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In this paper, we present a method for speech signal analysis and synthesis based
on IFS theory. We consider a speech signal as the graph of a continuous function
whose irregularity, measured in terms of its local Hlder exponents, is arbitrary. We
extract a few remarkable points in the signal and perform a fractal interpolation
between them using a classical technique based on IFS theory. We thus obtain
a functional representation of the speech signal, which is well adapted to various
applications, as for instance voice interpolation.

1. INTRODUCTION

We are interested here in the general problem of speech signal synthesis. The precise setting
of our work is the following: the French CNET(Centre National d’Etudes en Télécommu-
nication) has developed a synthesis algorithm, PSOLA!, based on the concatenation of
diphones. The latter are obtained by segmentation of longer acoustic units, the logatomes,
previously recorded by a human operator. Although this method gives very good results,
there subsists the problem of the dictionary construction: three months are necessary for
the recording and the segmentation of the 1200 logatomes needed in French. Fach time a
new voice is being created, one has to go through a complex and time consuming process.
A solution to this problem is to use existing dictionaries to create new “voices”. A simple
idea is be to perform interpolations between corresponding logatomes of two dictionaries
coming from two different voices in such way that at each step of the interpolation, the
signal remains a logatome. A first step towards this goal is to obtain a robust functional
representation of a logatome. This is the particular problem we address hereafter.
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2. FRACTAL INTERPOLATION

2.1 Introduction

Speech sounds are in some cases produced by turbulence phenomena?. It is well known that
several aspects of turbulence are multifractal. This and other theoretical considerations?,
as well as the general aspect of the signals (see fig. 1), motivate the use of a multifractal
approach for speech signal modeling.

There are two main ideas in our approach : the first one is that there exists in a speech signal
a set of remarkable points, where the acoustic information is specially relevant (for instance
the points that define the waveform). These points we call tag points. The second idea is
that the singularities (H6lder exponents) at each point of the signal play a fundamental role
in the determination of the voice texture. A simple and efficient tool for controlling both
tag points and singularities is fractal interpolation using IFS.

2.2 Spectrum of singularity of self affine functions

The general setting is the following:
Given a set of data points {(z;,y;) € [0;1] X [a;b],i =0,1,..., N}, consider the IFS given
by the N contractions wy(n = 1,..., N) defined on [0;1] X [a;b] (—o0 < a < b < +0), by:

wn($7 y) = (Ln(x) ) Fn(xa y))

where L, is the contraction that maps [0; 1] to [xn—1 ;%) and F,, : [0;1] X [a;b] — [a;b] is
a contraction function with respect to the second variable such that:

Fo(zo,90) = Yn—1; Fn(ZN, YN) = Yn

It is well known that the attractor of this IFS is the graph of some continuous fractal func-
tion f which interpolates the data points?.

We derive here an expression for the spectrum of singularity for a particular case of such
IFS. For general definitions and properties of the multifractal analysis of functions, see>S.
We focus on the particular case of self-affine functions with equidistant interpolation points.

We recall defintion of the local Holder exponent of a function:

Definition 1 A function f is said to be of Hélder exponent a(ty) > 0 al point ty if f:
i) for every real v such that 0 <y < a(to):

|f(to + h) — P(t —to)|

li =
A e 0
it) for every real v > a(ty)
t — P(t—
limsup|f( 0+ h) — Pt —to)| — 1o
h—0 |h|7

where P is a polynomial whose degree is less than a(tp).



ranavialy, WiUDRLAING U S L0500 olaivnabny  9d

Let S; (1 < ¢ < m) be affine transformations represented in matrix notation with respect to

(t,z) by: .
s(a)=(and)e) ()

We suppose 0 < t < 1land 1/m < ¢; < 1. Let f be the function whose graph is the attractor
of the IFS defined by the S;’s (with usual conditions an a; and b; to ensure the continuity
of f).
Proposition 1 Let 0.1)...i... be the base-m expansion of a real t € [0;1[ ,and i; = i} + 1,
then:

() = lim inf 108(Ci1<Cin)

k—+o0 log(m k)

In the case of multiple expansions, the one yielding the lower a(t) has to be taken.
proof:
This proof is an adaptation of the classical computation of the box dimension of self affine

curves (see for instance 7)

Let ¢p be a real in [0;1[ whose base-m expansion is 0.¢}...7... and I;, ; be the interval
of reals whose base-m expansion begins with 0.i}...9} where i; = 4} + 1. Since the ab-
scissa of Sj, 0...0 8, (t,x) is tm ¥ + (i, — 1)m ¥ + ... + (i1 — 1)m for every (¢,z), then
F = S;, 0...05;, (A), wich is a translation of T}, o ... o T;, (A) where T; is the linear

G tp
part of S;. We can easily see that the matrix representing 7T;, o ... o T}, is

m—Fk 0
ml=kaq, —|—m2_kc- Qjo + ... +C4,Cip--.C, Q4 Ci1Cin---Cj
71 7112 1112 M —1 g 11 120

If we note a = max|a;|,c = min(c;),r = T—(mo=1 We have Im'~*a;, +m2>Fc; a5, + ... +
CiyCig---Cip_, Qi | < 7€, ...i, sO that if s is the height of the rectangle containing A, then

Fy s contained in the rectangle whose height is (r + s)c;, ...c;, . Thus for every h such
7.1...7,]0

that 0 < |h| < m™%, we have |f(to + h) — f(to)| < rici,...c;, where 1y =7+
this yields:
(b0 + 1) = f(to)] < [B[7/™" |R|1oslets s )/ tosm™)

Let B(k) = % 8= 1]9121—&256(]{:) and consider a real 7 such that 0 <y < . Then

|f(to + h) — f(to)]
A

< C(h, k)|h|*)=

where C(h, k) = [B]"/™ " — 1 when h — 0.
There exists a real ¢y and an integer K such that for every k > K we have G(k)—v > g > 0.
Since h — 0 is equivalent to k¥ — 400, we have:

lim |f(to + k) — f(to)

h—0 |h|Y =0

On the other hand, if g1, g2 and g3 are three non-colinear points choosen from S1(p1), ..., S1(Pm), P,
where p; and py, are the fixed points of S; and Sy, then S, o...0S;, (A) contains the points
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(tj, f(t;) = Sz(qs) = Siy ... 055, (¢5)(j = 1,2,3). The height dj, of the triangle with these
vertices is at least dc;,...c;, where d is the vertical distance from g2 to [g2;¢3]. Suppose
that f(t1) < f(t3) < f(t2) (the other cases are handeled similary). In this case we have two
possibilties for tg:
i) f(to) < f(ts) then: |f(to) — f(t2)l = f(t2) — f(ts) > di/2
i) £(to) > f(ts) then: |£(t) — ()| = fta) — F(t2) > de/2

Thus, for every t € I;, ;, and for every integer k, there exists a real hy, |hx| < m™* such
that: |f(t+ hg) — f(1)] > ciy..-Ci, di /2
Using the same arguments as when the inequality is reversed we prove, if v > fand r; = d/2
that:

| f(to + hg) — [(Lo)]
||

> C(hg, k)|hk|ﬁ(’“)_7

Clhg, k) = |hi|"1/™ ™" — 1 when k — +oo and ther exists a subsequence o (k) such that
|hg(k)|ﬁ(‘7(k))_7 — 0 when &k — 400 because there exists a real €; and an integer K such
that for every k > K we have 8(o(k)) —v < e1 < 0. We deduce that

o Wl + B) — f(to)
TP

for every v > (3, and the proof is complete. A

:+OO

Using this proposition, it is easy to deduce the spectrum (a, F'(«)) of singularity of f.
The proof is analogous to the one for multinomial measures.
Corollary 1 With the same notations as above, and assuming that the proportion ¢;(t) of
(i — 1)’s in the base-m expansion of t exists for each i we have:

a(t)==>_¢i(t)log,ci ; Fla)==> ¢ilog, ¢ ; 7(q)=—log, Y c
=1 =1 =1

Remark:
Using the relation dimp graph f = 1 — 7(1) we recover the classical result” :

m
dimp graph f =1+ log,, Z c;
=1

3. APPLICATION:

We explain briefly the outline of the method. It involves two steps: we must first determine
the interpolation points, which will control the general shape of the attractor, and then
compute the interpolation functions themselves, which will take care of the local singularity.

3.1 Determination of the interpolation (tag) points

For vowels, the tag points will be given by the pitch marking of the signal. The principle
is based on the observation of the autocorrelation function (ACF). In the first step, pitch
values are founded by observing maxima of the ACF. In the second step, temporal marks
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are placed on the waveform according to the estimation of the pitch lags and the maxima
of the waveform.

In the case of consonants, we compute the Holder exponents at sharp variation points of
the original signal using the wavelet transform maxima method®. We then consider the sets
consisting of points that have the same singularities. We finally choose from these sets the
one which has maximal cardinality (notice that we work on discrete data), and we use a
procedure to ensure that the points will be equally spaced.

3.2 Computation of the interpolation functions

We tried two methods: the first one is adapted for the case of affine functions, where we
can use results of section (2.2). The second is more general, but more time consuming.
Matching of the local singularities :

Before presenting the method, let us remark that the determination of tag points and their
corresponding Holder exponents fix the values of ¢; and c,,. Indeed, it is easy to see that
the singularity at the interpolation points is inf(— log,, ¢1 ; — log,, ¢m). We take ¢; = ¢, in
order to have the same singularity on both sides of the interpolation points.

The tag points being determined, we consider other points in the signal where we know that
the estimation of the Holder exponents is robust (the number of these points is normally
greater than the one of tag points). By computing their base-m expansion, we come up
with an overdetermined linear system in log,, ¢;’s. The solution of the latter gives the ¢;’s
whose corresponding attractor fits the singularities the best. The results on both vowels
and consonants are disappointing. The reason seems to lie in the fact that affine functions
induce too much undesired high singularities in the attractor.

Genetic algorithm method:

The second method uses a genetic optimization algorithm®. We compute the contraction
factors so that the corresponding attractor approximates the original signal the best, in the
sense of the L? norm.

In this case we may use general functions F,’s (with notation of section (2.2)) since no
knowledge of the singularities is needed. Fig. 1 displays a result obtained on the vowel /a/
when the F},’s are chosen to be of sinusoidal type. Results on consonants are comparable.

3.3 Discussion of results

The satisfactory results we obtain in the sinusoidal case may be justified by the fact that
vowels have a pseudo-periodic shape which is well recovered by sinusoidal functions. For
consonants, the reason may be that, with this type of functions, we do not generate a
“large” number of high singularities in the attractor.

In conclusion, TF'S defined by functions of sinusoidal type seem to be able to give functional
representations of speech signals. However, other type of functions could probably be used
depending on the signal being studied.
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vowel /a/ signal (on the left) and its reconstruction by sinusoidal IFS (on the right).
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