
Mixing Monte Carlo moves more eÆ
ientlywith an evolutionary algorithmBenoit Leblan
, Herv�e Toulhoat,Bertrand Brauns
hweig, Evelyne LuttonWhen 
onsidering Markov Chain Monte Carlo sampling in the 
ontext of mole
ular simulations it is gen-erally required to apply di�erent types of Monte Carlo moves ([3℄, [1℄). In addition of passing the a

eptan
e
riterion for ea
h move, it is ne
essary to pi
k at random a move at ea
h step, using the same distributionalong the simulation. The relative frequen
ies for ea
h type of move are usually empiri
ally 
hosen from rangesthat appears reasonable, but rather in an arbitrary manner. Here we propose an evolutionary algorithm thatoptimises these frequen
ies in order to improve the sampling eÆ
ien
y.Evolutionary algorithms are population-based sto
hasti
 optimisers [2℄, inspired by the Darwinian prin
iplesof evolution of spe
ies. They 
an be brie
y des
ribed as follows: given a sear
h spa
e, the goal is �nd one (ormore) points of this spa
e that optimise a 
riterion:1 Generate a set of points (
alled individuals) of the sear
h spa
e, that will be 
alled a population.2 Compute the 
riterion (positive real-valued fun
tion) for ea
h individual, assigning them a �tness s
ore.3 Sele
t individuals from the population, with random trial biased a

ording to their �tness s
ore: bestindividuals have more likely to be sele
ted.4 Sele
ted individuals (
alled parents) are allowed to reprodu
e, i.e. geneti
 operators are applied: witha probability p
 ea
h pair of parents is 
rossed (else dupli
ated), and with a probability pm resultingo�springs are applied mutation (generally a small random perturbation of the individual). These geneti
operators are spe
i�
 to the type of the sear
h spa
e. Obtaining a new population of o�springs loop tostep 2 until an end 
riterion (limited number of evaluations for example).We design a spe
i�
 evolutionary algorithm for the problem of relative frequen
ies dis
ussed earlier. We
onsider NVT and NPT MC equilibrations of linear polyethylene 
hains in dense amorphous state (using thesame model as des
ribed in [1℄), a prototypi
al 
ase for whi
h sampling eÆ
ien
y is 
riti
al. In that 
ase, possiblemovements are: linear translation of a whole 
hain, rotation of an end monomer, reptation, 
ip (rotation of aninternal monomer). The 
orresponding sear
h spa
e is then the relative frequen
ies � of these four movements:� 2 S = 4Xi=1[0; 1℄; with 4Xi=1 �i = 1 (1)The �tness fun
tion (quality 
riterion) must give a measure of how fast an MC simulation using a given �produ
es un
orrelated 
on�gurations within a �xed 
omputation budget. For this purpose it is de�ned using ameasure of auto
orrelation of end-to-end 
hain normalized ve
tor Cv, and the square displa
ement d2 of 
hains
enters of mass: f(�; !) = [1� Cv(�; !)℄� d2(�; !) (2)The ! variable represents the random part that is inherent to an MC simulation. We see that a run where
hains are largely displa
ed and loose memory of their initial orientations will be given a high �tness s
ore.Multiple instan
es of the same system (same thermodynami
 
onditions, but di�erent initial 
on�gurations)are simulated in parallel using relative frequen
ies (individuals) produ
ed by our evolutionary algorithm: afterequally long subparts of the total simulation time �tness s
ores are measured and new frequen
ies are assigned(see [4℄ for more details). Applying new evolutionary methods [5℄ to handle noisy and time 
onsuming �tness1



evaluations we performed simulations on 
luster of 200 PCs (Pentium III 750MHz, lo
ated at the INRIAGrenoble, Fran
e) with various 
on�gurations.We report here one of them in the following 
onditions: N = 10 PE 
hains of 64 monomers, P = 1atm,T = 450K. There were 32 systems simulated in parallel for 160,000 se
onds ea
h, was divided in 100 equallylong periods for �tness evaluations, making a total amount of 3200 �tness evaluation. In addition of this EArun, a referen
e run (Ref) was also performed, with the same initial states, the same simulation time, but withequal relative frequen
ies for ea
h move. Finally, as the pressure is imposed for these simulations, a volume
u
tuation is also added in the simulation, but with an equally pres
ribed frequen
y in both 
ases. The �gurebelow displays the results (averaged on the 32 runs) in terms 
hain ve
tor auto
orrelation (left) and 
hain
enter of mass square displa
ement (right: ordinates are in redu
es units, i.e. multiples of square LennardJones potential 
hara
teristi
 distan
e �2LJ). They show that as the optimisation of frequen
ies progress, the
hains are displa
ed faster are loose faster their initial orientations than for the referen
e runs, meaning thatthe EA simulation is more eÆ
ient regarding these 
riteria. For that parti
ular 
ase, the EA gave the highestfrequen
ies to the reptation, and the lowest to the linear translation.
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Finally we also apply the same algorithm to improve the Parallel Tempering te
hnique, in order to optimizeat the same time the relative frequen
ies of Monte Carlo moves and the relative frequen
ies of swapping betweensub-systems simulated at di�erent temperatures. Our results show that using this te
hnique, the system 
an beequilibrated more eÆ
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