
Inverse problems for �nite automata: a solutionbased on Genetic AlgorithmsB. Leblanc1, E. Lutton1 and J.-P. Allouche21 INRIA - Rocquencourt, B.P. 105, F-78153 LE CHESNAY Cedex, FranceTel: +33 (0)1 39 63 55 23 - Fax: +33 (0)1 39 63 59 95e-mail: Benoit.Leblanc@inria.fr, Evelyne.Lutton@inria.frhttp://www-rocq.inria.fr/fractales/2 CNRS, LRI, Bât. 490, Universit�e Paris-Sud, F-91405 Orsay Cedex, FranceTel: 33 (0)1 69 15 64 54e-mail: Jean-Paul.Allouche@lri.frAbstract. The use of heuristics such as Genetic Algorithm optimisationmethods is appealing in a large range of inverse problems. The problempresented here deals with the mathematical analysis of sequences gen-erated by �nite automata. There is no known general exact method forsolving the associated inverse problem. GA optimisation techniques canprovide useful results, even in the very particular area of mathematicalanalysis. This paper presents the results we have obtained on the inverseproblem for �xed point automata. Software implementation has been de-veloped with the help of \ALGON", our home-made Genetic Algorithmsoftware.1 IntroductionA �nite automaton is de�ned as a symbolic substitution � acting on strings ofsymbols. More precisely � is a map from a �nite set of symbols S to S�, the setof strings of symbols in S. The elements of S� are called words and the imagesby � of elements of S are called words of the automaton. The map � is extendedto S� by concatenation (the image of a word is obtained by concatenating theimages of its symbols), making � a morphism of the free monoid S�.A sequence of words can be produced by successive applications of � to aninitial word s0. If we denote by sn = sn1sn2:::snp the word at step n, the wordobtained at step n+ 1 is then:sn+1 = �(sn) = �(sn1)�(sn2) : : :�(snp):Note that the words (sn)n2IN are concatenations of the words of the automaton(in Example 1 this fact is highlighted by the alternation of bold and standardfonts).



Example 1. S = f1; 2; 3g�8<:1 ! 2112 ! 133 ! 123 Iteration Word0 11 2112 132112113 2111231321121113 : : :Of course, it is clear that the sequence of words (sn)n2IN is determined bythe automaton � and the initial word s0.An interesting property of such words concerns the frequency of occurrencesof symbols of S. Let � be an automaton acting on S = f�1; �2; : : : ; �mg, let s0be an initial word. The number of occurrences of any of the symbols observedin the word sk (for any k) can be computed. Let us denote byOk = 0BB@ o1ko2k: : :omk 1CCAthe occurrence vector of sk (oik being the number of occurrences of the symbol �iobserved in sk). Then Ok+1 = A �Ok with A = (aij)(i;j)2f1;:::;mg2 the \growth"matrix, aij being the number of symbols �i in the word �(�j).We thus obtain Ok = Ak � O0 with O0 the occurrence vector of s0. ForExample 1, we have: A = 0@2 1 11 0 10 1 11A :Let us also de�ne the square (and in the same way any power) of an automa-ton: 8i 2 f1; : : : ;mg ; �2(�i) = �(�(�i)): The associated matrix is then A2. Formore information about substitutions, see [4].2 The inverse problem for �nite automata2.1 Motivations and formulationTo know whether a given sequence is generated by a �nite automaton and toknow explicitly one such automaton, can be useful in many situations. We listbut three of them.{ In combinatorics on words: the third author, J. Currie and J. Shallit provedrecently that the lexicographically least overlap-free3 sequence on a two-letter alphabet, that begins with a given word (if it exists), must end with a3 An overlap is a string of the form axaxa where a is a letter and x a (�nite) word. A(�nite or in�nite) word is called overlap-free if it does not contain any overlap.



tail of the Thue-Morse sequence 10010110 � � �, hence is the pointwise image(i.e. image under a morphism that sends each letter to a letter) of a �xedpoint of a morphism of constant length [8]. It is not known whether the leastsquare-free sequence on a three-letter alphabet has the same property.{ In number theory: let (un)n2IN be a sequence with values in the �nite �eldIFq. Then the formal power series P unXn is algebraic over the �eld ofrational functions IFq(X) if and only if the sequence (un)n2IN is the pointwiseimage of a �xed point of a morphism of length q over a �nite alphabet,[10, 11]. For example the transcendence of values of Carlitz functions can beproved by showing the non-automaticity of the corresponding formal powerseries (see for example [9, 7, 12]). A hint that a sequence is not a �xed point ofa morphism (it is more complicated for the pointwise image of a �xed point)is that, when solving the inverse problem with longer and longer pre�xes ofthe sequence, the automaton we obtain keeps growing. That means almostcertainly that there is no automaton that generates the in�nite sequence.{ In physics: quasi-crystals are the 3-D analogue of the Penrose tiling. A one-dimensional description of this tiling involves the Fibonacci sequence, i.e.,the �xed point of the morphism 0 ! 01, 1! 0.Another occurrence of this \inverse" question for �nite automata, in music, isrecalled below.Suppose we have a string of symbols and we want to know whether it hasbeen produced by iterating an automaton. Of course if the string is �nite, therealways exists a trivial solution: the substitution sending the �rst letter of thestring to the string itself. But we are interested in non-trivial solutions if any.Apart from the mathematical aspects of this \inverse" problem, it might beinteresting to note that this work began as a composer, T. Johnson, produced asequence of notes using a �nite automaton, kept only the sequence of notes, andwanted to remember the automaton he used. (For the use of �nite automata ina piece of T. Johnson, see [1].)If the word s0 happens to be a pre�x of the word s1 = �(s0), it is not hard tosee that the sequence of words (sn)n2IN converges to an in�nite word. And thisin�nite word is clearly a �xed point of the substitution � (extended to in�nitewords by concatenation). Now suppose an in�nite word is given, is this word the�xed point of a substitution? Or is it the pointwise image of a �xed point of asubstitution? No general answer to these questions is known either: a theoreticalanswer to the second question is known if the substitution has constant length[3] (i.e., if all words of the automaton have the same length), and also if thesubstitution is primitive (i.e., is such that there exists an m with the propertythat �m of any symbol contains at least one occurrence of each symbol of theset S) as proved recently by Durand [5]. Looking at �nite pre�xes of the givenin�nite sequence that have well-chosen lengths, we see that we can �rst restrictto �nite words.Hence, ideally, we would like to solve in the general case (i.e., not only for�xed point automata) what we called the inverse problem, that is:



Given a �nite word s, �nd an automaton � and an initial word s0 suchthat �n(s0) = s for some n.Of course, in its generality, this problem is extremely complex and can havemany solutions or no non-trivial solution at all4.It can be reformulated as an optimisation problem on the search space of allpossible �, n and s0 that minimizes a distance between �n(s0) and s. In orderto reduce the complexity of this problem one also has to give some restrictionsto the search space. We suppose in the following that the length of the words of� is limited to lmax and that s0 is a single symbol.2.2 A bruteforce GA implementationThe �rst GA implementation that comes to mind is to perform a search overthe space of all automata having word lengths smaller than or equal to lmax.Each individual of the GA thus represents an automaton with the followingcharacteristics:{ m chromosomes for an individual: one per word of the automaton;{ variable length chromosomes: their lengths may vary between 1 and lmax;{ an m-ary coding: the allele set is S.These particular characteristics imply of course some modi�ed GA operators,that are implemented in ALGON [6].Thus, setting lmax = 4, the automaton of Example 1 would have the codingshown in Figure 1.
Chromosome 3 : word associated with the symbol "3"

12

1

1

3

2

1

3

Chromosome 1 : word associated with the symbol "1"

Chromosome 2 : word associated with the symbol "2"Fig. 1. Direct coding of example 1 with lmax = 4.The �tness function that must reect the \resemblance to the target", isbased on a comparison between words (Hamming distance, frequencies of occur-rences of symbols, of couples of symbols, etc. . . ).4 In fact, for a given solution couple (�; s0) and for any divisor p of n, the couple(�p; s0) is also a solution.



This approach did not lead to interesting results, due to the size of the searchspace with respect to m and lmax: jSj = �Plmaxi=1 mi�m. The size would not be aproblem if the resulting �tness landscape was smooth enough5, but in our caseone can easily check that a single change in the genetic code leads to importantchanges in the observed words.Though this direct approach is not appropriate, its bene�t is to highlight thedi�culty of solving this problem. In fact, it is obvious that the coding shoulduse more e�ciently the information contained in the target word.3 The �xed point hypothesisIf we restrict the inverse problem to the search of automata with �xed points,the complexity of the problem is reduced.3.1 De�nition and propertiesA �nite automaton has a �xed point if there exists a symbol � such that the�rst letter of �(�) is � itself.The sequence of words sn produced by such an automaton starting with theinitial symbol s0 = � converge to a �xed point of �: the beginning of the wordat iteration n + 1 is exactly the word at iteration n. In fact each iteration addssymbols to the end of the previous word.Example 2. S = f1; 2; 3g�8<: 1! 212! 2313! 13 Iteration Word0 21 2312 23113213 2311321211323121 : : :The inverse problem for a �xed point automaton is then much easier to solvethan in the general case. Indeed, the information contained in the target wordcan be e�ciently exploited, taking advantage of the fact that a �xed point isa succession of words of the automaton as well as the succession of symbolswhich generated them. Of course, it is necessary to know the lengths of thewords in order to identify the connection between the two successions. A simpleassumption on the lengths of words of the automaton permits then to identifyit with a mechanism of simultaneous identi�cation and reconstruction.Checking an hypothesis is then a direct process of \reconstruction-comparison".As previously outlined, the �rst symbol of the �xed point is associated to the�rst word, its size is given by assumption, so it can be identi�ed. The second5 With a few secondary optima.



Incorrect hypothesis (2,2,2).�(2) = 23 23 11321211323121�(3) = 11 23 11 321211323121�(1) = 32 2311 32 1211323121�(1) = 12 231132 12 11323121Contradiction on \1". Correct hypothesis (2,3,2).�(2) = 231 231 1321211323121�(3) = 13 231 13 21211323121�(1) = 21 23113 21 211323121�(1) = 21 2311321 21 1323121�(3) = 13 231132121 13 23121�(2) = 231 23113212113 231 21�(1) = 21 23113212113231 21Fig. 2. Hypothesis propagation.word, associated to the second letter, start ritght after the �rst, and knowing itssize by hypothesis it can be identi�ed too, and so on all along the �xed point.If the hypothesis in not correct, then the case will arise when the same symbolwill be associated to two di�erent words, discarding it. If it is correct the whole�xed point will be \reconstructed" without such contradiction.Let us consider Example 2 and take s = �3(2) as the target word. Assumeeach word of � has two symbols:{ The initial symbol s0 is simply the �rst symbol of s, i.e., s0 = 2.{ The word associated with this symbol is a pre�x of the target word, and it isassumed to be composed of two symbols, then we directly identify �(2) = 23.{ The identi�cation process is continued until a contradiction appears or theend of the target word is reached, as shown in Figure 2 : in the incorrecthypothesis case we get �(1) = 32 at step 2 and �(1) = 12 at step 3 thenthe hypothesis is in�rmed. Conversely, in the correct case, for the samesymbol, the same word is always recognized, so the whole �xed point wordis \reconstructed".3.2 A GA to search the space of word lengthsCoding the individuals :An individual of the GA population may just represent an assumption onthe words lengths, the corresponding automaton being reachable trough theidenti�cation mechanism previously exposed.If we set an upper limit lmax for the possible lengths of the words, the geneticcoding is the following:{ A set of alleles of cardinality lmax.{ A single chromosome per individual containing as many genes as elements inthe symbol set S. The gene k codes the length of the word associated withthe symbol �k. The coding of a right assumption for Example 2 is:j2j3j2j ! �8<: 1!??2!???3!??



Compared to the \brute-force" implementation, a substantial improvementis the reduction of the search space which size is now jSj = (lmax)m.Fitness function :The evaluation of an individual relies on the validation process of the assump-tion it encodes. If the assumption appears to be valid, it is assigned a maximal�tness value. Note that any power of an automaton that is a solution to theproblem is also a solution. Hence there is a potentially in�nite number of solu-tions, as soon as one solution is found. But practically the number of solutionsis limited by the length of the target word and the lmax value. The minimalsolutions (in terms of lengths) are obviously the most interesting ones.Invalid assumptions are given an intermediate value, and it is also desirableto di�erentiate these non-valid assumptions in order to drive the search towardsa solution.If a contradiction arises, two cases are considered:{ The contradiction arises before the identi�cation of all the words of theautomaton: f(i) = � � Number of identi�ed wordswith " a very small positive value.{ If a contradiction arises after the identi�cation of all words of the automaton:f(i) = �Length of the \checked" sequenceLength of the target sequence �The \checked" word denotes the part of the target word checked before thecontradiction occurs.The maximum of f is then 1, corresponding to the case where the target wordhas been entirely checked. In order to give a best �tness value to any assumptionleading to a complete identi�cation of the words of the automaton than to anyother that doesnt't, the number " simply has to ful�ll the following condition:" < � m+ 1Length of the target word� :3.3 Results and discussionsWe present here results obtained with ALGON [6], on two target words which arepre�xes of �xed points of two di�erent automata using 6 symbols. The maximallengths of words being lmax = 6, the size of the search space is then: jSj = 66 =45656The general parameters of the GA are:{ A population of 100 individuals. Each individual being unique.{ A mutation probability pm = 0:125.{ One point crossover with probability pc = 0:85.



{ An elitist population replacement with a ratio rs = 0:4 of surviving individ-uals, i.e., 60 new individuals are created at each generation replacing the 60worst individuals of the previous population.{ Selection performed with Stochastic Universal Sampling (see [2]).Automaton 1: �8>>>>>><>>>>>>:1 ! 612 ! 2343 ! 524 ! 2345 ! 65516 ! 433 (1)The target word s is then obtained by iterating 5 times the automaton start-ing from the initial seed \2", that is a word of length 196. We present in table 1some statistics obtained over 20 runs. The following quantities are computed:N1 : Number of generations to obtain an assumption leading to a completeautomaton (before a contradiction arises in the identi�cation process).N2 : Number of generations to �nd a solution.N3 = N2 � N1 : number of generations to �nd a solution when at least oneindividual has lead to a complete automaton.The results are summarized in table 3.3.Table 1. Results for automaton 1.Mean Std.N1 4.2 2.38N2 18.95 24N3 14.75 23.3About 1000 �tness evaluations are necessary to �nd a solution, which is tobe compared to the search space size.Automaton 2: �8>>>>>><>>>>>>: 1! 111162! 243! 54! 355! 233416! 666 (2)The target word s is again obtained by iterating 5 times the automaton start-ing from the initial seed \2". It has been designed to slow down the automaton



identi�cation process: the symbol \6" �rst appears quite far in s (26th posi-tion), so a contradiction has a greater chance to arise before all words have beenidenti�ed. Table 2. Results for automaton 2.Mean Std.N1 8.65 2.38N2 13.2 7.76N3 4.55 3.76We can see that, for this apparently more tricky automaton, the performancesof the GA are better. But it can certainly be explained by the fact that the fre-quency of the hypothesis leading to a complete automaton identi�cation (beforea contradiction arises) is lower than previously, but other points of the searchspace seem to lead quite easily to those interesting regions.4 Conclusion and further worksThe results we obtained on �xed points automata suggest a coding of the generalproblem based on a set of possible words observed in the target word to be ana-lysed. Such an approach, by considerably reducing the search space of possibleautomata, allows to obtain interesting results in the general case. This will bestudied in a forthcoming paper.References1. J.-P. Allouche, T. Johnson (1995): Finite automata and morphisms in assisted mu-sical composition. Journal of New Music Research 24, 97{108.2. J. E. Baker (1987): Reducing bias and ine�ciency in the selection algorithm. Ge-netic Algorithms and their application: Proceedings of the Second InternationalConference on Genetic Algorithms, p. 14-21.3. A. Cobham (1972): Uniform tag sequences. Math. Systems Theory 6, 164{192.4. S. Eilenberg (1974): Automata, Languages, and Machines. Vol. A, Academic Press.5. F. Durand (1997): A characterization of substitutive sequences using return words.Disc. Math., to appear.6. B. Leblanc, E. Lutton (1997): ALGON: A Genetic Algorithm software package,http://www-rocq.inria.fr/fractales/7. J.-P. Allouche (1996): Transcendence of the Carlitz-Goss Gamma function at ratio-nal arguments. J. Number Theory 60, 318{328.8. J.-P. Allouche, J. Currie, J. Shallit (1997): Extremal in�nite overlap-free binarywords. Preprint.
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