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Abstract— We present in this paper a theoretical analysis
that relates an irregularity measure of a fitness function to
the so-called GA-deception. This approach is a continua-
tion of a work [18] that has presented a deception analysis
of Hélder functions. The analysis developed here is a gene-
ralization of this work in two ways: we first use a “bitwise
regularity” instead of a Hélder exponent as a basis for our
deception analysis, second, we perform a similar deception
analysis of a GA with uniform crossover. We finally pro-
pose to use the bitwise regularity coefficients in order to
analyze the influence of a chromosome encoding on the GA
efficiency, and we present experiments with Gray encoding.

Keywords— Genetic Algorithms, optimization, bitwise re-
gularity, deception analysis, fractals, Holder functions.

I. INTRODUCTION.

Theoretical investigations on GA and EA in general con-
cern mainly convergence analysis (and convergence speed
analysis on a locally convex optimum for EA), influence of
the parameters, and GA-hardness analysis. For GA, our
main concern here, these analyses are based on different
approaches :

o Proofs of convergence based on Markov chain modeling

6, [3], [1], 20]

o Deceptive functions analysis, based on Schema ana-
lysis and Holland’s original theory [14], [8], [9], [11],
which characterizes the efficiency of a GA, and allows
to shed light on “GA-hard” functions.

e Some rather new approaches are based on an explicit
modelization of a GA as a dynamical system [16], [22].

Deception has been intuitively related to the biological
notion of epistasis [5], which can be understood as a sort
of “non-linearity” degree. It can also be related, to the so
called “fitness landscape” analyses (see for example [19]).
In any ways, it basically depends on:

o the parameter setting of the GA,

o the shape of the function to be optimized,

o the chromosome encoding , i.e. the "way” of scanning

the search space.

In a previous work [18] it has been proven that some
tools, that have been developed in the framework of fractal
theory, can be used in order to refine a deception analysis
of Genetic Algorithms. This work has mainly related an
irregularity measure (Holder exponent) of the function to
be optimized to its deceptiveness. We first recall in section
IT these results, that allow to model the influence of some

of the GA parameters. The main hypothesis of this pre-
vious analysis is that the fitness function can be considered
as the sampling of an underlying continuous Holder func-
tion. In section III we will then present a generalization of
this work that considers another regularity measure of the
fitness function, the bitwise regularity, and which does not
support the Holder hypothesis anymore.

The GA modeled in this framework is the so-called
canonical GA, i.e. with proportional selection (roulette
wheel selection), one point crossover and mutation, at fixed
rates p. and p,, all along the GA run. In section IV we
then present a similar theoretical analysis for a canonical
GA with uniform crossover, which is an operator that is
largely used in real world applications.

Besides the intuitive fact that it relates the irregularity
of the fitness function to its “difficulty”, one important
application of this theoretical analysis is that it provides a
mean to “measure” (of course to a certain extent, due to
the intrinsic limitations of deception theory) the influence
of the chromosome encoding. We present in section V some
experimentations with the Gray encoding that prove the
interest of such an approach.

II. BACKGROUND AND PREVIOUS WORK.

In this section we quickly remind the definitions of
schemata, deception and Holder exponents.

A. Schemata.

Schemata has been widely studied in the field of GA,
and are the basis of the deception analysis. A schema cor-
responds to a subset of the space Q! = {0, 1}! (the space of
binary strings of length [ for a GA using binary encoding),
or more precisely a hyper-plan of Q. An additional symbol
7 representing a wildcard (’0’ or ’1’) is used to represent
a schema. For example, if [ = 4, the strings 4; = 0101 and
15 = 1101 are the two elements of the schema H = x101.
The order of a schema, O(H), is defined as the number of
fixed positions in H, and the defining length, 6(H), as the
distance between the first and the last fixed positions of H.
A fundamental theorem about schemata is the following:

Theorem 1 (Schema theorem, Holland ([14]))

For a given schema H let:
o m(H,t) be the expected number of representatives of
the schema H in the population P(t) (¢ indexes the
number of the generation): m(H,t) = |H N P(t)|.



o f(H,t) be the mean fitness value of the representatives
of H in the population P(t):

= 1

f(Hat):m

> f0)
i€EHNP(t)

o f(t) be the mean fitness value of the individuals of

(t):

1 .
ft) = 20 ie;(t) f(@)

e p. and p,, be respectively the (one point) crossover
and mutation probabilities.
Then :
o(H)

1 =per— ~ O(H)pm

m(H,t+1) > m(H,t)* f;}(?)t) * [

B. Deception analysis.

A famous consequence of the schema theorem is that the
schemata having a short defining length, a small order and
a mean fitness better than the population mean fitness will
be more and more represented in the successive genera-
tions (such schemata are called building blocks, [10]). This
remark leads to the conclusion that if the global optimum
of the fitness function f is the intersection of such good
building blocks, a GA will easily find it. On the contrary,
if the intersection of these buildings blocks is a secondary
optimum, the population will preferably converge onto it,
missing the global one. In this situation the GA will be
considered to have failed! and f will be called deceptive.

More formally, Goldberg ([8], [9]) defined static decep-
tion: the selection results in an expected greater mean
fitness for the set of individuals selected for reproduction,
than for the preceding population. But this mean value
will be changed by the application of genetic operators. It
follows that the GA is attracted toward the optima of a
function f', defined for each point of Q! as its expected fit-
ness value after the application of crossover and mutation.
The function f will be called deceptive for a GA with a
given parameter setting, if the global optima of f’ and f
differ. This function may be calculated with the help of
the Walsh basis:

Definition 1 (Walsh polynomials) They form an orthog-
onal basis of the set of functions defined on Q' :

1—1

¢j(x> = H(_l)mtjt = (_l)zt=0 Tt (1)

Where z; and j; denote the the values of the t*" bit of the

binary decomposition of z and j.
The projection of a function f on this basis is:

2l—1 2l—1

Fa) = 3 wit(e) with w; = o0 3 f@) ()

=0

1Only in an optimization perspective. Recast in a more general
context, the success of a GA may not only be related to its ability to
find a global optimum at each trial, but rather to rapidly find good
solutions.

The coefficients w; are called Walsh coefficients and are
strongly related to schemata. Roughly, a given w; is re-
lated to schemata having fixed bits at the position where j
has ’1’ in its binary decomposition. Consequently, the ad-
Justed Walsh coefficients (“adjusted” according to genetic
operators) may be calculated :

4(5) :
wj = wj(1 Py~ 2pmO(7)) (2)
Where O(j) denotes the number of '1’ in the binary de-
composition and 0(j) the distance between the first and

the last '1’.
2l—1

> whie(x)
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f'(z) = (3)

Defining the two following sets (near optimal sets of f
and f') for a given €:

Ne={z €027/ |f(z) - f'| < e}
and
_ [ —wo
o= wo
the definition of static deception follows([9]):

Definition 2: A function-coding combination is stati-
cally deceptive at the level € when N, — N/ # 0.

Ni={z €[0.27/ |f'(z) - f*| < ¢ €}

C. Deception analysis on Hoélder functions.

The work presented in [18] aims to characterize the de-
ception of a given function f, considered as the binary en-
coding of the sampling of a Holder function on the interval
[0,1]:

Definition 3 (Hdlder function of exponent h [7])

Let (X,dx) and (Y,dy) be two metric spaces. A function
F : X — Y is called Hélder function of exponent h > 0, if
for each z,y € X such that dx(x,y) < 1, we have:

dy (F(z),F(y)) < k.dx (z,y)" (4)

for some k > 0.

Although a Hélder function is always continuous, it needs
not to be differentiable, and if it is Holder with exponent h,
it is Holder with exponent b’ for all A’ €]0, h]. Intuitively,
we may characterize a Holder function of low exponent h
as more “irregular” than a Hoélder function of higher h.

It is possible to consequently establish a relation between
h and |f — f’|. To reach this point the following basis is

used :
Definition 4 (Haar polynomials) They form an orthogo-

nal basis of the set of functions defined on Q':
{ 1 for (2m)2!=9=1 <z < (2m + 1)2!-9-1
Hoaym(z) = ¢ —1 for (2m+1)217971 <z < (2m 4 2)2!—9!
0 otherwise in {0,...,2! — 1}
(5)
With ¢ € [0..(l = 1)], m € [0..(22 = 1)] and j =27+ m €
[0..(2" — 1)]. The projection of f on this basis is:

2l—1 2l—1

f@) = 3 hiHy(a) and by = 5 Y J@)H @) (©)



As the Haar coefficients may be bounded :
k
Vi=2"4+m, |h]< 52*“‘1*” (7)

the authors of [18] have proved the following theorem :
Theorem 2: Let f be the sampling on [ bits of a Holder
function of exponent h and constant k, defined on [0, 1],

and let f’ be defined as in (3). Then:
vz €{0,...,2' =1} |f(z) — f'(z)| < k * B(pm, e, 1, h)
with

2fl(h+l) _1

Pc —h
2 2—(h+1)
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We can see that if B grows, f has more and more chances
to be deceptive. Without going into details, B is a function
of 4 real parameters having the following behavior :

o B decreases with h.

e B increases with p,,, pec.

¢ B increases with [, when 1 is small, reaches a maximum

for a given value l,,,., and decreases for I > l,,,4.

III. A BITWISE REGULARITY CHARACTERIZATION.

The previous analysis is based on an irregularity charac-
terization with respect to an underlying distance that is the
Euclidian distance on [0,1]. This approach is straightfor-
ward for fitness functions defined on IR, and in the general
case it is always possible to consider the fitness function
as the sampling of an underlying one-dimensional Hoélder
function. It is however less evident in this latter case that
the Holder exponent reflects in a simple way the irregulari-
ty of the fitness function (it may appear for example more
irregular than it is in a multidimensional space). This is
the reason why we present in this paper a similar irregula-
rity analysis but with respect to the Hamming distance on
the set of binary strings. Another justification is also that
the use of Hamming distance is more closely related to the
action of genetic operators.

A. Bitwise reqularity coefficients.

Consequently to preceding considerations, we introduce
the following coefficients, that are derived from Holder
grained exponents with respect to a distance proportional
to the Hamming distance (see [17] for a more detailed jus-
tification) :

Definition 5 (Bitwise regularity coefficients) Let f be a
function defined on Q' :

Vg e{0,...,1 =1}, Cy = sup {|f(z) = f(z_4_1)[}

zeQ!

with a:;qu1 and z differing only with respect to one bit at
the position (I —q —1).2

2The less significant bit being at position 0.

In other terms, the C, coefficient represents the max-
imum fitness variation due to a bit flip at the position
(I — ¢ —1). Therefore, we can show that :

) C

In the same way as in [18], with the help of the Haar basis
the following theorem has been established (see [17] for a
demonstration) :

Theorem 3: Let f be a function defined on Q' with bit-
wise regularity coefficients (Cy)4eqo,...,1—13, and let f’ be
defined as in (3). Then Vz € Q!:

-1
Pe 1+2(g—1)

7t O < 24 >

q=0

-1

+pm*20q*(q+1)
q=0

Furthermore, this result still holds when the order of the
C, is reversed, so the final bound is the one minimizing the
preceding expression.

We also have to note that the bits do not have the same
role in this bound expression. In fact their relative weight
is strictly increasing with respect to the index . Sort-
ing (either in increasing or decreasing order) would then
minimize this bound suggesting that the simple change of
coding consisting in a permutation on the bits would make
the function easier. This feature can be explained by the
fact that the one point crossover disrupts more easily a
combination of a few genes spread at each extremities of
the chromosome than if these genes were grouped at one
extremity. Reordering the bits in order to sort the bitwise
regularity coefficients is then equivalent to group the most
“sensible” genes at one extremity of the chromosome. Some
experiments presented in [17] partially support this hypoth-
esis, but also reveal that other phenomenons (as epistasis
for example [5]) have to be taken into account in order to
predict the sensibility of GA to such encoding changes.

[f(z) = f(=)] <

B. Bitwise regularity coefficients compared to Holder expo-
nent.

If we suppose that the fitness function f is the sampling
on [ bits of a Holder function of exponent h and constant
k, defined on [0, 1], the bound of theorem 3 is lower than
the bound of theorem 2.

One can easily show, (see [17]), that:

Cy < k= o~ (g+1)h (8)
as we have:
k
|h]| S % and |h]| S 5 * 2*(q+1)h

and as the bound on |f — f’| is a linear function of the
bounds on the |h;|, it follows immediately that the bound
of theorem 3 is the lowest. Moreover, the estimation of the
bitwise regularity coefficients is computationnaly cheaper
than the estimation of the Holder exponent and its asso-
ciated constant k.



IV. DECEPTION ANALYSIS OF A GA WITH UNIFORM
CROSSOVER.

As we have seen, the bound on | f — f’| derived from the
bitwise regularity coefficients C;; depends on their relative
order, due to the use of the one point crossover. The aim
of this section is to establish analogous results for the uni-
form crossover ([21], for which the positional bias no longer
exists).

First, we establish the expression the Walsh adjusted co-
efficients of a GA with uniform crossover. The only change
is to replace the schema disruption probability py for this
version of crossover:

pi < (1 - (;)O(HH> Q

This upper bound is obtained by observing that once the

first fixed bit of the schema is allocated to one of the off-

springs, it will always survive if all other fixed bits are allo-

cated to the same offspring. As for the one point crossover
o(h)

pq is conservatively set to (l—_1>’ if we set pg to the upper

bound (9), then the new adjusted Walsh coefficients are:

NG
w) =w; [1—pe|1— (§> - 2pn0(4)

Notice that O(j) no longer depends on the defining length
of the schema. Furthermore as the order of a schema is
invariant with respect to a permutation on the bits, the
following theorem has been proven (see [17] for a demon-
stration) :

Theorem 4: Let f be a function defined on Q! with bit-
wise regularity coefficients (Cy)4eqo,...,1—1}, and let f’ be
defined as in (3). Then for all permutation o defined on
the set {0,...,1 — 1}, Vo € Q':

-1 -1

1f(@) = /(@) S pex D Comigy+Pm* Y Comi(qy*(g+1)

q=0
(10)
We immediately see that this upper bound is minimal when
the C;-1(,) are ordered in decreasing order.

Practically, if it is possible to get the C; values (or good
estimations), it is hard to draw conclusions from the value
of the bound (10). But if we consider the effect of an en-
coding change on it, it is interesting to see if its variation is
experimentally correlated to the performances of the GA.
Intuitively, the hypothesis is formulated as follows: if an
encoding change (such as a Gray code) induces a decrease
of the bound (10), the GA should perform better with this
new encoding, and conversely. We present experiments
with the Gray code in the next section.

q=0

V. EXPERIMENTS.

All the experiments presented here are based on a simple
GA with uniform crossover. Several functions were tested
with different encodings. The specified parameters are:

e [: number of bits per chromosome.

Il | N |Gen| Runs| P, | pm

30 | 128 | 100 100 | 1.0 | 0.005
Fct. & Code | Bound | Avg. | Mazx | Ratio
F1 & Codel 131 75.59 | 78.64 | 0.04
F1 & Code2 | 210.3 | 74.01 | 78.62 0
F1 & Code3 | 235.2 | 73.42 | 78.47 0
F1 & Code4 | 313.6 | 70.58 | 78.11 0

TABLE I

PARAMETERS AND PERFORMANCES FOR F1.

e N : population size.

e Gen: number of generations for a run.

¢ Runs: number of runs.

e pc: (uniform) crossover probability.

o Py : mutation probability.

For each function-encoding combination and for each
generation, the average of the population mean fitness
value, the average of the best individual fitness value, and
the ratio of populations containing a global optima are
recorded. These performances at the last generation are
dispalyed in tables I to VII.

The tested encoding change is the Gray code, that is:

K:Q' -0 | K(z)=g with

_ ) ra— if i=(1-1)
= @y XORm) if (1-1)<i<0
A. Function f1.

This function is one of the De Jong Five-Functions Test
Bed [15], turned into a maximization problem: F1(X) =
(maz(fi) = f1(X)), with:

3 2
=Y (XW) with —5.12< X® < 5.12
i=1
This function is 3-dimensional and each component is de-
fined on 10 bits. Four different mappings from Q'° to
[-5.12,5.12] have been experimented. Let  be any of the
X coded on 10 bits, bebs . ..b1bo :
e Codel: a classical signed integer binary encoding,
mapped to [—5.12,5.12]: z = -1 (—1)" « Ej‘:o 27 % b,
e Code2: an unsigned binary integer encoding, mapped
to [-5.12,5.12]: 7 = L (E?:o 27 4 b — 512)

e Code3: same as Codel but with Gray encoding for

bgbr ... b1bg.

e Coded: same as Code2 but with Gray encoding for

bgbg . blbo.

In table I, we see that the bound is increasing with each
new encoding, and that the performances of the GA de-
crease as predicted, though it is measured only with Avg.
and Max. The runs that found the global optimum were
very rare, since a lot of solutions have a fitness value very
close to the optimum (due the absence of scaling, the GA
is unable to distinguish them).



Il | N |Gen| Runs| P, | pm

24 | 512 | 50 100 | 1.0 | 0.005
Fct. & Code | Bound | Avg. | Max | Ratio
F2 & Codel | 13350 | 3880 | 3910 | 0.17
F2 & Code2 | 15610 | 3829 | 3910 0.1
F2 & Code3 | 16570 | 3832 | 3910 | 0.19
F2 & Code4 | 19070 | 3741 | 3910 | 0.28

TABLE II

PARAMETERS AND PERFORMANCES FOR F2.

Il | N |Gen | Runs| P. | pm
16 | 200 | 40 100 | 1.0 | 0.005
Fect. & Code | Bound | Avg. | Maz | Ratio
M2 & Codel | 4.86 | 0.9542 1 1
M2 & Code2 5.76 0.9056 | 0.952 | 0.42
TABLE IIT

PARAMETERS AND PERFORMANCES FOR M2.

B. Function fs.

This function is also one of the De Jong Five-Functions
Test Bed, turned into a maximization problem: F2(X) =

(maz(f2) — f2(X)), with:
f2(X) =100 (X1)? = XP)? 4 (1 — x (1))

with X (V) € [-2.048,2.048].

It is a function of a 2-dimensional parameter whose com-
ponents are coded on 12 bits. The same 4 encodings as for
F1 are tested.

Once again, a lot of points have fitness values very close
to the optimum, so the ratio of populations containing it
is more or less random (see table II). In fact, it would
require far more than 4 digits to distinguish the Max per-
formances.

The Avg performances follow, in order, the predictions
of the bound, except for the comparison between Code2
and Code3, for which the bound increase is the lowest and
the performances are roughly identical.

C. Function M2.
This is a sampling of a 1-dimensional function from [12]:

z—

Vo e 0,1, M2(z) = e 2"DC5#) 5inb (572)

Two encodings are tested :
e Codel: a classical unsigned integer encoding mapped
to [0,1]
e Code2: Gray version of Codel.
Here the Gray encoding induces an increase of the bound
and a decrease of the performances as predicted (see ta-

ble I1T).

Il | N |Gen| Runs| P, | pm
18 | 512 | 300 100 | 1.0 | 0.005
Fect. & Code | Bound | Avg. | Max | Ratio
M7 & Codel 18.9 1.605 | 1.972 0
M7 & Code2 | 13.8 | 2.164 | 2.458 | 0.16
TABLE TV

PARAMETERS AND PERFORMANCES FOR M7.

Il | N |Gen| Runs| P, | pm
24 | 512 | 100 100 | 1.0 | 0.005
Fct. & Code | Bound | Avg. | Max | Ratio
M7 & Codel | 43.8 | 21.35 24 1
M7 & Code2 57.1 20.64 24 1
TABLE V

PARAMETERS AND PERFORMANCES FOR EPIG.

D. Function M7.

This function extracted from [4], is massively multimodal
and deceptive. It is composed of sub-functions defined on
6 bits, which reach their maximum value for two mirror
strings. Here we used 3 of them (I = 18).

Two encodings are tested :

e Codel: the classical encoding.

e Code2: Gray version of Codel.

Here the Gray encoding induces a decrease of the bound
and an increase of the performances, as predicted (see ta-

ble IV).

E. Function EPI6.

This function is the concatenation of 6 epistatic sub-
functions EPI defined on 4 bits:

2 (1=0b;) if bs=0
EPI(bsbabibo) = { 1Z+ %:(?0 b; )if by = 1
Two encodings are tested :
e Codel: the classical encoding.
e Code2: Gray version of Codel.
Here the Gray encoding induces an increase of the bound
and a decrease of the performances, as predicted (see V).

F. Function W1.8.

This fitness function is a sampling of a Weierstrass func-
tion ([7]) of dimension 1.8 (i.e. the Holder exponent is 0.2).
The encodings are the same as for M2.

Here the increase of the bound is relatively small and
only the Ratio performance decreases as predicted (see ta-

ble VI).



Il | N |Gen| Runs| P, | pm
16 | 512 | 100 100 | 1.0 | 0.005
Fct. & Code | Bound | Avg. | Maz | Ratio
W1.8 & Codel 21.6 2.29 2.699 | 0.95
W1.8 & Code2 | 22.65 | 2.347 | 2.701 | 0.74
TABLE VI
PARAMETERS AND PERFORMANCES FOR W1.8.
Il | N|Gen | Runs | P. | pm
12 |64 | 50 500 | 1.0 ] 0.005
Fet. & Code Bound | Avg. | Maz | Ratio
FBM1.5 & Codel | 4.658 | 1.009 | 1.087 | 0.344
FBM1.5 & Code2 | 4.609 | 1.006 | 1.088 | 0.36
TABLE VII

PARAMETERS AND PERFORMANCES FOR FBM1.5.

G. Function FBM1.5.

This fitness function is a sampling of Fractional Brow-
nian Motion ([7]) of dimension 1.5 (Ho6lder exponent 0.5).
The encodings are the same as for M2.

The decrease of the bound is very small, compared to
previous tests, and except for the Avg., the performances
slightly increase as predicted (see table VII).

VI. CONCLUSIONS.

The previous tests show that the bound calculated from
the bitwise regularity coefficients is a quite reliable tool to
compare encodings as long as its variations are significant
enough: when the bound variations are high, the GA be-
haves according to the predictions, when they are low (as
for C'ode2 and Code3 of functions F'2, for functions W1.8
and FBM1.5) the GA behavior is less predictable.

These limitations can be explained in many ways. The
one that seems to us the most appropriate is of the same
nature as the Static Building Blocks Hypothesis, pointed
out in [13]. If we consider cautiously the calculation of
f', which is the basis of the static deceptivity analysis, we
note that it is assumed that each allele is equally repre-
sented at each position. This point of view, even if not
largely exposed here (see [17] for details), should be con-
sidered with care in order to continue the work presented
here and suggests that a dynamical modelization of the
GA behavior would be more appropriate. The nonuniform
Walsh-schema transform [2] could be the basis of such an
improvement.
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