Inverse problems for finite automata: a solution
based on Genetic Algorithms

B. Leblanc!, E. Lutton' and J.-P. Allouche?

! INRIA - Rocquencourt, B.P. 105, F-78153 LE CHESNAY Cedex, France
Tel: +33 (0)1 39 63 55 23 - Fax: +33 (0)1 39 63 59 95
e-mail: Benoit.Leblanc@inria.fr, Evelyne.Lutton@inria.fr
http://www-rocq.inria.fr/fractales/
2 CNRS, LRI, Bat. 490, Université Paris-Sud, F-91405 Orsay Cedex, France
Tel: 33 (0)1 69 15 64 54
e-mail: Jean-Paul.Allouche@Iri.fr

Abstract. The use of heuristics such as Genetic Algorithm optimisation
methods is appealing in a large range of inverse problems. The problem
presented here deals with the mathematical analysis of sequences gen-
erated by finite automata. There is no known general exact method for
solving the associated inverse problem. GA optimisation techniques can
provide useful results, even in the very particular area of mathematical
analysis. This paper presents the results we have obtained on the inverse
problem for fixed point automata. Software implementation has been de-
veloped with the help of “ALGON”, our home-made Genetic Algorithm
software.

1 Introduction

A finite automaton is defined as a symbolic substitution o acting on strings of
symbols. More precisely o is a map from a finite set of symbols S to S*, the set
of strings of symbols in S. The elements of S* are called words and the images
by o of elements of S are called words of the automaton. The map o is extended
to S* by concatenation (the image of a word is obtained by concatenating the
images of its symbols), making ¢ a morphism of the free monoid S*.

A sequence of words can be produced by successive applications of ¢ to an
initial word sy. If we denote by s, = s, 8ny..-8n, the word at step n, the word
obtained at step n + 1 is then:

Sn1 = 0(85) = 0(80,)0(80y) ... (80,)

Note that the words (s,)nen are concatenations of the words of the automaton
(in Example 1 this fact is highlighted by the alternation of bold and standard
fonts).

Fzample 1. S ={1,2,3}

Iteration|Word
1 — 211 0 1
c{ 2—13 1 211
3 — 123 2 13211211
3 2111231321121113...

Of course, it is clear that the sequence of words (s,)new is determined by
the automaton ¢ and the initial word sg.

An interesting property of such words concerns the frequency of occurrences
of symbols of S. Let ¢ be an automaton acting on S = {ay, as,...,a,}, let 5o
be an initial word. The number of occurrences of any of the symbols observed
in the word s, (for any k) can be computed. Let us denote by

the occurrence vector of s (0% being the number of occurrences of the symbol a;
observed in si). Then Opi1 = A% Op with A = (aij)(; j)eq1,...,m)2 the “growth”
matrix, a;; being the number of symbols «; in the word o(a;).
We thus obtain O = A* %+ Oy with O, the occurrence vector of s;. For
Example 1, we have:
211
A=1101
011

Let us also define the square (and in the same way any power) of an automa-
ton: Vi € {1,...,m}, o*(a;) = o(0o(a;)). The associated matrix is then A%. For
more information about substitutions, see [4].

2 The inverse problem for finite automata

2.1 Motivations and formulation

To know whether a given sequence is generated by a finite automaton and to
know explicitly one such automaton, can be useful in many situations. We list
but three of them.

— In combinatorics on words: the third author, J. Currie and J. Shallit proved
recently that the lexicographically least overlap-free® sequence on a two-
letter alphabet, that begins with a given word (if it exists), must end with a

3 An overlap is a string of the form azaza where a is a letter and z a (finite) word. A
(finite or infinite) word is called overlap-free if it does not contain any overlap.

tail of the Thue-Morse sequence 10010110 - - -, hence is the pointwise image
(i.e. image under a morphism that sends each letter to a letter) of a fixed
point of a morphism of constant length [8]. It is not known whether the least
square-free sequence on a three-letter alphabet has the same property.

— In number theory: let (u,)nen be a sequence with values in the finite field
IF',. Then the formal power series) u,X™ is algebraic over the field of
rational functions IF (X) if and only if the sequence (u,,),en is the pointwise
image of a fixed point of a morphism of length ¢ over a finite alphabet,
[10, 11]. For example the transcendence of values of Carlitz functions can be
proved by showing the non-automaticity of the corresponding formal power
series (see for example [9, 7, 12]). A hint that a sequence is not a fixed point of
a morphism (it is more complicated for the pointwise image of a fixed point)
is that, when solving the inverse problem with longer and longer prefixes of
the sequence, the automaton we obtain keeps growing. That means almost
certainly that there is no automaton that generates the infinite sequence.

— In physics: quasi-crystals are the 3-D analogue of the Penrose tiling. A one-
dimensional description of this tiling involves the Fibonacci sequence, i.e.,
the fixed point of the morphism 0 — 01, 1 — 0.

Another occurrence of this “inverse” question for finite automata, in music, is
recalled below.

Suppose we have a string of symbols and we want to know whether it has
been produced by iterating an automaton. Of course if the string is finite, there
always exists a trivial solution: the substitution sending the first letter of the
string to the string itself. But we are interested in non-trivial solutions if any.
Apart from the mathematical aspects of this “inverse” problem, it might be
interesting to note that this work began as a composer, T. Johnson, produced a
sequence of notes using a finite automaton, kept only the sequence of notes, and
wanted to remember the automaton he used. (For the use of finite automata in
a piece of T. Johnson, see [1].)

If the word sy happens to be a prefix of the word s; = o(sy), it is not hard to
see that the sequence of words (s,,),en converges to an infinite word. And this
infinite word is clearly a fized point of the substitution o (extended to infinite
words by concatenation). Now suppose an infinite word is given, is this word the
fixed point of a substitution? Or is it the pointwise image of a fixed point of a
substitution? No general answer to these questions is known either: a theoretical
answer to the second question is known if the substitution has constant length
[3] (i.e., if all words of the automaton have the same length), and also if the
substitution is primitive (i.e., is such that there exists an m with the property
that ¢™ of any symbol contains at least one occurrence of each symbol of the
set S) as proved recently by Durand [5]. Looking at finite prefixes of the given
infinite sequence that have well-chosen lengths, we see that we can first restrict
to finite words.

Hence, ideally, we would like to solve in the general case (i.e., not only for
fixed point automata) what we called the inverse problem, that is:

Given a finite word s, find an automaton ¢ and an initial word sg such
that 0™(sg) = s for some n.

Of course, in its generality, this problem is extremely complex and can have
many solutions or no non-trivial solution at all*.

It can be reformulated as an optimisation problem on the search space of all
possible o, n and sy that minimizes a distance between ¢™(sy) and s. In order
to reduce the complexity of this problem one also has to give some restrictions
to the search space. We suppose in the following that the length of the words of
o is limited to l,,,, and that s, is a single symbol.

2.2 A bruteforce GA implementation

The first GA implementation that comes to mind is to perform a search over
the space of all automata having word lengths smaller than or equal to I,
Each individual of the GA thus represents an automaton with the following
characteristics:

— m chromosomes for an individual: one per word of the automaton;
— variable length chromosomes: their lengths may vary between 1 and l;,4e;
— an m-ary coding: the allele set is S.

These particular characteristics imply of course some modified GA operators,
that are implemented in ALGON [6].

Thus, setting [,,,, = 4, the automaton of Example 1 would have the coding
shown in Figure 1.

. Chromosome 1 : word associated with the symbol "1"
I

. Chromosome 2 : word associated with the symbol "2"

'

. Chromosome 3 : word associated with the symbol "3"

If
A

=

-
N
]

Fig. 1. Direct coding of example 1 with l;ma. = 4.

The fitness function that must reflect the “resemblance to the target”, is
based on a comparison between words (Hamming distance, frequencies of occur-
rences of symbols, of couples of symbols, etc. ..).

* In fact, for a given solution couple (o,s0) and for any divisor p of n, the couple
(c?,50) is also a solution.

This approach did not lead to interesting results, due to the size of the search
Am
space with respect to m and I, |S| = (fo;‘f m") . The size would not be a

problem if the resulting fitness landscape was smooth enough®, but in our case
one can easily check that a single change in the genetic code leads to important
changes in the observed words.

Though this direct approach is not appropriate, its benefit is to highlight the
difficulty of solving this problem. In fact, it is obvious that the coding should
use more efficiently the information contained in the target word.

3 The fixed point hypothesis

If we restrict the inverse problem to the search of automata with fixed points,
the complexity of the problem is reduced.

3.1 Definition and properties

A finite automaton has a fixed point if there exists a symbol « such that the
first letter of o(a) is « itself.

The sequence of words s,, produced by such an automaton starting with the
initial symbol sy = a converge to a fixed point of o: the beginning of the word
at iteration n + 1 is exactly the word at iteration n. In fact each iteration adds
symbols to the end of the previous word.

Ezample 2. S ={1,2,3}

Iteration|Word
1—21 0 2
o 2— 231 1 231
3—13 2 2311321
3 2311321211323121 ...

The inverse problem for a fixed point automaton is then much easier to solve
than in the general case. Indeed, the information contained in the target word
can be efficiently exploited, taking advantage of the fact that a fixed point is
a succession of words of the automaton as well as the succession of symbols
which generated them. Of course, it is necessary to know the lengths of the
words in order to identify the connection between the two successions. A simple
assumption on the lengths of words of the automaton permits then to identify
it with a mechanism of simultaneous identification and reconstruction.

Checking an hypothesis is then a direct process of “reconstruction-comparison”.
As previously outlined, the first symbol of the fixed point is associated to the
first word, its size is given by assumption, so it can be identified. The second

5 With a few secondary optima.

| Correct hypothesis (2,3,2). |

| Incorrect hypothesis (2,2,2). | o(2) = 231|231 1321211323121
o(2) = 23]23 11321211323121 | o(3) = 13 [231 13 21211323121
o(3) = 11]23 11 321211323121 o(1) = 21 [23113 21 211323121
o(1) = 32(2311 32 1211323121 o(1) =21 [2311321 21 1323121
o(1) = 12[231132 12 11323121 o(3) = 13 |231132121 13 23121
Contradiction on “17. o(2) = 231[23113212113 251 21
o(1) = 21 [23113212113231 21

Fig. 2. Hypothesis propagation.

word, associated to the second letter, start ritght after the first, and knowing its
size by hypothesis it can be identified too, and so on all along the fixed point.
If the hypothesis in not correct, then the case will arise when the same symbol
will be associated to two different words, discarding it. If it is correct the whole
fixed point will be “reconstructed” without such contradiction.

Let us consider Example 2 and take s = 0®(2) as the target word. Assume
each word of ¢ has two symbols:

— The initial symbol sq is simply the first symbol of s, i.e., sy = 2.

— The word associated with this symbol is a prefix of the target word, and it is
assumed to be composed of two symbols, then we directly identify ¢(2) = 23.

— The identification process is continued until a contradiction appears or the
end of the target word is reached, as shown in Figure 2: in the incorrect
hypothesis case we get o(1) = 32 at step 2 and o(1) = 12 at step 3 then
the hypothesis is infirmed. Conversely, in the correct case, for the same
symbol, the same word is always recognized, so the whole fixed point word
is “reconstructed”.

3.2 A GA to search the space of word lengths

Coding the individuals :

An individual of the GA population may just represent an assumption on
the words lengths, the corresponding automaton being reachable trough the
identification mechanism previously exposed.

If we set an upper limit [,,,, for the possible lengths of the words, the genetic
coding is the following:

— A set of alleles of cardinality 1,4

— A single chromosome per individual containing as many genes as elements in
the symbol set S. The gene k codes the length of the word associated with
the symbol ay. The coding of a right assumption for Example 2 is:

177

23]2] — o { 2777
3 =77

Compared to the “brute-force” implementation, a substantial improvement
is the reduction of the search space which size is now |S| = (ln44)™

Fitness function :

The evaluation of an individual relies on the validation process of the assump-
tion it encodes. If the assumption appears to be valid, it is assigned a maximal
fitness value. Note that any power of an automaton that is a solution to the
problem is also a solution. Hence there is a potentially infinite number of solu-
tions, as soon as one solution is found. But practically the number of solutions
is limited by the length of the target word and the [,,,, value. The minimal
solutions (in terms of lengths) are obviously the most interesting ones.

Invalid assumptions are given an intermediate value, and it is also desirable
to differentiate these non-valid assumptions in order to drive the search towards
a solution.

If a contradiction arises, two cases are considered:

— The contradiction arises before the identification of all the words of the
automaton:
f(2) = e x Number of identified words

with € a very small positive value.
— If a contradiction arises after the identification of all words of the automaton:

£0) Length of the “checked” sequence
1) =
Length of the target sequence

The “checked” word denotes the part of the target word checked before the
contradiction occurs.

The maximum of f is then 1, corresponding to the case where the target word
has been entirely checked. In order to give a best fitness value to any assumption
leading to a complete identification of the words of the automaton than to any
other that doesnt’t, the number € simply has to fulfill the following condition:

< m+1
£ .
Length of the target word

3.3 Results and discussions

We present here results obtained with ALGON [6], on two target words which are
prefixes of fixed points of two different automata using 6 symbols. The maximal
lengths of words being .. = 6, the size of the search space is then: |S| = 65 =
45656

The general parameters of the GA are:

— A population of 100 individuals. Each individual being unique.
— A mutation probability p,, = 0.125.
— One point crossover with probability p. = 0.85.

— An elitist population replacement with a ratio r; = 0.4 of surviving individ-
uals, i.e., 60 new individuals are created at each generation replacing the 60
worst individuals of the previous population.

— Selection performed with Stochastic Universal Sampling (see [2]).

Automaton 1:
1—61

2 — 234
3 — 52
g 4 — 234 (1)
5 — 6551
6 — 433

The target word s is then obtained by iterating 5 times the automaton start-
ing from the initial seed “2”, that is a word of length 196. We present in table 1
some statistics obtained over 20 runs. The following quantities are computed:

N; : Number of generations to obtain an assumption leading to a complete
automaton (before a contradiction arises in the identification process).

Ny : Number of generations to find a solution.

N3 = Ny — N;j : number of generations to find a solution when at least one
individual has lead to a complete automaton.

The results are summarized in table 3.3.

Table 1. Results for automaton 1.

Mean|Std.
Ni| 4.2 |2.38
N>|18.95| 24
N3|14.75|23.3

About 1000 fitness evaluations are necessary to find a solution, which is to
be compared to the search space size.

Automaton 2:
1— 11116
2 — 24
3—5
7Y4—35 (2)
5 — 23341

6 — 666

The target word s is again obtained by iterating 5 times the automaton start-
ing from the initial seed “2”. It has been designed to slow down the automaton

identification process: the symbol “6” first appears quite far in s (26th posi-
tion), so a contradiction has a greater chance to arise before all words have been
identified.

Table 2. Results for automaton 2.

Mean |[Std.
Ni| 8.65 (2.38
No| 13.2 |7.76
N3| 4.55 |3.76

We can see that, for this apparently more tricky automaton, the performances
of the GA are better. But it can certainly be explained by the fact that the fre-
quency of the hypothesis leading to a complete automaton identification (before
a contradiction arises) is lower than previously, but other points of the search
space seem to lead quite easily to those interesting regions.

4 Conclusion and further works

The results we obtained on fixed points automata suggest a coding of the general
problem based on a set of possible words observed in the target word to be ana-
lysed. Such an approach, by considerably reducing the search space of possible
automata, allows to obtain interesting results in the general case. This will be
studied in a forthcoming paper.

References

1. J.-P. Allouche, T. Johnson (1995): Finite automata and morphisms in assisted mu-
sical composition. Journal of New Music Research 24, 97-108.

2. J. E. Baker (1987): Reducing bias and inefficiency in the selection algorithm. Ge-
netic Algorithms and their application: Proceedings of the Second International
Conference on Genetic Algorithms, p. 14-21.

3. A. Cobham (1972): Uniform tag sequences. Math. Systems Theory 6, 164-192.

S. Eilenberg (1974): Automata, Languages, and Machines. Vol. A, Academic Press.

5. F. Durand (1997): A characterization of substitutive sequences using return words.
Disc. Math., to appear.

6. B. Leblanc, E. Lutton (1997): ALGON: A Genetic Algorithm software package,
http://www-rocq.inria.fr/fractales/

7. J.-P. Allouche (1996): Transcendence of the Carlitz-Goss Gamma function at ratio-
nal arguments. J. Number Theory 60, 318-328.

8. J.-P. Allouche, J. Currie, J. Shallit (1997): Extremal infinite overlap-free binary
words. Preprint.

-

9. V. Berthé (1994): Automates et valeurs de transcendance du logarithme de Carlitz.
Acta Arith. 66, 369-390.

10. G. Christol (1979): Ensembles presque périodiques k-reconnaissables. Theoret.
Comput. Sci. 9, 141-145.

11. G. Christol, T. Kamae, M. Mendes France, G. Rauzy (1980): Suites algébriques,
automates et substitutions. Bull. Soc. Math. France 108, 401-419.

12. M. Mendés France, J.-y. Yao (1997): Transcendence and the Carlitz-Goss gamma
function. J. Number Theory 63, 396-402.

This article was processed using the IXTEX macro package with LLNCS style

