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Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 5330



Les coe�cients de régularité bit à bit comme outild'analyse de déceptivité pour un Algorithme GénétiqueRésumé : Nous présentons ici une analyse théorique qui permet de relier une mesured'irrégularité d'une fonction de �tness à une notion de di�culté (ou déceptivité) pour lesAlgorithmes Génétiques (AG). Dans des travaux antérieurs nous avions développé une ana-lyse de la déceptivité des fonctions Höldériennes, la présente analyse en est une généralisationselon deux voies : premièrement nous employons la �régularité bit à bit� au lieu d'un exposantde Hölder comme mesure d'irrégularité à la base de l'analyse de déceptivité, ensuite nousétendons l'analyse de déceptivité à un AG avec croisement uniforme. Cette approche nouspermet de proposer l'emploi des coe�cients de régularité bit à bit comme outil d'évaluationde l'in�uence du codage des chromosomes sur l'e�cacité de l'AG. Nous produisons quelquesexpériences sur les permutations de bits et le codage de Gray.Mots-clé : Algorithmes Génétiques, optimisation, régularité bit à bit, analyse de décep-tivité, fractales, fonctions Höldériennes.



Bitwise regularity coe�cients as a tool for deception analysis 31 Introduction.Theoretical investigations on Genetic Algorithms (GA) and Evolutionary Algorithms (EA)in general concern mainly convergence analysis (and convergence speed analysis on a locallyconvex optimum for EA), in�uence of the parameters, and GA-hardness analysis. For GA,our main concern here, these analyses are based on di�erent approaches :� Proofs of convergence based on Markov chain modeling [6, 3, 1, 20].� Deceptive functions analysis, based on Schema analysis and Holland's original theory[14, 8, 9, 11], which characterizes the e�ciency of a GA, and allows to shed light on�GA-hard� functions.� Some rather new approaches are based on an explicit modelization of a GA as adynamical system [16, 22].Deception has been intuitively related to the biological notion of epistasis [5], which canbe understood as a sort of �non-linearity� degree. It can also be related, to the so called��tness landscape� analyses (see for example [19]). In any ways, it basically depends on :� the parameter setting of the GA,� the shape of the function to be optimized,� the chromosome encoding , i.e. the �way� of scanning the search space.In a previous work [17] it has been proven that some tools, that have been developed inthe framework of fractal theory, can be used in order to re�ne a deception analysis of GeneticAlgorithms. This work has mainly related an irregularity measure (Hölder exponent) of thefunction to be optimized to its deceptiveness. We �rst recall in section 2 these results,that allow to model the in�uence of some of the GA parameters. The main hypothesis ofthis previous analysis is that the �tness function can be considered as the sampling of anunderlying continuous Hölder function. In section 3 we will then present a generalizationof this work that considers another regularity measure of the �tness function, the bitwiseregularity, and which does not support the Hölder hypothesis anymore.The GA modeled in this framework is the so-called canonical GA, i.e. with proportionateselection (roulette wheel selection), one point crossover and mutation, at �xed rates pc andpm all along the GA run. This analysis �st suggests that a simple bit reordering as anencoding change may decrease deception ; experiments are presented in section 4 that showthe validity extents of this analysis. In section 5 we then present a similar theoretical analysisfor a canonical GA with uniform crossover, which is an operator that is largely used in realworld applications.Besides the intuitive fact that it relates the irregularity of the �tness function to its�di�culty�, one important application of this theoretical analysis is that it provides a mean to�measure� (of course to a certain extent, due to the intrinsic limitations of deception theory)the in�uence of the chromosome encoding. We present in section 6 some experimentationswith the Gray encoding that prove the interest, of such an approach.RR n�3274



4 Benoît Leblanc, Evelyne Lutton2 Background and previous work.In this section we quickly remind the de�nitions of schemata, deception and Hölder expo-nents.2.1 The canonical Genetic Algorithm.In the frame of our study, we will restrict ourselves to the case of the canonical GA (alsocalled simple GA), which aims to �nd the maximum of a real positive function (called the�tness function) de�ned on the space of binary strings (also called chromosome) of size l:f : 
l = f0; 1gl ! IR+The CGA has the following steps :1. Creation of an initial population, a set of individuals that are represented by a point of
l. The binary representation of an individual is its genotype while its correspondingpoint in the search space is its phenotype. The correspondence genotype/phenotype isan encoding/decoding, that may not always be a bijection.2. Computation of the �tness value for each individual.3. Selection of N individuals to build a parental pool.4. Successive applications of the crossover and mutation to the parental pool resulting inthe creation of the population of the new generation. Back to 2 if a stopping criteriahas not been reached (generally a given number of generations).5. End. The individual having the highest �tness value is extracted from the �nal popu-lation as the solution to the problem.The selection step is based on a random shot with replacement of individuals in orderto build the parental pool. Each individual has a selection probability equal to its relative�tness value (this methods is called the Roulette wheel selection) :P (i) = fitness(i)PNj=1 fitness(j)The crossover, applied with a probability pc on couple of individuals, mixes two chromo-somes of the parents in order to create the two new o�springs : a position on the chromosomeis randomly chosen between 1 and (l�1) (each one with equal probability), then the stringsare exchanged from this point. This is the one point crossover (see �gure 1).The mutation is then applied to all resulting new individuals. It acts in changing thevalue of each bit or gene of the binary string with a given probability pm, usually very low.
INRIA



Bitwise regularity coe�cients as a tool for deception analysis 5
Cross point

Parents Offsprings

Figure 1: One point crossover.2.2 Schemata.Schemata has been widely studied in the �eld of GA, and are the basis of the deceptionanalysis. A schema corresponds to a subset of the space 
l = f0; 1gl (the space of binarystrings of length l for a GA using binary encoding), or more precisely a hyper-plan of 
l. Anadditional symbol '*', representing a wild card ('0' or '1') is used to represent a schema. Forexample, if l = 4, the strings i1 = 0101 and i2 = 1101 are the two elements of the schemaH = �101. The order of a schema, O(H), is de�ned as the number of �xed positions in H,and the de�ning length, �(H), as the distance between the �rst and the last �xed positionsof H. A fundamental theorem about schemata is the following :Theorem 1 (Schema theorem, Holland [14])For a given schema H let :� m(H,t) be the expected number of representatives of the schema H in the populationP (t) (t indexes the number of the generation) : m(H; t) = jH \ P (t)j.� ~f(H; t) be the mean �tness value of the representatives of H in the population P (t) :~f(H; t) = 1jH \ P (t)j Xi2H\P (t)f(i)� �f(t) be the mean �tness value of the individuals of P (t) :�f(t) = 1jP (t)j Xi2P (t) f(i)� pc and pm be respectively the (one point) crossover and mutation probabilities.Then : m(H; t+ 1) � m(H; t) ~f (H; t)�f(t) �1� pc �(H)l � 1 �O(H)pm�RR n�3274



6 Benoît Leblanc, Evelyne Lutton2.3 Deception analysis.A famous consequence of the schema theorem is that the schemata having a short de�ninglength, a small order and a mean �tness better than the population mean �tness will bemore and more represented in the successive generations (such schemata are called buildingblocks, [10]). This remark leads to the conclusion that if the global optimum of the �tnessfunction f is the intersection of such good building blocks, a GA will easily �nd it. On thecontrary, if the intersection of these building blocks is a secondary optimum, the populationwill preferably converge onto it, missing the global one. In this situation the GA will beconsidered to have failed1 and f will be called deceptive.More formally, Goldberg ([8], [9]) de�ned the static deception : The selection results inan expected greater mean �tness for the set of individuals selected for reproduction, than forthe preceding population. But this mean value will be changed by the application of geneticoperators. It follows that the GA can be considered as attracted toward the optima of afunction f 0, de�ned for each point of 
l as its expected �tness value after the applicationof crossover and mutation. The function f will be called deceptive for a GA with a givenparameter setting, if the global optima of f 0 and f di�er. This function may be calculatedwith the help of the Walsh basis :De�nition 1 (Walsh polynomials)They form an orthogonal basis of the set of functions de�ned on 
l : j(x) = l�1Yt=0(�1)xtjt = (�1)Pl�1t=0 xtjt (1)Where xt and jt denote the values of the tth bit of the binary decomposition of x and j.The projection of a function f on this basis is :f(x) = 2l�1Xj=0 wj j(x) with wj = 12l 2l�1Xx=0 f(x) j(x)The coe�cients wj are called Walsh coe�cients and are strongly related to schemata.Roughly, a given wj is related to schemata having �xed bits at the position where j has'1' in its binary decomposition. Consequently, the adjusted Walsh coe�cients (�adjusted�according to genetic operators) may be calculated (see [8, 18]) :w0j = wj(1� pc �(j)l � 1 � 2pmO(j)) (2)1Only in an optimization perspective. Recast in a more general context, the success of a GA may notonly be related to its ability to �nd a global optimum at each trial, but rather to rapidly �nd good solutions.
INRIA



Bitwise regularity coe�cients as a tool for deception analysis 7Where O(j) denotes the number of '1' in the binary decomposition and �(j) the distancebetween the �rst and the last '1'. f 0(x) = 2l�1Xj=0 w0j j(x) (3)De�ning the two following sets (near optimal sets of f and f 0) for a given � :N� = fx 2 [0::2l] = jf(x)� f�j � �gand N 0� = fx 2 [0::2l] = jf 0(x) � f 0�j � �0 = f 0� � w0f� � w0 �gthe de�nition of static deception follows [9] :De�nition 2 A function-coding combination is statically deceptive at the level � whenN� �N 0� 6= 0.2.4 Deception analysis on Hölder functions.The work presented in [17] aims to characterize the deception of a given function f , consi-dered as the binary encoding of the sampling of a Hölder function on the interval [0; 1] :De�nition 3 (Hölder function of exponent h [7])Let (X; dX) and (Y; dY ) be two metric spaces. A function F : X ! Y is called Hölderfunction of exponent h > 0, if for each x; y 2 X such that dX(x; y) < 1, we have :dY (F (x); F (y)) � k:dX(x; y)h (4)for some k > 0.Although a Hölder function is always continuous, it needs not to be di�erentiable, andif it is Hölder with exponent h, it is Hölder with exponent h0 for all h0 2]0; h]. Intuitively,we may characterize a Hölder function of low exponent h as more �irregular� than a Hölderfunction of higher h.It is possible to consequently establish a relation between h and jf � f 0j. To reach thispoint the following basis is used :De�nition 4 (Haar polynomials)They form an orthogonal basis of the set of functions de�ned on 
l :H2q+m(x) =8<: 1 for (2m)2l�q�1 � x < (2m+ 1)2l�q�1�1 for (2m+ 1)2l�q�1 � x < (2m+ 2)2l�q�10 otherwise in f0; : : : ; 2l � 1g (5)
RR n�3274



8 Benoît Leblanc, Evelyne LuttonWith q 2 [0::(l � 1)], m 2 [0::(2q � 1)] and j = 2q +m 2 [0::(2l � 1)]. The projection of fon this basis is : f(x) = 2l�1Xj=0 hjHj(x) and hj = 12l�q 2l�1Xx=0 f(x)Hj(x) (6)As the Haar coe�cients may be bounded :8j = 2q +m; jhj j � k22�h(q+1) (7)the following theorem has been proved [17] :Theorem 2 Let f be the sampling on l bits of a Hölder function of exponent h and constantk, de�ned on [0; 1], and let f 0 be de�ned as in (3). Then :8x 2 f0; : : : ; 2l � 1g jf(x)� f 0(x)j � k:B(pm; pc; l; h)with B(pm; pc; l; h) = pcl � 12�h �2�l(h+1) � 12�(h+1) + (1� 2l�h)(2�hl � 1)� l2�hl(1� 2�h)(2�h � 1)2 �+pm 2�h(2�h � 1)2 �1 + 2�hl(l2�h � l � 1)�We can see that if B grows, f has more and more chances to be deceptive. Without goinginto details, B is a function of 4 real parameters having the following behavior :� B is decreasing with respect to h.� B is increasing with respect to pm, and pc.� B increases when l, when l is small, reaches a maximum for a value lmax, and decreasesfor l > lmax.3 A bitwise regularity characterization.The previous analysis is based on an irregularity characterization with respect to an un-derlying distance that is the Euclidean distance on [0; 1]. This approach is straightforwardfor �tness functions de�ned on IR, and in the general case it is always possible to considerthe �tness function as the sampling of an underlying one-dimensional Hölder function. Itis however less evident in this latter case that the Hölder exponent re�ects in a simple waythe irregularity of the �tness function (it may appear for example more irregular than itis in a multidimensional space). This is the reason why we present in this paper a similarirregularity analysis but with respect to the Hamming distance on the set of binary strings.Another justi�cation is also that is is easier to represent the action of genetic operators withrespect to the Hamming distance. INRIA



Bitwise regularity coe�cients as a tool for deception analysis 93.1 Bitwise regularity coe�cients.A grained Hölder exponent may be de�ned for a box of size " centered on x, B"(x), of thef0; 1gl space : " being expressed with respect to a distance proportional to the Hammingdistance, for example : d(x; y) = 1l :dH(x; y) and B"(x) = �y 2 f0; 1gl=d(x; y) � "	 :�"(x) = log� (B"(x))log"� is a measure of B"(x), for example :� (B"(x)) = supy2B"(x)fjf(x)� f(y)jgthen �"(x) = log hsupy2B"(x)fjf(x)� f(y)jgilog"In the continuous case, the local behavior of f may be captured as " ! 0, as we aredealing here with a discrete space, we can �x " at the smallest positive value, i.e.: 1l . Thebox B"(x) may also be de�ned with respect to a particular �coordinate�, i.e. a �xed bitposition (l � q � 1), and for the Hamming distance between x and y :Bq1l = �y 2 f0; 1gl = d(x; y) = 1l and y, x di�er only on the (l � q � 1)th bit�with Bq1l : �oriented� boxes of size 1. For these particular boxes :�"(x) = log �supy2Bq1l (x)fjf(x)� f(y)jg��loglAn irregularity characterization with respect to these boxes is then :�q = infx2f0;1gl �q"(x) = log sup fjf(x)� f(y)j = x; y di�er only at position (l � q � 1)g�loglWe thus propose to compute the following coe�cients, that naturally represents what wecan call a bitwise regularity measure of the function f :De�nition 5 (Bitwise regularity coe�cients) Let f be a function de�ned on 
l :8q 2 f0; : : : ; l � 1g; Cq = supx2
lfjf(x)� f(x0l�q�1)jgwith x0l�q�1 and x di�ering only with respect to one bit at the position (l � q � 1).22The less signi�cant bit being at position 0.RR n�3274



10 Benoît Leblanc, Evelyne LuttonIn other terms, the Cq coe�cient represents the maximum �tness variation due to a bit�ip at the position (l � q � 1).Therefore, we can show that :8j = 2q +m; jhj j � Cq2In the same way as in [17], with the help of the Haar basis, the following theorem has beenestablished (see appendix A for a demonstration) :Theorem 3 Let f be a function de�ned on 
l with bitwise regularity coe�cients (Cq)q2f0;:::;l�1g,and let f 0 be de�ned as in (3). Then 8x 2 
l :jf(x)� f 0(x)j � pcl � 1 l�1Xq=0Cq �1 + 2q(q � 1)2q �+ pm l�1Xq=0Cq(q + 1) (8)Furthermore, this result still holds when the order of the Cq values is reversed, so the �nalbound is the one minimizing the preceding expression (see appendix B for a demonstration).We also have to note that the bits do not have the same role in this bound expression.In fact their relative weight is strictly increasing with respect to the index q. Sorting them(either in increasing or decreasing order) would then minimize this bound, suggesting thatthe simple change of coding consisting in a bits permutation would make the function easier.This feature can be explained by the fact that the one point crossover disrupts more easilya combination of a few genes spread at each extremities of the chromosome than if thesegenes were grouped at one extremity. Reordering the bits in order to sort the bitwiseregularity coe�cients is then equivalent to group the most �sensible� genes at one extremityof the chromosome. Some experiments presented in the section 4 partially support thisinterpretation.3.2 Bitwise regularity coe�cients compared to Hölder exponent.If we suppose that the �tness function f is the sampling on l bits of a Hölder function ofexponent h and constant k, de�ned on [0; 1], the bound of theorem 3 is lower than the boundof theorem 2.One can easily show, (see appendix C), that :Cq � k:2�(q+1)h (9)as we have : jhj j � Cq2 and jhj j � k2 :2�(q+1)hand as the bound on jf � f 0j is a linear function of the bounds on the jhjj, it followsimmediately that the bound of theorem 3 is the lowest (see the �gure 2 for a visual comparisonof the bounds of Haar coe�cients). Moreover, the estimation of the bitwise regularitycoe�cients is computationally cheaper than the estimation of the Hölder exponent and itsassociated constant k. INRIA



Bitwise regularity coe�cients as a tool for deception analysis 11
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Figure 2: Haar coe�cients of a Weierstrass function with Hölder exponent h=0.54 First experiments.The following experiments have been performed with the canonical GA. For each �tnessfunction tested, the GA is ran many times and the following performances are recorded foreach generation:1. Average of the population mean �tness values.2. Average of the best individual �tness values.3. Proportion of the runs whose population contains a global optimum.In the title of the �gures displaying these performances, they are referenced as �Mean�,�Maximum� and �Proportion� followed by the name of the function.The following GA parameters are also speci�ed for each function :l encoding size (number of bits)N population sizeGen number of generations for a runRuns number of runspc crossover probabilitypm mutation probabilityRR n�3274



12 Benoît Leblanc, Evelyne Lutton4.1 Weierstrass functionsThe �tness functions are the sampling of Weierstrass functions [7] :Wb;s(x) =P1i=1 bi(s�2)sin(bix) with b > 1 and 1 < s < 2The Hölder exponent is directly given by h = (2� s). For the present case, we set b = 5.
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l ! [0; 1]b(l�1)b(l�2) : : : b0 ! x = 12l l�1Xi=0 bi:2iThe �gure 4 displays the Cq values obtained for di�erent values of h with a 16-bits sampling(recall that C0 corresponds to the bit b15 and C15 to b0). The exact values are not important(they must be compared to the function maximum), and only the relative importance of theCq are relevant. We can see that they are more or less decreasing, and they tend to be ofthe same order as s tends to 2. INRIA
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14 Benoît Leblanc, Evelyne Lutton
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16 Benoît Leblanc, Evelyne Lutton
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Bitwise regularity coe�cients as a tool for deception analysis 174.2 Function M2.This function, from [12], is also the sampling of a continuous function de�ned on the interval[0; 1] (see �gure 8) : 8x 2 [0; 1]; M2(x) = e�2(ln2)( x�0:10:8 )2sin6(5�x)
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18 Benoît Leblanc, Evelyne LuttonThe Cq coe�cients are displayed in �gure 9. The same encodings as for the Weierstrassfunctions are tested. As for the Weierstrass functions the bound of the modi�ed encodingBc is higher than the bound of the classical encoding, and the performances presented in�gure 10 show that the GA performs better in the last case, as predicted.
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Bitwise regularity coe�cients as a tool for deception analysis 194.3 Function EPI6.We constructed this function in order to create a strong dependency between genes (suchfunctions are called epistatic [5]). It is the sum of 6 sub-functions EPI de�ned on 4 bits :EPI(b3b2b1b0) = � P2i=0(1 � bi) if b3 = 01 +P2i=0 bi if b3 = 1Each sub-function has one global optimum (EPI(1111) = 4) and a local optimum withrespect to the Hamming distance (EPI(0000) = 3). The bitwise regularity coe�cients Cqare then (4; 1; 1; 1). EPI6 being the concatenation of 6 functions EPI , its Cq coe�cientsare (4; 1; 1; 1; : : : ; 4; 1; 1; 1). EPI6 has then one global optimum and (26 � 1) = 63 localoptima.The bound for the modi�ed encoding is lower than for the original one. We would thenexpect an improvement of the GA performances, but as we can see in �gure 11, this is notthe case. A possible explanation is that the second encoding breaks the proximity betweenthe �control� bit and its �controlled� bits, then the relation between these 4 bits is moreoften disrupted by the one point crossover. This counter-example highlights the limits thelimits of the previous deception analysis, that only takes into account the bitwise behaviorof the �tness functions and that does not take into account �epistatic� behaviors.
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Bitwise regularity coe�cients as a tool for deception analysis 215 Deception analysis of a GA with uniform crossover.As we have seen, the bound on jf � f 0j derived from the bitwise regularity coe�cients Cqdepends on their relative order, due to the use of the one point crossover. The aim ofthis section is to establish analogous results for the uniform crossover [21], for which thispositional bias no longer exists.5.1 De�nition and implications for schemata and deception.The uniform crossover no longer relies on the use of crossing points. It produces a moreuniform �mixing� of the genetic material : each gene of an o�spring is randomly and in-dependently chosen (with probability 1/2) from the two parents chromosomes. The othero�spring inherits the complementary genes (the �gure 12 illustrates this principle).
OffspringsParents

Figure 12: Uniform crossover.The schema theorem may be adapted for this operator : with the one point crossover,the probability of schema disruption pd is bounded :pd � �(H)l� 1In the same manner, we can bound the disruption probability for the uniform crossover byobserving that once the �rst �xed bit of the schema is allocated to one of the o�springs, theschema will always survive if all other �xed bits are allocated to the same o�spring.pd �  1��12�O(H)�1!We then have the new bound for the schema theorem for a GA with uniform crossover :m(H; t+ 1) � m(H; t)f(H)�f "1� pc 1��12�O(H)�1!�O(H)pm# (10)
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22 Benoît Leblanc, Evelyne LuttonAs for the one point crossover pd is conservatively set to � �(h)l�1 �, if we set pd to the upperbound (8), then the new adjusted Walsh coe�cients are :w0j = wj "1� pc 1��12�O(j)�1!� 2pmO(j)# (11)5.2 Implication for the bounds on jf � f 0j.If we include the previous modi�cation in the calculation of the bound of the theorem 2 weget the new expression (see appendix E for a demonstration) :Theorem 4 Let f be the sampling on l bits of a Hölder function of exponent h and constantk, de�ned on [0; 1], and let f 0 be de�ned as in (3). Then :8x 2 f0; : : : ; 2l � 1g jf(x)� f 0(x)j � k:B(pm; pc; l; h)with B(pm; pc; l; h) = pc 2�h(2�hl � 1)2�h � 1 + pm 2�h(2�h � 1)2 �1 + 2�hl(l2�h � l � 1)� (12)Furthermore, the bound (8) calculated for the uniform crossover (see appendix D for ademonstration), leads to the following theorem :Theorem 5 Let f be a function de�ned on 
l with bitwise regularity coe�cients (Cq)q2f0;:::;l�1g,and let f 0 be de�ned as in (3). If we consider the set S of permutations de�ned on the setf0; : : : ; l� 1g, then 8x 2 
l :jf(x)� f 0(x)j � min�2S(pc l�1Xq=0C��1(q) + pm l�1Xq=0C��1(q) � (q + 1)) (13)We immediately see that the permutation that minimizes the upper bound is the one thatsorts the C��1(q) in decreasing order.Practically, if it is possible to get the Cq values (or good estimations), it is hard todraw conclusions from the value of the bound (13). But if we consider the e�ect of anencoding change on it, it is interesting to see if its variation is experimentally correlatedto the performances of the GA. Intuitively, the hypothesis is formulated as follows : if anencoding change (such as a Gray code) induces a decrease of the bound (13), the GA shouldperform better with this new encoding, and conversely. We present experiments with theGray code in the next section.
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Bitwise regularity coe�cients as a tool for deception analysis 236 Experiments with uniform crossover.The notations are the same as in section 4.The Gray code is a largely used encoding change :K : 
l ! 
l ; K(x) = g withgi = � x(l�1) if i = (l � 1)(x(i+1) XOR xi) if (l � 1) < i � 06.1 Function f1.This function is one of the De Jong Five-Functions Test Bed [15], turned into a maximizationproblem : F1(X) = (max(f1)� f1(X)), with :f1(X) = 3Xi=1 �X(i)�2 with � 5:12 � X(i) � 5:12This function is 3-dimensional and each component is de�ned on 10 bits. Four di�erentmappings from 
10 to [�5:12; 5:12] have been experimented. Let x be any of the X(i) codedon 10 bits b9b8 : : : b1b0 :� Code1 : a classical signed integer binary encoding, mapped to [�5:12; 5:12] :x = 1100(�1)b9 8Xj=0 2jbj� Code2 : an unsigned binary integer encoding, mapped to [�5:12; 5:12] :x = 1100 0@ 9Xj=0 2jbj � 5121A� Code3 : same as Code1 but with Gray encoding for b8b7 : : : b1b0.� Code4 : same as Code2 but with Gray encoding for b9b8 : : : b1b0.In �gure 13, we see that the bound is increasing with each new encoding, and that theperformances of the GA decrease as predicted, though it is measured only through Meanand Maximum. The runs that found the global optimum were very rare, since a lot ofsolutions have a �tness value very close to the optimum (due the absence of scaling, the GAis unable to distinguish them).
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Bitwise regularity coe�cients as a tool for deception analysis 256.2 Function f2.This function is also one of the De Jong Five-Functions Test Bed, turned into a maximizationproblem : F2(X) = (max(f2)� f2(X)), with :f2(X) = 100 � ((X(1))2 �X(2))2 + (1�X(1))2with X(i) 2 [�2:048; 2:048].It is a function de�ned on a 2-dimensional space, whose components are coded on 12 bits.The same 4 encodings as for F1 are tested. The performances are displayed in �gure 14.Once again, a lot of points have �tness values very close to the optimum, so the ratio ofpopulations containing it is more or less random. In fact, it would require far more than 4digits to distinguish the Maximum performances.The Mean performances follow, in order, the predictions of the bound, except for thecomparison between Code2 and Code3, for which the bound increase is the lowest, and theperformances are roughly identical.6.3 Function M2.This function was introduced in the �rst experiments (section 4).Two encodings are tested :� Code1 : a classical unsigned integer encoding mapped to [0,1]� Code2 : Gray version of Code1.Here the Gray encoding induces an increase of the bound and a decrease of the perfor-mances as predicted (see �gure 15).6.4 Function M7.This function extracted from [4], is massively multimodal and deceptive. It is composed ofsub-functions de�ned on 6 bits, which reach their maximum value for two mirror strings.Here we used 3 of them (l = 18).Two encodings are tested :� Code1 : the classical encoding.� Code2 : Gray version of Code1.Here the Gray encoding induces a decrease of the bound and an increase of the perfor-mances, as predicted (see �gure 16).
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Bitwise regularity coe�cients as a tool for deception analysis 296.5 Function EPI6.This function has been de�ned in the �rst experiments (section 4).Two encodings are tested :� Code1 : the classical encoding.� Code2 : Gray version of Code1.Here the Gray encoding induces an increase of the bound and a decrease of the perfor-mances, as predicted (see �gure 17.6.6 Function W20.This function was introduced in the �rst experiments (section 4).Two encodings are tested :� Code1 : the classical encoding.� Code2 : Gray version of Code1.Here the bound slightly increases but the performances of that GA seem to be slightlybetter (see �gure 18.6.7 Function FBM50.This �tness function is a sampling of a Fractional Brownian Motion [7] of Hölder exponenth = 0:5. The encodings are the same as for M2.The decrease of the bound is very small, compared to the previous tests, (and except forthe Mean at the end of the 50 generations), the performances slightly increase as predicted(see �gure 19.
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Bitwise regularity coe�cients as a tool for deception analysis 337 Conclusions.The tests presented in section 6 show that the bound calculated from the bitwise regularitycoe�cients is a quite reliable tool to compare encodings as long as its variations are signi�cantenough : when the bound variations are high, the GA behaves according to the predictions,when they are low (as for Code2 to Code3 of functions F2, for functions W1.8 and FBM50)the GA behavior is less predictable.These limitations can be explained in many ways. The one that seems to us the mostappropriate is of the same nature as the Static Building Blocks Hypothesis, pointed outin [13]. If we consider cautiously the calculation of f 0, which is the basis of the staticdeception analysis, we note that it is assumed that each allele is equally represented at eachposition. This viewpoint (detailed in appendix F), should be considered with care in orderto continue the work presented here and suggests that a dynamical modelization of the GAbehavior would be more appropriate. The nonuniform Walsh-schema transform [2] could bethe basis of such an improvement.
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36 Benoît Leblanc, Evelyne LuttonA Bounding jf � f 0j with the Cq coe�cients.From the de�nition of the Haar functions, we can write for j = 2q +m :hj = 12l�q 24(2m+1)�2l�q�1�1Xx=(2m)�2(l�q�1) f(x) � (2m+2)�2l�q�1�1Xx=(2m+1)�2(l�q�1) f(x)35Furthermore, we notice that if x 2 f(2m) � 2l�q�1; : : : ; (2m + 1) � 2l�q�1 � 1g, its binarypro�le belongs to the schema S+2q+m :S+2q+m = mq�1 : : :m00 � : : :�Where mq�1 : : :m0 denotes the binary pro�le of m : m =Pq�1i=0 mi � 2i.In the same way, if x 2 f(2m + 1) � 2l�q�1; : : : ; (2m+ 2) � 2l�q�1 � 1g, then its binarypro�le belongs to the schema S�2q+m :S�2q+m = mq�1 : : :m01 � : : :�We notice that for each element x in S+2q+m corresponds a x0l�q�1 in S�2q+m di�ering onlywith respect to position (l � q � 1) (0 for x and 1 and x0l�q�1). Then we can write :hj = 12l�q Xx2S+2q+m f(x) � f(x0q)And from the (Cq) de�nition, we get :8j = 2q +m; jhj j � 12l�q 2l�q�1Cq8j = 2q +m; jhj j � Cq2From the expression of the corrected Haar coe�cients, given in [17] :h02q+m = h2q+m �1� pcl � 1 �1 + 1 + (q � 2)2q2q �� 2pm(1 + q2)�� pc2q(l � 1) q�1Xu=0(1� 2u+1) 2q�u�1Xr=0 h2q+Pu�1t=0 mt2t+(1�mu)2u+r2(u+1)�pm q�1Xt=0 h2q+m+(1�2mt)2t
INRIA



Bitwise regularity coe�cients as a tool for deception analysis 37we obtain, after a few calculations :jh2q+m � h02q+mj � Cq � pc2q(l � 1)(1 + 2q(q � 1)) + pm(1 + q)�From [17], we know that : jf(x)� f 0(x)j � l�1Xq=0 jh2q+mx � h02q+mx jWith mx = E( x2l�q ). We �nally obtain :jf(x)� f 0(x)j � pcl � 1 l�1Xq=0Cq �1 + 2q(q � 1)2q �+ pm l�1Xq=0Cq � (q + 1)
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38 Benoît Leblanc, Evelyne LuttonB Encoding change : bits permutation.We consider here the class of permutations � on the integers f0; : : : ; (l � 1)g and note �(x)the integer whose binary pro�le is the permuted binary pro�le of x.B.1 Implications for the Haar and Walsh basis.We de�ne H�2q+m as : H�2q+m(x) = 8<: +1 for ��1(x) 2 S+2q+m�1 for ��1(x) 2 S�2q+m0 otherwise (14)(See appendix A for the de�nitions of S+2q+m and S�2q+m.) Then we have :H�2q+m(x) = H2q+m(��1(x))The (H�j )j2f0:::2l�1g functions also form a basis for the functions de�ned on 
l :Xx2
lHi(x)Hj(x) = � 2q if i = j = 2q +m0 otherwise) Xx2
lHi(��1(x))Hj(��1(x)) = � 2q if i = j = 2q +m0 otherwise) Xx2
lH�i (x)H�j (x) = � 2q if i = j = 2q +m0 otherwiseThe associated coe�cients are :h�2q+m = 12l�q 2l�1Xx=0 f(x)H�j (x)And in the same way as we obtained (see appendix A) h2q+m � Cq2 , we also get :h�2q+m � C��1(q)2For the Walsh basis, we directly have :	j(��1(x)) = l�1Yt=0(�1)��1(x)tjt= l�1Yt=0(�1)xt�(j)t= 	�(j)(x) INRIA



Bitwise regularity coe�cients as a tool for deception analysis 39B.2 Expression of Haar-� coe�cients as a function of the Walshcoe�cients and conversely.We �rst establish the expression of the Haar basis in the Walsh basis. From [17], we have :H2q+m(��1(x)) = 12q 2q�1Xk=0 (�1)Pl�1t=0mtkt	2l�q�1+k2l�q (��1(x))
H�2q+m(x) = 12q 2q�1Xk=0 (�1)Pl�1t=0mtkt	�(2l�q�1+k2l�q)(x)Conversely, from [17], if we note :i = 2l�q�1(1 + 2k) et k 2 [0 ; 2q � 1]we get : 	i(��1(x)) = 2q�1Xm=0(�1)Pq�1t=0 ktmtH2q+m(��1(x))

	�(i)(x) = 2q�1Xm=0(�1)Pq�1t=0 ktmtH�2q+m(x)
Following the same calculations as presented in [17] (appendix C), we �nally get identicalexpressions, up to the subscript � :h�j = 2q�1Xk=0 w�(2l�q�1+(1+2k))(�1)Pq�1t=0 mtktw�(i) = 12q 2q�1Xm=0 h�2q+m(�1)Pq�1t=0 mtkt
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40 Benoît Leblanc, Evelyne LuttonB.3 Implications on adjusted coe�cients and the bound on jf �f 0j.As in [17](appendix D), we may establish the adjusted coe�cients h�0j as a functions of theh�j coe�cients. The calculations are identical (up to the � subscript) until the followingexpression :h�02q+m = 12q 2q�1Xk=0 [1� pc �(�(2l�q�1(1 + 2k)))l � 1 � 2pmO(�(2l�q�1(1 + 2k)))]2q�1Xm0=0h�2q+m0(�1)Pq�1t=0 (mt+m0t)ktWe remind that �(i) denotes the distance between the �rst and the last '1' in the binaryexpression of j, and O(j) the number of '1'. Then, in order to continue the calculations ina same manner as in [17], the following properties are su�cient :�(�(i)) = �(i)O(�(i)) = O(i)For every i, the number of '1' bits is invariant for any permutation, so the second equalityis always true. But the distance �(i) is preserved only if the permutation preserves therelative order. Such a permutation is the permutation that reverse the order (�(l � 1) =0; �(l � 2) = 1; : : : ; �(0) = l� 1). Consequently, the theorem 3 only still holds if we applythis mirror permutation.
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Bitwise regularity coe�cients as a tool for deception analysis 41C Bound for the Cq coe�cients with h and k.One can make the assumption that any �tness function may be de�ned with the help of afunction F such as : 8x 2 
l; f(x) = F � integer(x)2l �With integer(x) = l�1Xi=0 xi � 2iand F : [0; 1]! IR+ Hölder with exponent h and constant k:Recall that : Cq = supx2
lfjf(x)� f(x0l�q�1)jgMoreover 8x 2 
l :jf(x)� f(x0l�q�1)j = ����F � integer(x)2l �� F � integer(x0l�q�1)2l �����And if we note Xq = minfinteger(x); integer(x0l�q�1)g we have :jf(x)� f(x0l�q�1)j = ����F �Xq2l �� F �Xq + 2l�q�12l �����= ����F �Xq2l �� F �Xq2l + 2�(q+1)�����F being a Hölder function of exponent h and constant k, we can write :jf(x)� f(x0l�q�1)j � k2�(q+1)hsupx2
lfjf(x)� f(x0l�q�1)jg � k � 2�(q+1)hThus : Cq � k2�(q+1)h
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42 Benoît Leblanc, Evelyne LuttonD Bound for jf � f 0j with the Cq coe�cients for uniformcrossover.We �rst establish the new bound on jh�0j �h0�0j j. From the appendix B.2, for all permutation�, if we note (j = 2q +m) and (i = 2l�q�1(1 + 2k)), we have:h�0j = 2q�1Xk=0 w0�(2l�q�1+(1+2k))(�1)Pq�1t=0 mtktw0�(i) = 12q 2q�1Xm=0 h�02q+m(�1)Pq�1t=0 mtktFor the uniform crossover the adjusted Walsh coe�cients are (that do not depend any moreon �(j)) : w0j = wj "1� pc 1��12�O(j)�1!� 2pmO(j)#Then we get :h�02q+m = 2q�1Xk=0 w�(2l�q�1+(1+2k))(�1)Pq�1t=0 mtkt "1� pc 1��12�O(�(2l�q�1+(1+2k)))�1!�2pmO(�(2l�q�1 + (1 + 2k)))�Furthermore, we have : O(�(2l�q�1 + (1 + 2k))) = O(2l�q�1 + (1 + 2k)) = O(k) + 1h�02q+m = 2q�1Xk=0 2q�1Xm0=0 h�2q+m0 (�1)Pq�1t=0 (mt+m0t)kt2q "1� pc 1��12�O(k)!� 2pm(O(k) + 1)#h�02q+m = 12q 2q�1Xk=0 "1� pc 1� �12�O(k)!� 2pm(O(k) + 1)# 2q�1Xm0=0h�2q+m0(�1)Pq�1t=0 (mt+m0t)kth�02q+m = 12q 2q�1Xm0=0h�2q+m0 2q�1Xk=0 "1� pc 1��12�O(k)!� 2pm(O(k) + 1)# (�1)Pq�1t=0 (mt+m0t)ktAnd �nally : h�02q+m = h�2q+m(1� pc � 2pm)+pc2q 2q�1Xm0=0h�2q+m0 2q�1Xk=0 �12�O(k) (�1)Pq�1t=0 (mt+m0t)kt
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Bitwise regularity coe�cients as a tool for deception analysis 43�2pm2q 2q�1Xm0=0h�2q+m0 2q�1Xk=0 O(k)(�1)Pq�1t=0 (mt+m0t)ktThe term depending on pm is calculated in [17] :h�2q+m(�2pm(1 + q2))� pm q�1Xt=0 h�2q+m+(1�2mt)2tIf we note : P q(m;m0) = 2q�1Xk=0 �12�O(k) (�1)Pq�1t=0 (mt+m0t)ktThen :P (q+1)(m;m0) = 2q+1�1Xk=0 �12�Pqt=0 kt (�1)Pqt=0(mt+m0t)kt= 2q+1�1Xk=0 �12�kq �12�Pq�1t=0 kt (�1)Pq�1t=0 (mt+m0t)kt(�1)(mq+m0q)kq= 2q�1Xk=0 �12�0�12�Pq�1t=0 kt (�1)Pq�1t=0 (mt+m0t)kt(�1)(mq+m0q)�0+ 2q+1�1Xk=2q �12�1�12�Pq�1t=0 kt (�1)Pq�1t=0 (mt+m0t)kt(�1)(mq+m0q)�1= 2q�1Xk=0 �12�Pq�1t=0 kt (�1)Pq�1t=0 (mt+m0t)kt+ 2q+1�1Xk=2q 12 �12�Pq�1t=0 kt (�1)Pq�1t=0 (mt+m0t)kt � (�1)(mq+m0q)= P q(m;m0) + 12(�1)(mq+m0q)P q(m;m0)P (q+1)(m;m0) = P q(m;m0)�1 + 12(�1)(mq+m0q)�We also have : P 1(m;m0) = 1 + 12(�1)(m0+m00)
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44 Benoît Leblanc, Evelyne LuttonThus : P q(m;m0) = q�1Yt=0 1 + 12(�1)(mt+m0t)= q�1Yt=0=mt 6=m0t 12 q�1Yt=0=mt=m0t 312= q�1Yt=0 12 q�1Yt=0=mt=m0t 3If we note dH(m;m0) the Hamming distance betweenm andm0 (dH(m;m0) =Pq�1t=0=mt 6=m0t 1),we �nally have : P q(m;m0) = 12q 3dH(m;m0)The expression of h�02q+m thus becomes :h�02q+m = h�2q+m(1�pc�2pm(1+ q2))+ pc2q 2q�1Xm0=0h�2q+m0 12q 3dH(m;m0)�pm q�1Xt=0 h�2q+m+(1�2mt)2tWe now have to bound jh�2q+m � h�02q+mj :jh�2q+m � h�02q+mj =j h�2q+m(pc + 2pm(1 + q2)) � pc2q 2q�1Xm0=0h�2q+m0 12q 3dH (m;m0)+ pm q�1Xt=0 h�2q+m+(1�2mt)2t jjh�2q+m � h�02q+mj � jh�2q+mj(pc + 2pm(1 + q2)) + pc2q 2q�1Xm0=0 jh�2q+m0 j 12q 3dH (m;m0)+ pm q�1Xt=0 jh�2q+m+(1�2mt)2t jNow we know from the appendix B.2 that :8n 2 f0; : : : ; 2q � 1g; jh�2q+nj � C��1(q)2Thus :jh�2q+m�h�02q+mj � C��1(q)2 (pc+2pm(1+ q2))+ pc2q C��1(q)2 2q�1Xm0=0 12q 3dH(m;m0)+pm q�1Xt=0 C��1(q)2INRIA



Bitwise regularity coe�cients as a tool for deception analysis 45Setting s = 3dH(m;m0), we may write :2q�1Xm0=0 12q 3dH(m;m0) = 12q qXs=0(qs)3s1(q�s)= 12q (3 + 1)q= 2qThus : jh�2q+m � h�02q+mj � C��1(q) [pc + pm(1 + q)]Finally, reporting this to jf � f 0j :jf(x)� f 0(x)j � l�1Xq=0 jh�2q+mx � h�02q+mx j
jf(x)� f 0(x)j � pc l�1Xq=0C��1(q) + pm l�1Xq=0C��1(q)(1 + q)
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46 Benoît Leblanc, Evelyne LuttonE Bound for jf�f 0j with the (h; k) coe�cients for uniformcrossover.Under uniform crossover, we have (see appendix D) :jh2q+m � h02q+mj � jh�2q+mj�pc + 2pm(1 + q2)� + pc2q 2q�1Xm0=0 jh2q+m0 j 12q 3dH(m;m0)+ pm q�1Xt=0 jh2q+m+(1�2mt)2t jFurthermore from [17] we know that :8j = 2q +m; jh2q+mj � k22�h(q+1)Then :jh2q+m � h02q+mj � k22�h(q+1) �pc + 2pm(1 + q2)� + pc k22�h(q+1) 12q 2q�1Xm0=0 12q 3dH (m;m0)+ pm q�1Xt=0 k22�h(q+1)Now (see appendix D) : 2q�1Xm0=0 12q 3dH (m;m0) = 2qThen :jh2q+m � h02q+mj � k22�h(q+1)(pc + 2pm(1 + q2)) + pc k22�h(q+1) + pm k2 2�h(q+1) � qjh2q+m � h02q+mj � k h2�h(q+1) (pc + pm(1 + q))iAnd �nally :jf(x)� f 0(x)j � l�1Xq=0 jh�2q+mx � h�02q+mx jjf(x)� f 0(x)j � k l�1Xq=0 2�h(q+1) (pc + pm(1 + q))jf(x)� f 0(x)j � k � pc � l�1Xq=0 2�h(q+1) + k � pm � l�1Xq=0 2�h(q+1)(1 + q)jf(x)� f 0(x)j � k �pc 2�h(2�hl � 1)2�h � 1 + pm 2�h(2�h � 1)2 �1 + 2�hl(l2�h � l � 1)��INRIA



Bitwise regularity coe�cients as a tool for deception analysis 47F The adjusted Walsh coe�cients calculation revisited.We focus here on the calculation of the adjusted Walsh coe�cients that de�ne the functionsf 0 [9]. We recall that for a schema h, the schema average �tness is :f(h) = Xj2J(h)wj j(�(h)) (15)with J(h) = fj : 9i : h � hi(j)g, and :�(hi) = � 0 if hi = 0; �1 if hi = 1Attention is paid to the expected value of involved Walsh coe�cients when disruption occursfor the schema h. Any schema h0 that shares �xed position with h may replace it (we notejp(h0) = jp(h), where jp denote the partition number of a schema). If we look at each termof the summation in 15, Goldberg wrote this expected value (that we note wdj ) as :wdj = wj Xh0 :jp(h0)=jp(h) j(�(h0)) (16)And as : Xh0 :jp(h0)=jp(h) j(�(h0)) = 0one comes to the conclusion that the average value of the Walsh coe�cient after crossoverdisruption (that we note wdj ) can be considered as null. However, it has to be noticed thatthe simpli�cation (16) (that makes the calculation possible) is valid only when the allelefrequencies are equal for each position. A rigorous expression (but much more di�cult toestimate !) would be : wdj = wj Xh0 :jp(h0)=jp(h) j(�(h0))Pc(h; h0) (17)where Pc(h; h0) denotes the probability to obtain the schema h0 after the disruption of theschema h. If we use the expression 17, this expectation is null only if the Pc are equal.This assumption make sense only in a population where all alleles are equally representedat each position (as we would expect for a randomly generated population), but it becomesinvalid as the bits frequencies evolve during the GA run. This is one of the reasons why thisde�nition of deception is called static deception.
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