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Abstract

In this study, we combine computer vision and visualisation/data exploration to analyse magnetic
resonance imaging (MRI) data and detect garden peas inside the stomach. It is a preliminary objective
of a larger project that aims to understand the kinetics of gastric emptying. We propose to perform
the image analysis task as a multi-objective optimisation. A set of 7 equally important objectives are
proposed to characterise peas. We rely on a cooperation co-evolution algorithm called ‘Fly Algorithm’
implemented using NSGA-II. The Fly Algorithm is a specific case of the ‘Parisian Approach’ where the
solution of an optimisation problem is represented as a set of individuals (e.g. the whole population)
instead of a single individual (the best one) as in typical evolutionary algorithms (EAs). NSGA-II is a
popular EA used to solve multi-objective optimisation problems. The output of the optimisation is a
succession of datasets that progressively approximate the Pareto front, which needs to be understood and
explored by the end-user. Using interactive Information Visualisation (InfoVis) and clustering techniques,
peas are then semi-automatically segmented.

1 Introduction
Digestion is known to be much more complex than simple food decomposition and absorption of
macro-nutrients, e.g. carbohydrates, proteins and lipids, as well as micro-nutrients, e.g. vitamins, minerals,
and other food components. Two aspects have been recognised as relevant: kinetics of digestion and food
structure [2, 3, 13, 6, 21].

The work presented here is a contribution to a large project focused on the understanding of the influence
of food structure on digestion. Our approach is based on advanced imaging techniques to observe phenomena
at different scales. We rely on magnetic resonance imaging (MRI) of the gastrointestinal tract (GIT) for
capturing in vitro large scale information, while smaller scale measurements are performed in vitro on large
facilities (small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and X-ray imaging) [7,
10]. The observation of in vivo digestion using MRI is a recent challenge. Here the focus is on the content of
the GIT and not on the GIT itself as in clinical routine [12, 16, 17].

Our work is part of a larger multi-disciplinary collaboration where we recently acquired experimental MRI
data of the stomach and duodenum area of healthy human volunteers. The aim is to analyse the content of
the stomach and its evolution. We focus here on the kinetics of gastric emptying for two species of ingested
food: i) progressively and partially digested cooked pasta, and ii) frozen garden peas, which keep their shape
in early gastric stages (see Fig. 1).

Manually processing this large amount of MRI data sets is not practically feasible. Processing it in a
fully-automatic manner is not trivial as appropriate information need first to be collected and analysed
to provide suitable models. Here we show how a “Fly Algorithm” [18] can be efficiently adapted to
analyse these MRI images. The Fly Algorithm, on the contrary to classical image processing techniques,
is able to provide a map of various features (e.g. the location of components of the food bolus). In
this paper, we present early results on the tracking of peas (around 20 peas in one stomach for the



current experimental data), which reveals the motion of the stomach (the food bolus is stirred and gently
“triturated” for better action of the gastric juice). For this purpose, the Fly Algorithm has been turned into
a multi-objective cooperative-coevolution algorithm, and expert knowledge has been integrated through an
interaction/visualisation interface. The combination of visualisation and evolutionary computing is still a
relatively overlooked field. Two main approaches are currently explored:

• visualisation to understand evolutionary algorithms (EAs) behaviour [19, 15, 20, 9], or outputs [4];

• interactive artificial evolution to improve the visualisation [1, 11, 8].
We show how simple, but yet effective, Information Visualisation (InfoVis) techniques can be used to display
the output of an evolutionary algorithm. In particular, the multi-objective scheme provides complex time
series of Pareto front data, which needs to be understood and explored by the end-user. Fig. 2 summarises
our processing pipeline.

2 Problem definition
In Step 1 of Fig. 2, we selected a typical MRI image containing the stomach full of pasta and peas. The MRI
slice is manually cropped to only focus on the stomach and its content (see Step 2). In Step 3, we aim to
describe what a pea looks like and how to mathematically model it:

• Peas keep their shape and size in early gastric stages. A pea appear as a circle of a fixed radius of
about 4mm, which is equivalent to R = 8 pixels.

• The interior of a pea is homogeneous; the outside is not.

• The interior of a pea is darker than the outside.
We propose to implement this knowledge into 7 equally important objectives to minimise as a multi-objective
optimisation problem (see Step 2. in figure 2).

For each pixel (x, y) of the MRI image, Objective 1 measures the local pixel intensity standard deviation
(σ) within a circular region of interest (ROI):

obj1(x, y, I, R) = σ(ROIC(I, x, y,R)) (1)
where ROIC(I, x, y,R) is a circular region of interest in Image I. It is centred on Pixel (x, y), and its radius
is R. Fig. 3b is an image representation of Objective 1.

Objective 2 measures how homogeneous the interior of the circle is and how heterogeneous the outside is
(see Fig. 3c). It compares Objective 1 with the local pixel intensity standard deviation within a ring region
of interest (ROIR) whose inner radius is R and outer radius R+ 5:

obj2(x, y, I, R) = obj1(x, y, I, R)− σ(ROIR(x, y, I, R,R+ 5)) (2)

Objective 3 combines Objectives 1 and 2 (see Fig. 3d):

obj3(x, y, I, R) = obj1(x, y, I, R)× obj2(x, y, I, R) (3)

When a pea is considered in Objectives 1, 2 and 3, the corresponding pattern in Figures 3b, 3c and 3d is
isotropic. Each pea corresponds to a small bright dot onto a dark background in these images. Objectives 4,
5 and 6 exploit this property. We model an intensity profile (defP ) of 30 pixels using a triangular function.
It mimics an intensity profile perfectly centred on a pea:

defP (i) =
{

1− |i−(2R−1)|
R−1 , ∀i ∈

[ 30
2 −R,

30
2 +R

]
0, otherwise

(4)

For each pixel in Figures 3b, 3c and 3d, we extract 89 intensity profiles (profk) every 2◦ around that pixel:

objiso(x, y, I) = −max
(

i<30∑
i=0

(defP (i)− profk(I, x, y, i))2

)
∀k ∈ [0, 89) (5)
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where profk(I, x, y, i) is i-th value of the intensity profile in Image I, centred of Pixel x, y at the k-th angle.

obj4(x, y) = objiso(x, y, obj1) (6)
obj5(x, y) = objiso(x, y, obj2) (7)
obj6(x, y) = objiso(x, y, obj3) (8)

Objective 7 assesses that the interior of the circle is darker than the ring around it:

f(x, y) = ROIC(x, y, I, R− 1)−ROIR(x, y, I, R− 1, R+ 5)

obj7(x, y) =
{
f(x, y), ∀f(x, y) ≤ T
0, otherwise (9)

where ROIC is the average pixel value of a given circular ROI, ROIR is the average pixel value of a given
ring ROI, and T is a user defined threshold. obj7(x, y) is expected to be negative or null, which is suitable for
a minimisation algorithm. T is also negative. It restricts non-null values in obj7 to areas where the difference
in pixel intensities of the two corresponding ROIs are significantly different, which correspond to the location
of peas and stomach wall.

3 Multi-objective optimisation problem
Pea detection is actually a non-trivial optimisation problem, as it involves multiple objectives that cannot
be merged into a single one using simple rules (example: a circular uniform area & a defined colour & and
an irregular background ...) and/or subjective preference weights. Multi-objective optimisation considers all
objectives as equally important and non comparable. It provides a set of trade-off between objectives, the
Pareto front. The Pareto front is the set of non-dominated solutions, i.e. points of the search space for which
one objective function cannot be improved in value without degrading some of the other objectives [14].
Evolutionary optimisation methods can be adapted to deal with multiple objectives, and various efficient
algorithms are now available. NSGA-II [5] is a very popular implementation, that is able to produce an
efficient sampling of the Pareto front in a single run of the algorithm.

Here, we implement a multi-objective version of the Fly Algorithm based on NSGA-II so that the
population of flies stabilises onto a Pareto front (see Step 4 in Fig. 2). 1000 individuals are used over
25 generations. For up-to-date details on the Fly Algorithm, see https://en.wikipedia.org/wiki/Fly_
algorithm. Once a Pareto front (i.e. a set of possible best solutions) is produced, the decision may be put
in the hand of an expert.

4 Visualisation
The output of Step 4 of the flowchart (Fig. 2) is a dataset of 1000 × 25 samples, i.e. (x, y) positions with
7 associated fitness values. In typical multi-objective evolutionary algorithms (EAs), one of the individual
on the Pareto front is a possible answer to the optimisation problem. The Fly Algorithm approach provides
a set of points as a solution, each point corresponding not only to a possible pea location, but also to a
different objective priority assessment. Several flies of the population may co-exist on the same pea with
different objective weights. Automatically extracting the points that really correspond to peas is not trivial.
Extracting only one point per pea, the point the closest to the centre of the corresponding pea, is even more
complicated. This can be done efficiently through an interactive visualisation interface.

In Step 5 of Fig. 2, each generation is subsequently displayed twice at a time. A scatterplot is used
to display the position of the individuals over the MRI image (see left-hand side column of Fig. 4). A
parallel coordinate plot is used to display the values of the multiple objective functions corresponding to
each individual (see right-hand side column of Fig. 4). This plot represents a point in a n-dimensional space
as a broken line with n − 1 segments, joining its n coordinates located on n vertical axes. The user can
easily and interactively select areas of points in the scatterplot that correspond to peas. Each new manually
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selected area is assigned a new unique colour, which is the same in both plots. With this tool, the behaviour
of individuals toward a global optimal solution in each generation can be visually detected. It also helped us
understand the relationship between positions in peas and objective functions. The result is used to define
7 validity ranges (two thresholds per objective) that filter out the 25,000 individuals generated during the
evolutionary process. Only the individuals meeting all 7 validity ranges are considered in the following steps,
others are discarded.

In Step 6 of Fig. 2, groups of points in the 2-D space are identified using clustering based on a Gaussian
Mixture Model (GMM) (see Fig. 5a). Clusters that are close to each other (e.g. within a pea diameter)
are then merged into a single cluster. All the cluster centres are extracted and presented to the user (see
Fig. 5b). Using another parallel coordinate plot a new set of thresholds is extracted (see Fig. 5c). It is used
in the following step to further refine the results and limit the number of false positive (i.e. points that do
not actually correspond to peas).

Step 7 of Fig. 2 outputs the final result. In total, 19 points were selected. The last set of thresholds is
used so that stronger candidates are highlighted using a purple dot in Fig. 6; weaker candidates using a red
dot. 9 peas were manually selected in Fig 3a. Note that the selection is depended on a personal vision. It
is unclear if some points near the wall of the stomach correspond to peas or not. 7 peas were highlighted in
purple; 2 in red.

5 Conclusions
In this short paper, we presented some preliminary results of our semi-automatic evolutionary segmentation
of garden peas in MRI images. To our knowledge, we proposed the first multi-objective implementation of
the Fly Algorithm. An interactive visualisation, combining image display, scatter plot and parallel coordinate
plot, is used to analyse the output of the evolutionary algorithm. It helps us understanding the complex
relationship between the objectives and extracting individuals of the Pareto front that correspond to peas.
This research can be extended to segment other structures which cannot be identify by a single equation.

In future work, a more robust and comprehensive evaluation will be performed. this tool will be integrated
into a machine learning (ML) framework to assist domain experts in the provision of training data for a deep
neural network. This way, it is possible to address some issues related to sparse data that can prevent the
use of ML methods. The latter require a lot of manually labelled medical images. This is a time consuming
task for domain experts, but mandatory to provide enough data for learning process. A comparison with
other algorithms and a robust validation study will be provided in future developments of the method.
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Acronyms
EA evolutionary algorithm.

EAs evolutionary algorithms.

GIT gastrointestinal tract.

GMM Gaussian Mixture Model.

InfoVis Information Visualisation.

ML machine learning.

MRI magnetic resonance imaging.

ROI region of interest.

SANS small-angle neutron scattering.

SAXS small-angle X-ray scattering.
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Pasta Peas

Stomach

Figure 1: MRI slice of a human stomach containing peas and pasta.
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Figure 2: Overall flowchart of our image analysis and information visualisation pipeline.
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(a) Manual segmentation in
colour.

(b) Objective 1. (c) Objective 2. (d) Objective 3.

(e) Objective 4. (f) Objective 5. (g) Objective 6. (h) Objective 7.

Figure 3: Objectives. For visibility objective functions are displayed in negative (low intensities appear
bright; high intensities appear dark).
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(a) Scatterplot of the iInitial population. (b) Parallel coordinate plot
corresponding to (a).

(c) Scatterplot of the 6th generation. (d) Parallel coordinate plot
corresponding to (c).

(e) Scatterplot of the 16th generation. (f) Parallel coordinate plot
corresponding to (e).

Figure 4: Scatterplots and parallel coordinates plots of successive generations. All solutions (flies) are
plotted in red by default. When the user selects an area in the scatterplot, a specific colour is assigned to
this area and linked to the corresponding lines in the parallel coordinate plot.
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(a) Clusters. (b) Cluster centres. (c) Parallel coordinate plot.

Figure 5: Candidate solution clusters.

Figure 6: Final result.
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