
Un Algorithme G�en�etique pour la d�etection deprimitives g�eom�etriques bidimensionnelles dans lesimagesEvelyne LUTTON, Patrice MARTINEZINRIA - RocquencourtB.P. 105, 78153 LE CHESNAY Cedex, FranceTel : 33 1 39 63 55 23 - Fax : 33 1 39 63 53 30email : evelyne.lutton@inria.frNovember 25, 1994AbstractNous �etudions l'emploi des algorithmes g�en�etiques dans le cadre de l'extraction de primitives (segments,cercles, quadrilat�eres, etc ...) dans des images. Cette approche est compl�ementaire de la transform�ee deHough, dans le sens o�u les algorithmes g�en�etiquess se r�ev�elent e�caces l�a o�u la Transform�ee de Houghdevient trop complexe et trop gourmande en espace m�emoire, c'est-�a-dire dans les cas o�u l'on recherche desprimitives ayant plus de 3 ou 4 param�etres.En e�et, les algorithmes g�en�etiques peuvent être employ�es en tant qu'algorithmes d'optimisation stochas-tiques. Cet outil d'optimisation peut se montrer tr�es lent, mais se r�ev�ele e�cace dans les cas o�u les fonctions�a optimiser sont tr�es irr�eguli�eres et de forte dimmensionnalit�es. La philosophie de la m�ethode que nouspr�esentons est donc tr�es similaire �a celle de la transform�ee de Hough, qui est de rechercher un optimum dansun espace de param�etres. Cependant, nous verrons que les implantations algorithmiques di��erent.Cette approche de l'extraction de primitives par algorithmes g�en�etiques n'est pas une id�ee nouvelle :nous avons repris et am�elior�e une technique originale propos�ee par Roth et Levine en 1992. Nous pouvonsr�esumer notre apport sur cette technique en trois points principaux:� nous avons utilis�e des images de distances pour \adoucir" la fonction �a optimiser,� pour d�etecter plusieurs primitives �a la fois, nous avons implant�e et am�elior�e une technique de partagede la population (technique de sharing),� et en�n, nous avons appliqu�e quelques r�esultats th�eoriques r�ecemments �etablis sur les algorithmesg�en�etiques �a propos des probabilit�es de mutations, ce qui nous a permis d'am�eliorer, notamment, lestemps d'ex�ecution.Mots-Cl�es : Algorithmes g�en�etiques, Extraction de primitives, Sharing, Transform�ee de Hough.
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A Genetic Algorithm for the Detection of 2DGeometric Primitives in ImagesEvelyne LUTTON, Patrice MARTINEZINRIA - RocquencourtB.P. 105, 78153 LE CHESNAY Cedex, FranceTel : 33 1 39 63 55 23 - Fax : 33 1 39 63 53 30email : evelyne.lutton@inria.fr
We investigate the use of genetic algorithms (GAs) in the framework of image primitives extraction (such assegments, circles, ellipses or quadrilaterals). This approach completes the well-known Hough Transform, in thesense that GAs are e�cient when the Hough approach becomes too expensive in memory, i.e. when we searchfor complex primitives having more than 3 or 4 parameters.Indeed, a GA is a stochastic technique, relatively slow, but which provides with an e�cient tool to searchin a high dimensional space. The philosophy of the method is very similar to the Hough Transform, which is tosearch an optimum in a parameter space. However, we will see that the implementation is di�erent.The idea of using a GA for that purpose is not new, Roth and Levine [29, 28] have proposed a method for2D and 3D primitives in 1992. For the detection of 2D primitives, we re-implement that method and improveit mainly in three ways :� by using distance images instead of directly using contour images, which tends to smoothen the functionto optimize,� by using a GA-sharing technique, to detect several image primitives in the same step,� by applying some recent theoretical results on GAs (about mutation probabilities) to reduce convergencetime.Keywords : Genetic Algorithms, Image Primitive extraction, Sharing, Hough Transform.
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1 INTRODUCTIONGeometric Primitives extraction is an important task in image analysis. For example, it is used in cameracalibration, tridimensional stereo reconstruction, or pattern recognition. It is important especially in the caseof indoor vision, where most of the objects to be analysed are manufactured. The description of such objectswith the help of bidimensional or tridimensional geometric primitives is well adapted.Our aim is to present an alternative to the well-known Hough transform [18], widely used for the primitiveextraction problem. The Hough transform is a very e�cient method for lines of simple primitives detection (seefor example [22, 30, 24]), but reaches its limits when we try to extract complex primitives. The method consistsin the searching of maxima in the space of parameters which describe the primitive. For example to extractcircles, we have to construct an accumulator of dimension 3, which becomes very expensive in memory.The Hough Transform constructs explicitly the function to optimize, which is represented by an \accumula-tor", i.e. a sampling of the parameter space with \cells". This accumulator can be �lled in with two equivalenttechniques :� the 1 to m technique, where for one point of the image, we draw (or update the cells) a curve in theparameter space, which represents the parameters of all the primitives which the considered image pointmay belong to,� the m to 1 technique, also called randomized or combinatorial Hough Transform, where for all possiblem-uple of image points (couple of points for the line detection), we draw a point in the parameter space,which represents the unique primitive that can pass trough the considered m-uple of image points.The e�ective detection of primitives is thus done by a rough sequential search on the accumulator. Tosummarize, the Hough Transform is a very quick and precise technique for simple geometrical primitives, but itbecomes rapidly untractable to store an accumulator and detect optima on it when the number of parametersto estimate increases.This is why we have to think about e�cient optimization techniques to solve the problem for complexgeometric primitives. As we have seen, it can be easily formulated as an optimization problem : optimizingthe position and size of a geometric primitive (or equivalently the values of parameters), knowing the edgesdetected on an image. The function optimized in the Hough Transform is a function of the parameters, that isthe total number of image points which coincide with the trace of the primitive de�ned by these parameters.Another problem is that, when the dimension of the space to search is large, the function to be optimized canbe very irregular.When a function has a certain type of regularity, a number of optimization methods exists, mostly based ongradient or generalized gradient computations (see for instance [5]).Generalized gradient methods work well when :� some sort of gradient can be de�ned and computed at any point of the space of solutions (for instance,directional derivatives),� the function does not have too many local minima, or the value taken by the function at these minima issigni�cantly greater than the value at the absolute minimum.3



For very irregular functions, di�erent methods have to be used for optimization. Most of them are based onstochastic schemes.One of the most known stochastic algorithms is Simulated Annealing. It is a powerful technique for �ndingthe global minimum of a function when a great number of parameters have to be taken into account. It is basedon an analogy with the annealing of solids, where a material is heated to a high temperature, and then very slowlycooled in order to let the system reach its ground energy. The delicate point is not to lower the temperatureT too rapidly, thus avoiding local minima. Application to other optimization problems is done by generalizingthe states of the physical system to some de�ned states of the system being optimized, and generalizing thetemperature to a control parameter for the optimization process ; most of the time, the Metropolis algorithm isused : at \temperature" T, the jump from a state of energy E to a state of energy E' is made with probabilityof one if E' is lower than E and with a probability proportional to e(E�E0)=T otherwise ([1, 27]).The main drawback of Simulated Annealing is the computational time : the optimal solution is guaranteedonly if the temperature is lowered at a logarithmic rate([11]), implying a huge number of iterations. Most ofthe time, a linear rate is used to obtain a�ordable converging times, but, for certain very wild functions, thelogarithmic rate has to be used.In this work, we investigate the use of another recently introduced method for stochastic optimization,namely Genetic Algorithms [16, 29, 28]. In section 2, we recall the main aspects of genetic algorithms. Wethen present in section 3 the application to the image primitives extraction problem. In section 4, we introducethe Sharing method, which enables an improvement of the e�ciency of our method, and sum up our results insection 5, proposing various desirable extensions.2 GENETIC ALGORITHMSGenetic Algorithms can be considered as stochastic optimization methods, but it must be pointed out that theyalso have other �elds of applications, as for instance in neural nets, classi�er systems, automatic programming,graph theory, etc ... (see [15, 28, 2, 31, 21, 12, 7]). So for, they have not been largely used in vision and imageanalysis applications.The bene�t of using Genetic Algorithms to optimize irregular functions is that they perform a stochasticsearch over a large search space, by making a set of solutions (called population) evolve together, instead ofusing a single solution as in the Simulated Annealing scheme.We use here a sequential implementation of a Genetic Algorithm, but notice also that GA have the greatadvantage to be easily parallelized.The speci�city of genetic algorithms is that they try to copy simple natural evolution schemes. John Holland[16] is largely recognized as the founder of the �eld of Genetic Algorithms. He integrated and elaborated twothemes : the ability of simple representations (bit strings) to encode complicated structures, and the powerof simple transformations to improve such structures. Holland showed that with the proper control structure,rapid improvements of bit strings could be made to \evolve" as population of animals do. An important formalresult stressed by Holland was that even in large and complicated search spaces, given certain conditions onthe problem domain, genetic algorithms would tend to converge to solutions that are globally optimal or nearlyoptimal (Schema Theorem, see [12]).In natural evolution, the problem each species faces is the one of searching for bene�cial adaptations to4



a complicated and changing environment. The \knowledge" that each species has gained is embodied in themakeup of the chromosomes of its members. The operations that alter this chromosomal makeup are appliedwhen parents reproduce ; among these operations are random mutation, inversion of chromosomal material,and crossover - exchange of chromosomal material between two parents' chromosomes. This feature of naturalevolution - the ability of a population of chromosomes to explore its search space in parallel and combine thebest �ndings through crossover - is exploited when genetic algorithms are used. A genetic algorithm to solve aproblem is commonly described as having 5 components (see [8]) :1. a chromosomal representation of solutions to the problem,2. a way to create an initial population of solutions,3. an evaluation function that plays the role of the environment, rating solutions in term of their \�tness",4. genetic operators that alter the composition of children during reproduction,5. values for the parameters that the genetic algorithm uses (populations size, probabilities of applying geneticoperators, etc ...)2.1 Structure of a GAThe general structure of a GA is presented in the �gure 1. Of course there exists a lot of variations around thisscheme. We present here the classical scheme (Simple Genetic Algorithm, see [12]), which is the basis of ourprogram.
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Figure 1: General Organigram of a Genetic Algorithm5



The solutions (also called individuals) of the population go through a process of evolution. Some solutionsare better than others, in the sense that their �tness function is better. Those that are better are more likelyto survive and propagate their genetic material. The convergence of a GA thus leads to a concentration of thepopulation into regions of the search space where the �tness function presents a global optimum, see �gure 2.
x=individual

search space

f(x)

x
x

xx

x

x

x

x
x

x
xxx x

x
x

x

x

x

x

x

search space

f(x)

x x xx xx xx x
xxxxx

x

x

Random initial population Population after convergenceFigure 2: Evolution of the populationA GA �rst needs an initialization procedure of the population. This initial population is usually randomlychosen, albeit sometimes determistically, to be regularly distributed in the search space. Most of the time, weallow the possibility of introducing in the initial population some a priori knowledge, as initial solutions.The creation of the \children" population is done in three steps : selection of two parents according to their�tness, crossover of their genetic material to create two o�springs, then mutation of the o�springs (see �gure3). The crossover and mutation operators are randomly applied. Crossover is applied with a high probability(namely 0.7 to 0.9), when the outcome of the random draw is negative, the o�springs are just a copy of theparents (we talk about reproduction). Mutation is applied with a very low probability (reversely proportionalto the chromosome length) so that few chromosomes are altered.Selection and Crossover behave as \concentration" operators, they favor the concentration of solutions havinggood �tness. The risk is to have a premature convergence toward a local minimum. On the contrary, Mutationacts as a \dispersion" operator, that maintains the diversity of the genetic materials. The simultaneous actionof these three operators allows to converge into a global minimum. The e�ects of the genetic operators havebeen pointed out by Holland through his Schema Theory (see [16, 12]). Recently Markov Chain approachesenable to demonstrate the e�ects and e�ciency of these operators [17, 9, 26]. Moreover, Davis in 1991 [9]has proposed a Simulated Annealing - like convergence proof for the simple Genetic Algorithm, and derived adecreasing formula (very slow) for the mutation probability that guarantees the convergence towards a globaloptimum.The problem of stopping the evolution is a di�cult one ; of course we can test whether the populationis \concentrated", but sometimes this state is di�cult to obtain. The most commonly adopted solution is toimpose a maximal number of generations. 6
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Figure 3: Children creation procedure2.2 The Chromosomal RepresentationIn a GA approach the correspondence between the solutions (phenotypes) and the chromosomes (genotypes)is straightforward ; it is most generally a bijection. It is well-known that in nature this equivalence betweenphenotypes and genotypes is not so simple. There exist, for example, genes not expressed in the phenotype.Holland [16] proves that the optimal representation for a GA is a code with minimal alphabet, thus the binarycodes are well adapted. Later, Goldberg [12] explains that the most e�cient code is a compromise between thesize of the alphabet and the complexity of the code. Complexity for a code in that case is the fact that smallchanges on the code can induce large modi�cations on the solution they represent. Another important constraintis the computational complexity of the encoding/decoding process, because these operations are called manytimes all during the evolution of a GA. The theoretical knowledge about coding in
uence on the e�ciency ofGA is small. Practically, a code is empirically validated.For the purely optimization applications of GA, the chromosome is simply a concatenation of the binarycodes of all the components of the vector of the space to be searched. This space must therefore be bounded.If there are real values, they are sampled with a certain precision, for the case of natural numbers the binarycode is straightforward. Notice also that the choice of sampling rates for real values can be problematic [23],and must be handled with care.2.3 SelectionThe selection of a couple of parents is done accordingly to their �tness (i.e. their adaptation to the environment).The function to optimize, which is used as \�tness" function, must be positive ; this is the only constraint on7



it. It does not need to be derivable nor continuous.Figure 4 shows a classical selection scheme, where we consider a uniform random shot on a disk, wheresolutions share sectors proportional to their �tness. The best ones are more often selected than the others.
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Figure 4: Parents Selection : Roulette WheelThe problem of this type of selection is due to the fact that it can favor some \super individual" which arealmost always selected, thus favoring some premature convergence of the population, by some sort of \lost ofgenetic diversity".To have a uniform and reasonable \selection pressure", a current solution is to scale linearly the �tnessfunction so that its maximum value is C times the mean �tness of the current population. C is named theselection pressure (for precisions, see [12], C is generally between 1.2 and 2). The probability is thus computedby : P (x) = f 0(x)Px2Population f 0(x) and f 0(x) = a � fitness(x) + ba = (C � 1) � FavgFmax� Favg and b = Favg � (Fmax�C � Favg)Fmax� FavgFmax and Favg are the maximum and mean �tness on the current population (see �gure 5). Notice thatthe mean �tness in the scaled population is the same as in the original population, and also that the scalingfactors are computed at each generation.2.4 Genetic OperatorsAs we have seen, the genetic operators are the basis of the evolution scheme. They make the population toevolve and converge, while allowing a large exploration of the search space.� Crossover :The crossover operator makes the population to converge around solutions with high �tnesses. Thus thecloser the crossover probability is to 1, the faster is the convergence. The choice of this probability is acompromise, and depends on the form of the evaluation function. It is chosen empirically, most of thetime between 0.5 and 0.9. 8
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Figure 5: Fitness Scaling for the SelectionThere exist two important types of crossover : the one site crossover, where a crossover site is randomlychosen, and around which the code chains are exchanged, see �gure 6 ; or the uniform crossover, whereeach gene of the �rst o�spring is randomly chosen between the parents, the genes of the second o�springis complementary with respect to the random choice, see �gure 7. There exists a lot of variations aroundthese types, as the multi-site crossover for example. We have restricted our tests to these two particularones.
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(2) Figure 7: Uniform Crossover� Mutation :The mutation operator chooses randomly a mutation site, and inverts the corresponding bit (or gene), see�gure 8.The e�ect of this operator is to \trouble" the convergence tendency in order to let the possibility to visitother regions of the search space. One can tell that it limits the \genetic drift" due to the elitist selectionprocedure (see [14] for a more theoretical explanation).The mutation probability must be very low and is, in most of the applications, �xed all along the evolutionof the GA. Recently, Davis [9] proposed a decreasing mutation probability with respect to the generationevolution, which assures the theoretical convergence toward the global minimum of a simple GA with �nitepopulation size and �xed crossover probability. He proved that the mutation probability pm(k) must vary9
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mutation site Figure 8: Mutationat each generation k with respect to a monotonic lower bound :pm(k) = 12 � k� 1M�LM is the population size and L is the length of the chromosomes.Of course such a decreasing rate is very slow (see �gure 9), and needs an in�nite number of generationsto make the GA to converge. When we practically implement a Simulated Annealing algorithm, we usea faster decreasing rate of the temperature than the theoretical one. Here we propose a decreasing ratewhich is given by the formula : pm(k) = pm(0) � exp(� k� )pm(0) is the initial mutation probability, � is computed to yield a very low mutation probability (namely10�4) at the end of the evolution : � = Max Nb of Generationsln pm(0)10�4The continuous curve of �gure 9 is drawn for a Maximal number of Generation of 100 and an initialmutation probability of 0.25. The theoretical curve (dotted) corresponding to a length of chromosome of32 bits is drawn for comparison with 1000 generations.The decreasing rate that we propose permit to have a large exploration of the search space at the beginning,and then a rapid convergence at the end of the evolution of the GA. This rather rough decreasing rate isof course dependent on the form of the function to optimize. If this function is too irregular, some slowerdecreasing rate is necessary, just as in the case of Simulated Annealing.2.5 Creation of the new populationTo create a new population several techniques are frequently used :� take all the children created by the application of the genetic operators, and let the old generation \die",� keep some particular solutions of the \old" population (as the best one for example) and complete the\new" generation by applying the genetic operators,10
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Figure 9: Left, the theoretical curve of Davis (dotted) on 1000 generations, Right, comparison with the one weadopt (continuous) on 100 generations� create a \children" generation of size N (same as the \old" one), and create the \new" generation bykeeping the N best solutions of both generations, \old" and \children".Our tests prove that the last technique is more e�cient in our application. It accelerates the convergence speedby allowing to keep good solutions from one generation to the next one. We have also imposed an unicitycondition to the population, i.e. no identical solutions can survive together in the same generation. This isdone to avoid creations of super-individuals (arti�cially replicated in the population, due to their good �tness),which favor also the premature convergence.2.6 Analysis of the �nal population : solutions extractionAnother interesting characteristic of the convergence of GA is that they \visit" several good local optima, beforeconverging to the global one. A �ner analysis than simply �nding the solution with best �tness of the �nalpopulation, can give some interesting information when the GA is stopped before complete convergence.This can be important, especially in our case, where we search for several local - or global - optima. Thus,we have developed a simple clustering technique, which permits to locate several local optima present in the�nal population. We will also see (in section 4) that we can favor such convergence comportment using sharingtechniques.The extraction procedure is very simple :1. we search for the solution having the best �tness, this optimum is the \center" of a cluster,2. we extract from the population all the solutions which are in the neighborhood of this optimum. Thisnotion of neighborhood is de�ned with a maximal distance (we will see that this distance is easily de�nedwith the sharing technique) 11
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Figure 10: Clustering of the population around several optima3. start again in 1, until there is no more solutions in the population, or the �tness of the local maximum issmaller than a �xed threshold.2.7 SummaryWe can summarize the characteristic of a GA in the following points :� GAs are stochastic optimization techniques, working simultaneously on a set of solutions.� Only one hypothesis is necessary for the function to be optimized : it must return bounded from below(it is possible to o�set the function so that it furnishes a positive or null value to the selection process),no derivability nor continuity hypotheses are needed.� The convergence of a GA is a concentration of the population near the global optimum.� The speed of convergence and the quality of the �nal solution depend on the chromosomal coding, on theform of the function to be optimized, and on the parameters of the GA. The parameters tuning is mostlyempirical (few theoretical results exist now).� In the serial version, the computing time is high, and for applications as ours, most of the time is spentin the computation of the �tness function.3 THE PRIMITIVE EXTRACTION PROBLEMWe detail here the characteristics of the GA we have implemented for the 2D geometrical primitives extractionapplication. 12



3.1 Primitives CodingIn the approach of Roth and Levine [28], the chromosome representing a primitive is the coding of the pointsneeded to de�ne that primitive. These points are contour points of the primitive. The representation of a prim-itive with a minimal set of points makes the extraction process less noise-sensitive and the chromosomal codingtrivial : a chromosome is the concatenation of the codes of its minimal set of points. But that representation hasa main drawback, the redundancy : the same primitive can be represented by several di�erents chromosomes,one for each possible permutation of the points of the minimal set.In our application, we propose a di�erent coding, which insures the unicity of the representation :
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Figure 11: Graphical coding of a segment, a circle, a quadrilateral, and of an ellipse� Segment : 2 points of the image I = [0::xmax; 0::ymax], with integer coordinates, representing the verticesof the segment,� Circle : 1 point of I for the center of the circle, and a positive integer of [0::max(xmax; ymax)] for itsradius,� Ellipse : 2 point of I , the center O and the point P, a positive real a, between 0 and �2 , representing therotation angle of the ellipse. The characteristics of this coding are classical for computer graphics and aredetailed in [19], see �gure 11, 13



� Rectangle : 2 points of I , coordinates of the top-left and bottom-right vertices. This rectangle is parallelto the axes of the image. For di�erent orientations, we add a positive real, between 0 and �2 , for therotation angle.� Quadrilateral : 4 points of I , for the 4 vertices.3.2 Computation of the �tness functionFor the computation of �tness function we prefer to use distance images, instead of simple contour images.Indeed, if we use contour images, the �tness function is a measure of the contour points in coincidence withthe trace of the primitive. See �gure 12 a), for the example of segment �tness computation. To tolerate smallerrors, it is often necessary to make a computation on a strip centered on the primitive, which increases thecomputational time of an evaluation of the �tness function, see �gure 12.Moreover, the form of the �tness function in that case is very irregular, and a primitive near a real contourhas no more information than a primitive which is far away from it. The convergence of a GA in that case canbe very slow, especially when the contours are sparse in the image.
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Figure 12: Fitness computation on contour imagesWe use a well-known tool of mathematical morphology, which furnish distance images, i.e. grey-level imagescomputed from contour images, where each pixels gives the value of its distance to the nearest contour point.These images are easily created by application of two masks on a contour image, see [4]. The distances computedare parameterized by d1 and d2, see �gure 13, which represent the two elementar distances on vertical/horizontaland diagonal directions. We use Chamfer distance (d1 = 3 and d2 = 4), or more \abrupt" distances (d1 = 10and d2 = 14), in our application, see �gures 14 and 15. The tuning of d1 and d2 depends on the frequency ofthe contour points on the image, and we can think of an \adaptative" tuning of these parameters (we have notimplemented it yet).The bene�t of using such distances images is double : �rst, the �tness function is more rapid to compute(using the trace of the primitive is largely su�cient), and secondly, the tolerance to small errors is improved.The �tness function takes into account the mean intensity of the pixels of the distances image in coincidencewith the trace of the primitive (to position the primitive), plus a counting term of e�ective contour pixels onthe trace (to favor bigger primitives). 14
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Contours image Chamfer distance (3,4) distance (10,14)Figure 14: Example of distance images on a synthetic image4 THE SHARING TECHNIQUEThe primitive extraction method described before permits to detect only one primitive at each run of the GA. Todetect all the primitives of the image it is necessary to iterate the process, by updating the contour image (justby \removing" the contours on the image that correspond to the detected primitive), regenerate the contourimage, and re-run the GA on that new environment. We stop the process when there are no more contours inthe image, or when the best detected primitive by the GA has a �tness under a �xed threshold.The interest of detecting several primitives in the same GA-run is evident. For that purpose, we propose touse a sharing technique, followed by the simple clustering we have described before.4.1 Historical aspects of the sharing schemeAs we have seen, in the case of multi modal functions, the simple GA is not fully e�cient : if there exists severalstrictly equivalent global optima, the GA population converges randomly to one of them. A solution to thatproblem is copied from the natural phenomena of \niching" of populations. Individuals of a same subpopulationhave to share the local resources. Due to overcrowding, the local resources decrease, and individuals tend tosearch other places. In GAs several solutions have been proposed, based on explicit or implicit creation of15



Original Image Contours image distance (10,14)Figure 15: Example of distance images on a real imageniches. More precisely, we can divide these approaches in two classes. The �rst one represents techniques tomaintain the diversity in the population along the GA evolution, thus in a certain measure it favors the creationof separate subpopulations. The second one uses a modi�cation of the �tness function to simulate the sharingof local resources in the population.� Diversity conservation : Caviccio's approach in 1971 [12, 13] was the �rst attempt to induce niche-like and species-like behavior in GA. Speci�cally, he introduces the mechanism of preselection : a childreplaces only one of its parents, the one which has the lowest �tness, and only if the child's �tness isbetter. Chromosomes (or strings) tend to replace similar ones, and thus tend to create sub-species.De Jong in 1975 [12, 13, 20] proposed a generalization of this technique with the crowding scheme. A childreplaces one of its neighbor, the one having the lowest �tness. Strings replace existing strings accordinglyto their similarity. It tends to maintain diversity within the population, and reserve room for one oremore species.Mauldin in 1984 [12, 13, 25] proposed a sort of unicity operator using a Hamming distance. He de�nesa uniqueness operator, which arbitrarily returns diversity to a population whenever it is judged to belacking. A child must be di�erent of every population member at a minimum of Ku genes. If it is notsu�ciently di�erent, it is mutated until it satis�es the constraint. Ku decreases with time (similar to thecooling of simulated annealing).It is interesting to note that uniqueness combined with De Jong's crowding scheme worked better thaneither operator by itself [13, 25]. But we will see that with help of sharing functions it is possible tomaintain an appropriate \more intelligent" diversity.� Sharing : Goldberg and Richardson in 1987 [13, 12] proposed the sharing scheme, where individualsshare e�ectively the local resources. This is a way of imposing niche and speciation on strings, based onsome measure of their distance to each other. This is done with the help of a so-called sharing function.Schematically, the �tness of an individual is lowered in function of the number of its neighbors.16



These methods have been carefully studied these last �ve years, and the ability of the sharing techniquehas been theoretically demonstrated to �nd multiple, good solutions, for example using the �nite MarkovChain Analysis as Horn in 1993 [17]. A niched GA tell us more about the �tness landscape than whatthe best solution is : each niche, representing a \good solution" has a subpopulation proportional to its�tness.Notice that there exists also techniques that explicitly creates subpopulations, as Cohoon in 1991 [6], onseparate processors, and exchanges individuals between these subpopulations at �xed times, creating a sort of\catastrophe" in the stabilized subpopulation (Punctuated Equilibria).We have preferred to use the sharing technique de�ned by Goldberg and Richardson, because the precedingniching technique does not ensure that the separate subpopulations will evolve on separate optima. In a certainmanner, the sharing technique ensures that several optima will be \inhabited" if there exists.4.2 The sharing functionThe sharing function is a way of determining the degradation of an individual's �tness due to a neighbor atsome distance. Of course, we have to de�ne a distance on our search space. It can be computed on chromosomes(genotypic distance), as Hamming distances between strings, or in the search space itself (phenotypic distance).In our application, we have preferred to use the phenotypic distance between primitives. Indeed phenotypicdistances, when we can use them have been demonstrated as being more powerful [13].The neighborhood notion is a fuzzy one, we de�ne a fuzzy neighborhood from a membership function sh(),which is a function of the chosen distance d. The membership function that we use, proposed by Goldberg andRichardson [13], depends on two constants : �share which commands the extent of the neighborhood, and � forits \shape", see �gure 16 Sh(d) = ( 1� ( d�share )� if d < �share0 else
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alpha<1Figure 16: Neighborhood form according to �Sharing is implemented by changing the �tness function to a shared �tness, which is the �tness divided byits niche count mi : 17



NewFitness(i) = Old�tness(i)mimi = NXk=1Sh(dik)The e�ect of sharing is to separate the population in subpopulations of sizes proportional to the height ofthe optima. Goldberg and Richardson [13] have explained that a sharing is stabilized when fhmh = fkmk (8h; kwith h and k di�erent local optima), see �gure 17.
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Figure 17: Repartition of the population after a sharingThe results of the sharing technique depend mainly on the tuning of the parameter �share, which is a measureof the separation we accept between two detected peaks of the function to optimize. Notice that methods toestimate the �share parameter have been proposed (as in [10]).4.3 Sharing with mating restrictionIf we examine the evolution of a shared GA, on a simple multi modal function, we notice that there are someindividuals that drift between two peaks. This is due to the fact that the crossover of individual belonging todi�erent niches rarely results in an individual near these optima. Booker [3] has proposed to limit the crossoverof di�erent \species". He modi�ed the selection technique in the following way :� choice of the �rst parent,� scanning of the population to �nd the subpopulation of individuals that have a distance with it less that�cross (�cross is currently take equal to �share),� if the size of this subpopulation is bigger that 1, we apply the classical elitist selection in that subpopu-lation, otherwise, the other parent is chosen in the whole population.Goldberg and Richardson [13] have proven on simple multi modal functions that the mating restrictionscheme improves the e�ciency of the sharing. 18



Figure 18: Initial random population (seg-ments) Figure 19: Final classical convergence of thepopulation (after 80 generations)4.4 A modi�ed sharing techniqueWe propose another scheme for the sharing, based on the relative importance of the individuals in a neigh-borhood. An individual with a low �tness in a niche will have a few in
uence on crossovers in that particularsub-population, and will surely disappear to the bene�t of better individuals. Goldberg and Richardson justtake into account the number of neighbors to share the �tness. We prefer to take also into account the \force"of the neighbors. The new sharing scheme is thus :NewFitness(i) = OldFitness(i)�i�i = NXk=1(OldFitness(k) � Sh(dik))�i represents a fuzzy mean �tness in the neighborhood of the individual i. Thus fitness(i)�i is a measure ofthe relative importance of the individual with respect to his neighborhood. Following [13], we can tell also thatthe evolution process is stabilized when :fitness(pich)�pich = fitness(pick)�pickIt tends to equilibrate the subpopulations in the peaks, independently of their height, since they are biggerthan a certain threshold. This particular fact permits to \inhabit" more peaks with the same population size,than with the classical sharing technique, where the best peaks attract much more individuals, and thus reducesthe number of individuals which can occupy other peaks.This comportment is very interesting in our case because the function we have to optimize is strongly multimodal, and we have noticed an important improvement in the performances in using our sharing scheme, incomparison with the classical sharing. For example, for a population of 100 individuals (see �gures 18, 19, and20), we can detect 4 to 7 optima in the same run. Of course the shared GA takes more CPU time to convergebut we noticed a global improvement of the computational time in comparison with the simple GA.19



Figure 20: Convergence with sharing5 RESULTSWe present here results on synthetic and real images, for three primitives :� segments : on �gures 23 and 31, a GA run (wich furnish 4 to 12 segments at the same time) takes 10 to15 seconds on a Sparc II station,� circles : on �gure 24, it takes 70 to 80 seconds for circles,� ellipses : on �gures 32 and 33,� rectangles : on �gures 25 and 28.

Figure 21: Synthetic image Figure 22: Contours20



Figure 23: Segments detected (black) andcontours (grey) Figure 24: Circles detected (black) and con-tours (grey)6 CONCLUSIONThe method we have presented, is complementary to the Hough Transform, in the sense that for simple primitives(less than 4 parameters), GA is not e�cient, Hough Transform must be used. For the segments detectiontask, the GA application we have presented (in a parallel implementation), could be concurrent to the HoughTransform. GA is much more interesting for complex primitives (circles, ellipses, quadrilaterals, etc ...). Theapplication to detecting another type of primitive is easily done by updating the �tness function, and thedistance function.We can also think about some applications of the Hough Transform, called Generalized Hough Transform,where we have a reference form (non parameterized) and search the presence of that form in an image. This isdone through the construction of an accumulator of possible translations and rotations of the form. Once againthe Hough Transform is limited, and the search is mostly done on a few parameters (translation or rotation ordilatation). The GA approach can also furnish a tool to do such a search with displacement, and deformationparameters together.The particular formulation of GA approach permits to easily use tools as distance images, which smoothenthe function to optimize, and decreases the convergence time. We have also exploited the sharing scheme toimprove the e�ciency of the search on multi modal �tness functions.The main problem of such an approach remains the parameters tuning, because it severely in
uences theconvergence speed, and the quality of results. Except for the mutation probability where we could use sometheoretical results, this tuning is now experimentally done, and varies for each type of primitives.To conclude, we can tell that theoretical researches on GAs are directed towards the problem of judiciouschoice of parameters, see for example the recent results we use for the mutation probability variation ([9] in1991). Another point to mention is that GAs can be very easily parallelized, and some authors claim that itpermits to divide the computational time almost by the number of processors used. We intend now to programa parallel version of the algorithm.We hope to have pointed out in this paper the interest of considering GA approaches for complex optimization21



Figure 25: Rectangles detected (black) and contours (grey)

Figure 26: Synthetic image Figure 27: Contoursproblems involved in image processing and robot vision tasks. We do not claim that GA can replace some well-known techniques, but we think that they can be considered as a complementary approach for some problemswhich are untractable with classical techniques.References[1] E. Aarts and P. Van Laarhoven. Simulated annealing : a pedestrian review of the theory and someapplications. AI Series F30, NATO.[2] J. Albert, F. Ferri, J. Domingo, and M. Vincens. An approach to natural scene segmentation by meansof genetic algoritms with fuzzy data. In Pattern Recognition and Image Analysis, pages 97{113, 1992.Selected papers of the 4th Spanish Symposium (Sept 90), Perez de la Blanca Ed.22



Figure 28: Rectangles detected (black) and contours (grey)

Figure 29: Real image Figure 30: Contours[3] L. B. Booker. Intelligent behavior as an adaptatition to the task environment. PhD thesis, University ofMichigan, Logic of Computers Group, 1982.[4] Gunilla Borgefors. Distance transformations in arbitrary dimensions. Computer Vision, Graphics, andImage Processing, 27:321{345, 1984.[5] A. Bihian C. Lemarechal, J.J. Strodiot. On a bundle algorithm for nonsmooth optimization, pages 245{282.Academic Press, 1881. Non-Linear Programming 4, Mangasarian, Meyer, Robinson, Editeurs.[6] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S. Richards. Distributed genetic algorithms for the
oorplan design problem. IEEE Transactions on Computer-Aided Design, 10(4):483{492, April 1991.[7] Y. Davidor. Genetic Algorithms and Robotics. A Heuristic Strategy for Optimization. World Scienti�c,1991. 23



Figure 31: Segments detected (black) and contours (grey)
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