try to analyse a large set of samples in terms of statistical
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dependence or causal relationship. In agrifood industries for
example, the analysis of experimental data using Bayesian
networks helps to gather technical expert knowledge and
know-how on complex processes, like cheese ripening [1].

Evolutionary techniques have been used to solve the Bayesian
network structure learning problem, and were facing crucial
problems like: Bayesian network representation (an individ-
ual being a whole structure like in [14], or a sub-structures
like in [18]), and fitness function choice [18]. Various strate-
gies have been used, based on evolutionary programming
[24], immune algorithms [13], multi-objective strategies [22],
lamarkian evolution [25] or hybrid evolution [26].

In this work, we propose using an alternate representation,
independence models, in order to solve the Bayesian network
structure learning in two steps. Independence model learn-
ing is still a combinatorial problem, but it is easier to embed
within an evolutionary algorithm. Furthermore, it is suited
to a cooperative coevolution scheme, which allows to obtain
computationally efficient algorithms.

The paper is organised as follows, some notions related
to Bayesian networks and independence models are recalled
in section 1.2, and a brief overview of Parisian cooperative
coevolution is given in section 1.3. Section 2 sketches the
components of the evolutionary algorithm that is used to
solve the first step of IMPEA. The second step of the al-
gorithm is detailed in section 3. Experiments are described
and analysed in section 4, before concluding in section 5.

1.1 Background on probability concepts
The joint distribution of X and Y is the distribution of

the intersection of the events X and Y , that is, of both
events X and Y occurring together. The joint probability
of X and Y is written P (X, Y ). The conditional probability
is the probability of some event X, given the occurrence of
some other event Y and is written P (X|Y ).

To say that two events are statistically independent in-
tuitively means that the occurrence of one event makes it
neither more nor less probable that the other occurs. If
two events X and Y are independent, then the conditional
probability of X given Y is the same as the unconditional
probability of X, that is P (X) = P (X|Y ).

Two events X and Y are said to be conditionally indepen-
dent given a third event Z if knowing Z gives no more infor-
mation about X once one knows Y . Specifically, P (X|Z) =
P (X|Y, Z). In such a case we say that X and Y are condi-
tionally independent given Z and write it X ⊥⊥ Y | Z.



1.2 Bayesian networks
A Bayesian Network (BN) is a “graph-based model of

a joint multivariate probability distribution that captures
properties of conditional independence between variables”
[11]. On the one hand, it is a graphical representation of
the joint probability distribution and on the other hand, it
encodes independences between variables. For example, a
Bayesian network could represent the probabilistic relation-
ships between diseases and symptoms. Given symptoms,
the network can be used to compute the probabilities of the
presence of various diseases.

Formally, a Bayesian network is a directed acyclic graph
(DAG) whose nodes represent variables, and whose missing
edges encode conditional independences between the vari-
ables. This graph, represented in figure 1, is called the struc-
ture of the network and the nodes containing probabilistic
information are called the parameters of the network.
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Figure 1: Directed Acyclic Graph

The set of parent nodes of a node Xi is denoted by pa(Xi).
In a Bayesian network, the joint probability distribution of
the node values can be written as the product of the local
probability distribution of each node and its parents:

P (X1, X2, . . . , Xn) =
n
∏

i=1

P (Xi|pa(Xi))

1.2.1 Parameter and structure learning
The Bayesian network learning problem has two branches:

The parameter learning problem (i.e., to find the probabil-
ity tables of each node) and the structure learning problem
(i.e., to find the graph of the network), following the decom-
position of the two constitutive parts of a Bayesian network:
its structure and its parameters.

There already exists algorithms specially suited to the
parameter learning problem, like expectation-maximization
(EM) that is used for finding maximum likelihood estimates
of parameters.

Learning the structure is a more challenging problem be-
cause the number of possible Bayesian network structures
(NS) grows superexponentially with the number of nodes
[21]. For example, NS(5) = 29281 and NS(10) = 4.2×1018 .
A direct approach is intractable for more than 7 or 8 nodes,
it is thus necessary to use heuristics in the search space.

In a comparative study by O. Francois and P. Leray [9],
authors identified some currently used structure learning al-
gorithms, namely PC [23] or IC/IC∗ [20] (causality search
using statistical tests to evaluate conditional independence),
BN Power Constructor (BNPC) [3] (also uses conditional in-
dependence tests) and other methods based on scoring crite-
rion, such as Minimal weight spanning tree (MWST) [6] (in-
telligent weighting of the edges and application of the well-
known algorithms for the problem of the minimal weight
tree), K2 [7] (maximisation of P (G|D) using Bayes and a
topological order on the nodes), Greedy search [4] (finding
the best neighbour and iterate) or SEM [10] (extension of

the EM meta-algorithm to the structure learning problem).
However that may be, the problem of learning an optimal
Bayesian network from a given dataset is NP-hard [5].

1.2.2 The PC algorithm
PC, the reference causal discovery algorithm, was intro-

duced by Sprites, Glymour and Scheines in 1993 [23]. A
similar algorithm, IC, was proposed simultaneously by Peal
and Verma [20]. It is based on chi-square tests to evaluate
the conditional independence between two nodes. It is then
possible to rebuild the structure of the network from the set
of discovered conditional independences. PC algorithm ac-
tually starts from a fully connected network and every time
a conditional independence is detected, the corresponding
edge is removed. Here are the first detailed steps of this
algorithm:

• Step 0: Start with a complete undirected graph G

• Step 1-0: Test all conditional independences of order
0 (i.e x ⊥⊥ y | ∅ where x and y are two distinct nodes
of G). If x ⊥⊥ y then remove the edge x − y.

• Step 1-1: Test all conditional independences of order
1 (i.e x ⊥⊥ y | z where x, y, and z are three distinct
nodes of G). If x ⊥⊥ y | z then remove the edge x− y.

• . . .

• Step 1-k: Test all conditional independences of order k

(i.e x ⊥⊥ y | {z1, z2, . . . , zk} where x, y, z1, z2, . . . , zk are
k + 2 distinct nodes of G). If x ⊥⊥ y | {z1, z2, . . . , zk}
then remove the edge between x − y.

• Next steps take particular care to detect V-structures
and recursively detect orientation of the remaining edges.

The complexity of this algorithm depends on N , the size
of the network and k, the upper bound on the fan-in, and is
equal to O(Nk). In practice, this implies that the value of
k must remain very small when dealing with big networks.

1.2.3 Independence models
As we have seen, a Bayesian network represents a fac-

torization of a joint probability distribution, but there can
be many possible factorizations representing the same joint
probability distribution. Two structures are said to be Markov
equivalent if they represent the same joint probability dis-
tribution.

In this paper, we do not work directly on Bayesian net-
works but on a more general model called Independence
Model (IM), which can be seen as the underlying model of
Bayesian networks and defined as follows:

• Let M be a non-empty set of variables, then T (M) de-
notes the collection of all triplets 〈X, Y |Z〉 of disjoint
subsets of M , X 6= ∅ and Y 6= ∅. The class of elemen-
tary triplets E(M) consists of 〈x, y|Z〉 ∈ T (M), where
x, y ∈ M are distinct and Z ⊂ M\ {x, y}.

• Let P be a joint probability distribution over M and
〈X, Y |Z〉 ∈ T (M). 〈X, Y |Z〉 is called an independence
statement (IS) if X is conditionally independent of Y

given Z with respect to P (i.e X ⊥⊥ Y | Z)

• An independence model (IM) is a subset of T (M):
Each probability distribution P defines an IM, namely,
the model {〈X, Y |Z〉 ∈ T (M) ; X ⊥⊥ Y | Z}, called
the independence model induced by P .



To summarize, an independence model is the set of all the
independence statements, that is the set of all 〈X, Y |Z〉 sat-
isfied by P , and different Markov-equivalent Bayesian net-
works induce the same independence model. By following
the paths in a Bayesian network, it is possible (even though
it can be combinatorial) to find a part of its independence
model using algorithms based on directional separation (d-
separation) or moralization criteria. Reciprocally, an inde-
pendence model is a guide to produce the structure of a
Bayesian network.

Consequently, as the problem of finding an independence
model can be turned to an optimisation problem, we in-
vestigate here the use of an evolutionary algorithm. More
precisely, we build an algorithm that let a population of
triplets 〈X, Y |Z〉 evolve until the whole population comes
near to the independence model, which corresponds to a co-
operative coevolution scheme.

1.3 Cooperative coevolution
Cooperative coevolution strategies rely on a formulation

of the problem to be solved as a cooperative task, where
individuals collaborate or compete (in subpopulations) in
order to build a solution. They mimic the ability of natural
populations to build solutions via a collective process.

Instead of dealing with a coevolution process that happens
between different separated populations, we use a different
implementation of cooperative coevolution principles, called
Parisian approach [19], described in figure 2, that uses coop-
eration mechanisms within a single population. It is based
on a two-level representation of an optimization problem, in
the sense that an individual of a Parisian population repre-
sents only a part of the solution to the problem. An aggrega-
tion of multiple individuals must be built in order to obtain a
solution to the problem. In this way, the co-evolution of the
whole population (or a major part of it) is favoured instead
of the emergence of a single best individual, as in classical
evolutionary schemes.

Selection

Crossover
Mutation

PARENTS

Elitism

OFFSPRING

Extraction of the solution Initialisation

Feedback to individuals

Aggregate solutions

(global evaluation)

(local evaluation)

Figure 2: A Parisian EA: A monopopulation
cooperative-coevolution

In a pure Parisian scheme, the evaluation of whole popula-
tion through the computation of the global fitness is done at
each generation and redistributed as a bonus to the individ-
uals who participated in this aggregation. In this paper, we
rely on local fitness only and just compute the global eval-
uation at the end, and thus don’t use any feedback to the
population. This approach has already been used with suc-
cess for example in real-time evolutionary algorithms, such
as the flies algorithm [15].

2. EVOLUTION OF AN INDEPENDENCE
MODEL

IMPEA is a Parisian Evolutionary Algorithm that consists
in two steps. First, it generates a subset of the independence
model of a Bayesian network from data by evolving elemen-
tary triplets 〈x, y|Z〉, where x and y are two distinct nodes
and Z is a subset of the other ones, possibly empty. Then, it
uses the independence statements that it found at the first
step to construct the structure of the network.

2.1 Search space and local fitness
Individuals are elementary triplets 〈x, y|Z〉. Each indi-

vidual is evaluated through a chi-square test of indepen-
dence which tests the null hypothesis H0: “The nodes x

and y are independent given Z”. The chi-square statis-
tic χ2 is calculated by finding the difference between each
observed Oi and theoretical Ei frequencies for each of the
n possible outcomes, squaring them, dividing each by the
theoretical frequency, and taking the sum of the results:

χ2 =
∑n

i=1
(Oi−Ei)

2

Ei

. The chi-square statistic can then be

used to calculate a p-value p by comparing the value of the
statistic χ2 to a chi-square distribution with n − 1 degrees
of freedom, as represented in figure 3.

Figure 3: Chi-square test of independence

p represents the probability to make a mistake if the null
hypothesis is not accepted. It is then compared to a sig-
nificance level α (0.05 is often chosen as a cut-off for sig-
nificance) and finally the independence is rejected if p < α.
The reader has to keep in mind that rejecting H0 allows one
to conclude that the two variable are dependent, but not
rejecting H0 means that one cannot conclude that these two
variables are dependent (which is not exactly the same as
claiming that they are independent). Given that the higher
the p-value, the stronger the independence, p seems to be a
good candidate to represent the local fitness (which measure
the quality of individuals). Nevertheless, this fitness suffers
from two drawbacks:

• When dealing with small datasets, individuals with
long constraining set Z tends to have good p-values
only because dataset is too small to get enough sam-
ples to test efficiently the statement x ⊥⊥ y | Z.

• Due to the exponential behaviour of the chi-square dis-
tribution, its tails vanishes so quickly that individuals
with poor p-values are often rounded to 0, making then
indistinguishable.

First, p has to be adjusted in order to promote indepen-
dence statements with small Z. This is achieved by set-
ting up a parsimony term as a positive multiplicative malus
parcim(#Z) which decrease with #Z, the number of nodes



in Z. Then, when p < α we replace the exponential tail with
something that tends to zero slower. This modification of
the fitness landscape allows to avoid plateaus which would
prevent the genetic algorithm to travel all over the search
space. Here is the adjusted local fitness:

AdjLocalF itness =

{

p × parcim(#Z) if p ≥ α

α × parcim(#Z) ×
X2

α

X2 if p < α

2.2 Genetic operators
The genome of an individual, being 〈x, y|Z〉 where x and y

are simple nodes and Z is a set of nodes is straightforward: It
consists in an array of three cells (see figure 4), the first one
containing the index of the node x, the second cell containing
the index of y and the last one is the array of the indexes of
the nodes in Z.

Figure 4: Representation of 〈x, y|Z〉

This coding implies specific genetic operators because of
the constraints resting upon a chromosome: There must not
be doubles appearing when doing mutations or crossovers.
A quick-and-dirty solution would have been to first apply
classical genetic operators and then apply a repair operator
a posteriori. Instead, we propose wise operators (which do
not create doubles), namely two types of mutations and an
robust crossover.

• Genome content mutation

This mutation operator involves a probability pmG that
an arbitrary node will be changed from its original
state. In order to avoid the creation of doubles, this
node can be muted into any nodes in N except the
other nodes of the individual, but including itself (see
figure 5).

Figure 5: Genome content mutation

• Add/remove mutation

The previous mutation randomly modifies the content
of the individuals, but does not modify the length of
the constraining set Z. We introduce a new mutation
operator called add/remove mutation, represented in
figure 6, that allows to randomly add or remove nodes
in Z. If this type of mutation is selected, with proba-
bility PmAR, then new random nodes are either added
with a probability PmAdd or removed with 1− PmAdd.
These probabilities can vary along generations. More-
over, the minimal and the maximal number of nodes
allowed in Z can evolve as well along generations, al-
lowing to tune the growth of Z

• Crossover

Figure 6: Add/remove mutation

The crossover consist in a simple swapping mechanism
between x, y and Z. Two individuals 〈x, y|Z〉 and
〈x′, y′|Z′〉 can exchange x or y with probability pcXY

and Z with probability pcZ (see figure 7). When a
crossover occurs, only one swapping among x ↔ x′,
y ↔ y′, x ↔ y′, y ↔ x′ and Z ↔ Z′ is selected via a
wheel mechanism which implies that 4pcXY +pcZ = 1.
If the exchange is impossible, then the infeasible in-
dividual is repaired: problematic nodes are automati-
cally muted in order to keep clear of doubles.

Figure 7: Robust crossover

2.3 Sharing
So as not to converge to a single optimum, but enable

the genetic algorithm to identify multiple optima, we use a
sharing mechanism that maintains diversity within the pop-
ulation by creating ecological niches. The complete scheme
is described in [8] and is based on the fact that fitness is
considered as a shared resource, i.e that individuals having
too many neighbours are penalized. Thus we need a way
to compute the distance between individuals so that we can
count the number of neighbours of a given individual. A sim-
ple Hamming distance was chosen: Two elementary triplets
〈x, y|Z〉 and 〈x′, y′|Z′〉 are said to be neighbours if they test
the same two nodes (i.e {x, y} = {x′, y′}), whatever Z. Fi-
nally, dividing the fitness of each individual by the number
of its neighbours would result in sharing the population into
subpopulations whose size is proportional to the height of
the peak they are colonising [12]. Instead, we take into ac-
count the relative importance of an individual with respect
to its neighbourhood, and the fitness of each individual is
divided by the sum of the fitnesses of its neighbours [16].
This scheme allows to equilibrate the subpopulations within
peaks, whatever their height.



2.4 Immortal archive and embossing points
Recall that the aim of IMPEA is to construct a sub-

set of the independence model, and thus the more inde-
pendence statements we get, the better. Using a classi-
cal Parisian Evolutionary Algorithm scheme would allow to
evolve a number of independence statements equal to the
population size. In order to be able to evolve larger inde-
pendence statements sets, IMPEA implements an immortal
archive that gather the best individuals found so far. An in-
dividual 〈x, y|Z〉 can become immortal if any of the following
rules applies:

• Its p-value is equal to 1 (or numerically greater than
1 − ǫ, where ǫ is the precision of the computer)

• Its p-value is greater than the significance level and
Z = ∅

• Its p-value is greater than the significance level and
〈x, y|∅〉 is already immortal

This archive serves two purposes: The most obvious one is
that at the end of the generations, not only we get all the
individuals of the current population but also all the immor-
tal individuals, which can make a huge difference. But this
archive also plays a very important role as embossing points:
When computing the sharing coefficient, immortal individ-
uals that are not in the current population are added to the
neighbours counting. Therefore a region of the search space
that has already been explored but that has disappeared
from the current population is marked as explored since im-
mortals individuals count as neighbours and thus penalize
this region, encouraging the exploration of other zones.

2.5 Clustering and partial restart
Despite the sharing mechanism, we observed experimen-

tally that some individuals became over-represented within
the population. Therefore, we add a mechanism to reduce
this undesirable effect: If an individual has too many redun-
dant representatives then the surplus is eliminated and new
random individuals are generated to replace the old ones.

2.6 Description of the main parameters
The table 1 describes the main parameters of IMPEA and

their typical values or range of values, in order of appearance
in the paper. Some of these parameters are scalars, like the
number of individuals, and are constant along the whole
evolution process. Others parameters, like the minimum or
maximum number of nodes in Z, are arrays indexed by the
number of generations, allowing these parameter to follow a
profile of evolution (for example increasing or decreasing in
value, but any kind of profile is possible). This enables to
guide the algorithm in a specific direction.

3. BAYESIAN NETWORK STRUCTURE
ESTIMATION

The last step of IMPEA consist in reconstructing the
structure of the Bayesian network. This is achieved by ag-
gregating all the immortal individuals and only the good
ones of the final population. An individual 〈x, y|Z〉 is said
to be good if its p-value allows not to reject the null hypoth-
esis x ⊥⊥ y | Z. There are two strategies in IMPEA: A pure
one, called P-IMPEA, which consists in strictly enforcing
independence statements and an constrained one, called C-
IMPEA, which adds a constraint on the number of desired
edges.

Name Description Typical value

MaxGens Number of generations 50 . . . 200
Ninds Number of individuals 50 . . . 500

Alpha Significance level of the χ2 test 0.01 . . . 0.25

Parcim
(#Z)

Array of parsimony coefficient
(decreases with the length of Z)

0.5 . . . 1

PmG
Probability of genome content

mutation
0.1/(2 + #Z)

PmAR
Probability of adding or

removing nodes in Z
0.2 . . . 0.5

PmAdd
(#Gen)

Array of robability of adding
nodes in Z along generations

0.25 . . . 0.75

MinNodes
(#Gen)

Array of minimal number of
nodes in Z along generations

0 . . . 2

MaxNodes
(#Gen)

Array of maximal number of
nodes in Z along generations

0 . . . 6

Pc Probability of crossover 0.7
PcXY Probability of swapping x and y 1/6
PcZ Probability of swapping Z 1/3

Epsilon Numerical precision 10−5

MaxRe-
dundant

Maximal number of redundant
individuals in the population

1 . . . 5

Table 1: Parameters of IMPEA. Values are chosen
within their typical range depending on the size of
the network and the desired computation time.

3.1 Pure conditional independence
Then, as in PC, P-IMPEA starts from a fully connected

graph, and for each individual of the aggregated population,
it applies the rule “x ⊥⊥ y | Z ⇒ no edge between x and y”
to remove edges whose nodes belong to an independence
statement. Finally, the remaining edges (which have not
been eliminated) constitute the undirected structure of the
network.

3.2 Constrained edges estimation
C-IMPEA needs an additional parameter which is the de-

sired number of edges in the final structure. It proceeds by
accumulation: It starts from an empty adjacency matrix and
for each 〈x, y|Z〉 individual of the aggregated population, it
adds its fitness to the entry (x, y). An example of a matrix
obtained this way is shown in figure 8.
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Figure 8: Accumulated adjacency matrix of a net-
work with 27 nodes (from Insurance network).

At the end of this process, if an entry (at the intersection
of a row and a column) is still equal to zero, then it means
that there was no independence statement with this pair of
nodes in the aggregated population. Thus, these entries ex-
actly correspond to the strict application of the conditional
independences. If an entry has a low sum, then it is an entry
for which IMPEA found only a few independence statements
(and/or independence statements with low fitness) and thus
there is a high expectancy of having an edge between its



nodes. Therefore, to add more edges in the final structure
(up to the desired number of edges), we just have to select
edges with the lowest values and construct the correspond-
ing network.

This approach seems to be more robust since it allows
some “errors” in the chi-square tests, but strictly speaking,
if an independence statement is discovered, there cannot be
any edge between the two nodes.

4. EXPERIMENTS AND RESULTS

4.1 Test case: Comb network
To evaluate the efficiency of IMPEA, we forge a test-

network which looks like a comb. A n-comb network has
n+2 nodes: x, y, and z1, z2, . . . , zn, as one can see in figure 9.
The Conditional Probability Tables (CPT) are filled in with
a uniform law. It can be seen as a kind of classifier: Given
the input z1, z2, . . . , zn, it classifies the output as x or y.
For example, it could be a classifier that accepts a person’s
salary details, age, marital status, home address and credit
history and classifies the person as acceptable/unacceptable
to receive a new credit card or loan.

x

z1 z2 . . . zn−1 zn

y

Figure 9: A n-comb network

The interest of such a network is that its independence
model can be generated (using semi-graphoid rules) from
the following independence statements:

∀i, j such as i 6= j, zi ⊥⊥ zj

x ⊥⊥ y | {z1, z2, . . . , zn}

Thus it has only one complex independence statement and
a lot of simple (short) ones. In particular, the only way
to remove the edge between x and y using statistical chi-
square tests is to test the triplet 〈x, y | {z1, z2, . . . , zn}〉.
This cannot be achieved by the PC algorithm as soon as
k < n (and in practice, k is limited to 3 due to combinatorial
complexity).

4.1.1 Typical run
We choose to test P-IMPEA with a simple 6-comb net-

work. It has been implemented using an open source tool-
box, the Bayes Net Toolbox for Matlab [17] available at
http://bnt.sourceforge.net/. We draw our inspiration
from PC and initialise the population with individuals with
an empty constraining set and let it grow along generations
up to 6 nodes, in order to find the independence statement
x ⊥⊥ y | {z1, . . . , z6}. As shown in figure 10, the minimal
number of nodes allowed in Z is always 0, and the maximal
number is increasing on the first two third of the generations
and is kept constant to 6 on the last ones. The average num-
ber of nodes in the current population is also slowly rising
up but remains rather small since in this example, there are

a lot of small easy to find independence statements and only
a unique big one.
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Figure 10: Evolution of Minimal, Maximal and Av-
erage number of nodes in Z along generations

The correct structure (figure 11) is found after 40 (out of
50) generations.

X

Z1 Z2 Z3 Z4 Z5 Z6

Y

Figure 11: Final evolved structure for the comb net-
work

Figure 12 represents the evolution of the number of errors
along generations. The current evolved structure is com-
pared with the actual structure: An added edge is an edge
present in the evolved structure but not in the actual comb
network, and a deleted edge is an edge that has been wrongly
removed. The total number of errors is the sum of added
and deleted edges. Note that even if the number of errors of
the discovered edges is extracted at each generation, it is by
no means used by IMPEA or reinjected in the population
because this information is only relevant in that particu-
lar test-case where the Bayesian network that generated the
dataset is known.
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Figure 12: Evolution of the number of erroneous
edges of the structure along generations

4.1.2 Statistical results
The previous example gives an idea of the behaviour of P-

IMPEA, but to compare it fairly with PC we must compare
them not only over multiple runs but also with respect to the
size of the dataset. So we set up the following experimental
protocol:

• A 4-comb network is created and we use the same
Bayesian network (structure and CPT) throughout the
whole experiment.

• We chose representative sizes for the dataset:
{500, 1000, 2000, 5000, 10000}, and for each size, we
generate the corresponding number of cases from the
comb network.

• We run 100 times both PC and P-IMPEA, and extract
relevant information (see tables 2 and 3):



– How many edges were found? Among these, how
many were erroneous? (added or deleted)

– Did the algorithm remove the edge x − y?

• PC is tuned with a fan-in k equal to 3 and P-IMPEA is
tuned with 50 generation of 50 individuals in order to
take the same computational time as PC. They both
share the same significance level α.

The actual network contains 8 edges and 6 nodes. There-
fore, the number of possible alternative is 26 = 64 and if we
roughly want to have 30 samples per possibility, we would
need approximatively 64 ∗ 30 ≈ 2000 samples. That ex-
plains why performances of the chi-square test are very poor
with only 500 and 1000 cases in the dataset. Indeed, when
the size of the dataset is too small, PC removes the x − y

edge (see the last row of table 2) while it does not even test
〈x, y | {z1, z2, z3, z4}〉 because it is limited by k to 3 nodes
in Z.
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Figure 13: Number of erroneous edges
(added+deleted) for PC and P-IMPEA, depending
on the size of the dataset

Regarding the global performance, figure 13 puts up the
average number of erroneous nodes (either added or deleted)
of both algorithms. As one can expect, the number of errors
decreases with the size of the dataset, and it is clear that
P-IMPEA clearly outperforms PC in every case.

Cases Edges Added Removed Errors x-y?

500 5.04±0.85 0.38±0.50 3.34±0.78 3.72±1.01 97%
1000 6.50±1.24 0.66±0.71 2.16±1.01 2.82±1.23 83%
2000 8.09±1.18 1.27±0.80 1.18±0.68 2.45±0.91 39%
5000 9.71±0.74 1.93±0.57 0.22±0.46 2.15±0.73 0%
10000 9.84±0.58 1.84±0.58 0± 0 1.84±0.58 0%

Table 2: Averaged results of PC after 100 runs

Cases Edges Added Removed Errors x-y?

500 6.64±0.79 0.05±0.21 1.73±1.90 1.78±1.94 100%
1000 7.32±0.91 0.18±0.50 0.78±1.01 0.96±1.24 100%
2000 8.87±1.04 0.24±0.51 0.29±0.60 0.53±0.82 97%
5000 8.29±0.32 0.30±0.59 0.03±0.17 0.33±0.63 90%
10000 8.27±0.31 0.27±0.54 0± 0 0.27±0.54 89%

Table 3: Averaged results of P-IMPEA after 100
runs

Finally, if one has a look to the average number of discov-
ered edges, it is almost equal to 8 (which is the actual num-
ber of edges in the 4-comb structure) for P-IMPEA whereas
it is greater than 9 for the PC algorithm since it can’t remove
the x − y edge.

4.2 Classical benchmark: The Insurance
Bayesian network

Insurance [2] is a network for evaluating car insurance
risks. The Insurance Bayesian network contains 27 vari-
ables and 52 arcs (figure 14). We use in our experiments
a database containing 50000 cases generated from the net-
work.
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Figure 14: The Insurance Bayesian Network

Once again, we start from a population with small Z and
let it increase up to 4 nodes. Figure 15 illustrates this
growth: The average size of the number of nodes in Z of
the current population follows the orders given by the min-
imum and the maximum values.
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Figure 15: Evolution of Minimal, Maximal and Av-
erage number of nodes in Z along generations

Concerning the evolution of the number of erroneous edges,
represented in figure 16, it quickly decreases during the first
half of the generation (the completely connected graph has
more than 700 edges) and then stagnates. At the end, P-
IMPEA finds 39 edges out of 52 among which there is no
added edge, but 13 which are wrongly removed. It is slightly
better than PC which also wrongly removes 13 edges, but
which adds one superfluous one.

The best results are obtained with C-IMPEA and a de-
sired number of edges equal to 47. Then, only 9 errors are
made (see table 4). When asking for 52 edges, the actual
number of edges in the Insurance network, it makes 14 errors
(7 additions and 7 deletions).
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Figure 16: Evolution of the number of erroneous
edges of the structure along generations

Algorithm Edges Added Removed Errors

PC 40 1 13 14
P-IMPEA 39 0 13 13
C-IMPEA 47 2 7 9
C-IMPEA 52 7 7 14

Table 4: Number of detected edges for all algorithms



5. CONCLUSION
In this work we compared performances on the basis of

undirected graphs produced by both algorithms. The edge
directions estimation has not been yet programmed in IM-
PEA, this will be done in future developments, using a low
combinatorial strategy similar to PC. Comparisons between
both algorithms do not actually depend on this step.

The two experiments of section 4 prove that IMPEA fa-
vourably compares to PC, actually, besides the fact that
IMPEA relies on a convenient problem encoding, PC per-
forms a deterministic and systematic search while IMPEA
uses evolutionary mechanisms to prune computational ef-
forts and to concentrate on promising parts of the search
space. The limitation of PC according to problem size is
obvious in the first test (Comb network): PC is unable to
capture a complex dependency, even on a small network.
Additionally it is to be noticed that IMPEA better resists
to a current problem of real life data, that is the insufficient
number of available samples.

Future work on this topic will be devoted to statistical
tests on large benchmarks and on a real industrial agrifood
application, where we will have to consider incomplete data.
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[14] P. Larrañaga and M. Poza. Structure Learning of
Bayesian Networks by Genetic Algorithms: A
Performance Analysis of Control Parameters. IEEE
Journal on Pattern Analysis and Machine Intelligence,
18(9):912–926, 1996.

[15] J. Louchet, M. Guyon, M. J. Lesot, and A. M.
Boumaza. Dynamic flies: a new pattern recognition
tool applied to stereo sequence processing. Pattern
Recognition Letters, 23(1-3):335–345, 2002.

[16] E. Lutton and P. Martinez. A Genetic Algorithm with
Sharing for the Detection of 2D Geometric Primitives
in Images. In AE ’95: Selected Papers from the
European conference on Artificial Evolution, pages
287–303. Springer-Verlag, 1995.

[17] K. Murphy. The Bayes Net Toolbox for Matlab.
Computing Science and Statistics, 33(2):1024–1034,
2001.

[18] J. W. Myers, K. B. Laskey, and K. A. DeJong.
Learning Bayesian Networks from Incomplete Data
using Evolutionary Algorithms. In Genetic and
Evolutionary Computation Conference, volume 1,
pages 458–465. Morgan Kaufmann, 1999.

[19] G. Ochoa, E. Lutton, and E. Burke. The Cooperative
Royal Road: Avoiding Hitchhiking. In Artificial
Evolution, pages 184–195, 2007.

[20] J. Pearl and T. Verma. A theory of inferred causation.
In Second International Conference on the Principles
of Knowledge Representation and Reasoning, 1991.

[21] R. W. Robinson. Counting unlabeled acyclic digraphs.
Combinatorial mathematics V, 622:28–43, 1977.

[22] B. J. Ross and E. Zuviria. Evolving dynamic Bayesian
networks with Multi-objective genetic algorithms.
Applied Intelligence, 26, 2007.

[23] P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search. The MIT Press, second
edition, 2001.

[24] A. Tucker and X. Liu. Extending Evolutionary
Programming Methods to the Learning of Dynamic
Bayesian Networks. In GECCO ’99, 1999.

[25] S. C. Wang and S. P. Li. Learning Bayesian Networks
by Lamarckian Genetic Algorithm and Its Application
to Yeast Cell-Cycle Gene Network Reconstruction
from Time-Series Microarray Data. 3141/2004:49–62.

[26] M. L. Wong and K. S. Leung. An efficient data mining
method for learning Bayesian networks using an
evolutionary algorithm-based hybrid approach.
8:378–404, 2004.


