
A Genetic Algorithm for the Detection of 2D GeometricPrimitives in ImagesEvelyne LUTTON Patrice MARTINEZINRIA - Rocquencourt, B.P. 105, 78153 LE CHESNAY Cedex, FranceTel : 33 1 39 63 55 23 - Fax : 33 1 39 63 53 30 - email : evelyne.lutton@inria.frAbstractWe investigate the use of genetic algorithms (GAs)for image primitives extraction (such as segments, cir-cles, ellipses or quadrilaterals). This approach com-pletes the well-known Hough Transform, in the sensethat GAs are e�cient when the Hough approach be-comes too expensive in memory, i.e. when we searchfor complex primitives having more than 3 or 4 param-eters. A GA is a stochastic technique, relatively slow,but which provides with an e�cient tool to search in ahigh dimensional space. The philosophy of the methodis very similar to the Hough Transform, which is tosearch an optimum in a parameter space. However,we will see that the implementation is di�erent.Keywords : Genetic Algorithms, Image Primitiveextraction, Sharing, Hough Transform.1 IntroductionGeometric Primitives extraction is an importanttask in image analysis. It is important especially inthe case of indoor vision, where most of the objects tobe analysed are manufactured. Their description withthe help of bidimensional or tridimensional geomet-ric primitives is well adapted. Our aim is to presentan alternative to the Hough Transform (HT). HT isa very e�cient method for lines or simple primitivesdetection, but reaches its limits for complex primi-tives. HT consists in the searching of maxima in thespace of parameters which describe the primitive. Itconstructs explicitly the function to optimize, repre-sented by an \accumulator", i.e. a sampling of theparameter space. The e�ective detection of primitivesis thus done by a rough sequential search on the ac-cumulator. It becomes rapidly untractable to store anaccumulator and detect optima on it when the num-ber of parameters to estimate (and thus the dimen-sion of the search space) increases. This is why wehave to think about e�cient optimization techniquesto solve the problem for complex geometric primitives.As we have seen, it is an optimization problem : opti-mizing the position and size of a geometric primitive(or equivalently the values of parameters), knowingthe edges detected on an image. The function opti-mized in the HT is the total number of contour pointswhich coincide with the trace of the primitive de�nedby the parameters. When the dimension of the space

to search is large, this function can be very irregular.When a function has a certain type of regularity, anumber of optimization methods exists, mostly basedon gradient or generalized gradient computations. Forvery irregular functions, di�erent methods have to beused. Most of them are based on stochastic schemes,as for exemple simulated annealing.In this work, we investigate the use of anotherstochastic optimization method, namely Genetic Al-gorithms (GAs) [2]. Roth and Levine [5] have pro-posed a GA-based method for 2D and 3D primitivesdetection in 1992. For the detection of 2D primitives,we have improved that method mainly in three ways(detailed in [4]) :� by using distance images instead of directly usingcontour images, which tends to smoothen the func-tion to optimize,� by using a GA-sharing technique, to detect severalimage primitives in the same step,� by applying some recent theoretical results on GAs(about mutation probabilities) to reduce convergencetime.2 Genetic algorithms
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solutions extractionFigure 1: General Organigram of a Genetic AlgorithmThe bene�t of using GAs to optimize irregular func-tions is that they perform a stochastic search over alarge search space, by making a set of solutions (calledpopulation) evolve together, instead of using a singlesolution as in the Simulated Annealing. The solutions



of the population (also called individuals, and rep-resented by chromosomes : most of the time, binarycodes) go through a process of evolution. Some so-lutions are better than others, in the sense that thefunction (also called �tness) is better ; they are morelikely to survive and propagate their genetic material.The convergence of a GA leads to a concentration ofthe population into regions of the search space wherethe �tness function presents a global optimum. Thecreation of the \children" population is done in threesteps : selection of two parents (random shot whithprobability proportional to the relative �tness of thesolution in the population), crossover of their chromo-somes to create two o�springs, then mutation of theo�springs (see �gure 2). The crossover and mutationoperators are randomly applied. Mutation is appliedwith a very low probability (reversely proportional tothe chromosome length) so that few chromosomes arealtered.
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mutation siteFigure 2: Genetic operators : Crossover and MutationSelection and Crossover favor the concentration ofsolutions having good �tness, thus attracting the pop-ulation in local optima. On the contrary, Mutationmaintains the diversity of the genetic materials. Thesimultaneous action of these three operators allows toconverge into a global optimum (Schema Theory, see[2], and Markov Chain approaches [1]). Davis in 1991[1] has proposed a Simulated Annealing - like conver-gence proof for the simple GA, and derived a decreas-ing formula (very slow) for the mutation probabilitythat guarantees the convergence towards a global op-timum. In our implementation, we have experimenteda faster decreasing rate : it improves the convergencespeed, in comparison with the classical scheme wherethe mutation probability stays constant.3 Application to primitive detection� Primitives CodingWe propose a di�erent coding as in Roth and Levine[5], to limit the redundancy of the primitives represen-tation :� Segment : 2 points of the image I , with integer co-ordinates, for the vertices of the segment,� Circle : 1 point of I for the center of the circle, anda positive integer for its radius,� Ellipse : 2 point of I , the center O and the pointP, a positive real a 2 [0; �2 ], representing the rotationangle of the ellipse (see �gure 3),

� Rectangle : 2 points of I , coordinates of the top-leftand bottom-right vertices. This rectangle is parallelto the axes of the image. For di�erent orientations,we add a positive real of [0; �2 ], for the rotation angle.� Quadrilateral : 4 points of I , for the 4 vertices.
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Figure 3: Graphical coding of an ellipse� Computation of the �tness functionIf we directly use contour images, the �tness func-tion is a counting of image contour points in coinci-dence with the trace of the primitive. To tolerate smallerrors, it is often necessary to make a computationon a strip centered on the primitive, which increasesthe computational time of �tness evaluation. More-over, the form of that �tness function is very irregularand the convergence of a GA can be slow, especiallywhen the contours are sparse in the image. We use awell-known tool of mathematical morphology, to ob-tain distance images, i.e. grey-level images computedfrom contour images, where each pixels grey-level rep-resents the distance to the nearest contour point. The�tness function takes into account the mean intensityof the pixels of the distances image in coincidence withthe trace of the primitive (to position the primitive),plus a counting term of e�ective contour pixels on thetrace (to favor bigger primitives). The bene�t of usingsuch distances images is double : the �tness functionis more rapid to compute (scanning the trace of theprimitive is largely su�cient), and the tolerance tosmall errors is improved.
Figure 4: Left, initial random population of segments(black) on a contour image (grey). Middle, �nal clas-sical convergence of the population (after 80 genera-tions). Righ, convergence with sharing� Use of a sharing techniqueThe interest of detecting several primitives in thesame GA-run is evident. For that purpose, we propose



to use a sharing technique, followed by a simple clus-tering. The sharing scheme is copied from the naturalphenomena of \niching" of populations : individualsof a same subpopulation have to share the local re-sources. Due to overcrowding, the local resources de-crease, and individuals tend to search other places. InGAs several solutions have been proposed, based onexplicit or implicit creation of niches. We use a tech-nique which modi�es the �tness function to simulatethe sharing of local resources in the population. Thisis a way of imposing niche and speciation on chro-mosomes, based on some measure of their distance toeach other. Our technique is a modi�cation of [3], see[4].
(a) (b)
(c) (d)Figure 5: (a) synthetic image, (b) segments detected(black) and contours (grey), (c) circles detected (black)and contours (grey), (d) rectangles detected (black)and contours (grey)

Figure 6: Left, real image. Right, segments detected(black) and contours (grey)4 Results and ConclusionWe present here results (�gures 5 to 7), on syntheticand real images, for four primitives : segments, a GArun (wich furnish 4 to 12 segments at the same time)takes 10 to 15 seconds on a Sparc II station, circlesit takes 70 to 80 seconds, ellipses and rectangles.

Figure 7: Left, synthetic contours. Right, ellipses de-tectedThe extension of our application to detecting newtypes of primitives is easily done by updating the �t-ness and the distance functions. Applications sim-ilar to the Generalized Hough Transform (on non-parameterized searched primitives) are also possiblewith GAs. The particular formulation of GA approachpermits to easily use tools as distance images, whichsmoothen the function to optimize, and decreases theconvergence time. We have also exploited the sharingscheme to improve the e�ciency of the search on multimodal �tness functions.The main problem of such an approach remains theparameters tuning, because it severely inuences theconvergence speed, and the quality of results. Exceptfor the mutation probability where we could use sometheoretical results, this tuning is now experimentallydone, and varies for each type of primitives. A lot oftheoretical researches on GAs are directed towards theproblem of judicious choice of parameters.We hope to have pointed out in this paper the in-terest of considering GA approaches for complex op-timization problems involved in image processing androbot vision tasks. We do not claim that GA can re-place some well-known techniques, but we think thatthey can be considered as a complementary approachfor some problems which are untractable with classicaltechniques.References[1] T. E. Davis and J. C. Principe. A Simulated Annealing LikeConvergence Theory for the Simple Genetic Algorithm . In Pro-ceedings of the Fourth International Conference on GeneticAlgorithm, pages 174{182, 1991. 13-16 July.[2] D. A. Goldberg. Genetic Algorithms in Search, Optimization,and Machine Learning . Addison-Wesley, January 1989.[3] David E. Goldberg and J. Richardson. Genetic algorithmswith sharing for multimodal function optimization. In J. J.Grefenstette, editor, Genetic Algorithms and their Applica-tions, pages 41{49, Hillsdale, New Jersey, 1987. Lawrence Erl-baum Associates.[4] Evelyne Lutton and Patrice Martinez. A genetic algorithm forthe detection of 2d geometric primitives in images. ResearchReport 2110, INRIA, November 1993.[5] Gerhard Roth and Martin D. Levine. Extracting geometricprimitives. CVGIP: Image Understanding, 58(1):1{22, July1993.


