
1Bitwise Regularity and GA-Hardness.Benô�t Leblanc, Evelyne Lutton.INRIA - Rocquencourt, B.P. 105, F-78153 LE CHESNAY Cedex, FranceTel: +33 (0)1 39 63 55 23 - Fax: +33 (0)1 39 63 59 95e-mail: Benoit.Leblanc@inria.fr, Evelyne.Lutton@inria.frhttp://www-rocq.inria.fr/fractales/Abstract|We present in this paper a theoretical analysisthat relates an irregularity measure of a �tness function tothe so-called GA-deception. This approach is a continua-tion of a work [18] that has presented a deception analysisof H�older functions. The analysis developed here is a gene-ralization of this work in two ways : we �rst use a \bitwiseregularity" instead of a H�older exponent as a basis for ourdeception analysis, second, we perform a similar deceptionanalysis of a GA with uniform crossover. We �nally pro-pose to use the bitwise regularity coe�cients in order toanalyze the inuence of a chromosome encoding on the GAe�ciency, and we present experiments with Gray encoding.Keywords|Genetic Algorithms, optimization, bitwise re-gularity, deception analysis, fractals, H�older functions.I. Introduction.Theoretical investigations on GA and EA in general con-cern mainly convergence analysis (and convergence speedanalysis on a locally convex optimum for EA), inuence ofthe parameters, and GA-hardness analysis. For GA, ourmain concern here, these analyses are based on di�erentapproaches :� Proofs of convergence based on Markov chain modeling[6], [3], [1], [20].� Deceptive functions analysis, based on Schema ana-lysis and Holland's original theory [14], [8], [9], [11],which characterizes the e�ciency of a GA, and allowsto shed light on \GA-hard" functions.� Some rather new approaches are based on an explicitmodelization of a GA as a dynamical system [16], [22].Deception has been intuitively related to the biologicalnotion of epistasis [5], which can be understood as a sortof \non-linearity" degree. It can also be related, to the socalled \�tness landscape" analyses (see for example [19]).In any ways, it basically depends on :� the parameter setting of the GA,� the shape of the function to be optimized,� the chromosome encoding , i.e. the "way" of scanningthe search space.In a previous work [18] it has been proven that sometools, that have been developed in the framework of fractaltheory, can be used in order to re�ne a deception analysisof Genetic Algorithms. This work has mainly related anirregularity measure (H�older exponent) of the function tobe optimized to its deceptiveness. We �rst recall in sectionII these results, that allow to model the inuence of some

of the GA parameters. The main hypothesis of this pre-vious analysis is that the �tness function can be consideredas the sampling of an underlying continuous H�older func-tion. In section III we will then present a generalization ofthis work that considers another regularity measure of the�tness function, the bitwise regularity, and which does notsupport the H�older hypothesis anymore.The GA modeled in this framework is the so-calledcanonical GA, i.e. with proportional selection (roulettewheel selection), one point crossover and mutation, at �xedrates pc and pm all along the GA run. In section IV wethen present a similar theoretical analysis for a canonicalGA with uniform crossover, which is an operator that islargely used in real world applications.Besides the intuitive fact that it relates the irregularityof the �tness function to its \di�culty", one importantapplication of this theoretical analysis is that it provides amean to \measure" (of course to a certain extent, due tothe intrinsic limitations of deception theory) the inuenceof the chromosome encoding. We present in section V someexperimentations with the Gray encoding that prove theinterest of such an approach.II. Background and previous work.In this section we quickly remind the de�nitions ofschemata, deception and H�older exponents.A. Schemata.Schemata has been widely studied in the �eld of GA,and are the basis of the deception analysis. A schema cor-responds to a subset of the space 
l = f0; 1gl (the space ofbinary strings of length l for a GA using binary encoding),or more precisely a hyper-plan of 
l. An additional symbol'*', representing a wildcard ('0' or '1') is used to representa schema. For example, if l = 4, the strings i1 = 0101 andi2 = 1101 are the two elements of the schema H = �101.The order of a schema, O(H), is de�ned as the number of�xed positions in H , and the de�ning length, �(H), as thedistance between the �rst and the last �xed positions of H .A fundamental theorem about schemata is the following :Theorem 1 (Schema theorem, Holland ([14]))For a given schema H let :� m(H,t) be the expected number of representatives ofthe schema H in the population P (t) (t indexes thenumber of the generation) : m(H; t) = jH \ P (t)j.



2� ~f(H; t) be the mean �tness value of the representativesof H in the population P (t) :~f(H; t) = 1jH \ P (t)j Xi2H\P (t) f(i)� �f(t) be the mean �tness value of the individuals ofP (t) : �f(t) = 1jP (t)j Xi2P (t) f(i)� pc and pm be respectively the (one point) crossoverand mutation probabilities.Then :m(H; t+1) � m(H; t)� ~f(H; t)�f(t) ��1� pc �(H)l � 1 �O(H)pm�B. Deception analysis.A famous consequence of the schema theorem is that theschemata having a short de�ning length, a small order anda mean �tness better than the population mean �tness willbe more and more represented in the successive genera-tions (such schemata are called building blocks, [10]). Thisremark leads to the conclusion that if the global optimumof the �tness function f is the intersection of such goodbuilding blocks, a GA will easily �nd it. On the contrary,if the intersection of these buildings blocks is a secondaryoptimum, the population will preferably converge onto it,missing the global one. In this situation the GA will beconsidered to have failed1 and f will be called deceptive.More formally, Goldberg ([8], [9]) de�ned static decep-tion : the selection results in an expected greater mean�tness for the set of individuals selected for reproduction,than for the preceding population. But this mean valuewill be changed by the application of genetic operators. Itfollows that the GA is attracted toward the optima of afunction f 0, de�ned for each point of 
l as its expected �t-ness value after the application of crossover and mutation.The function f will be called deceptive for a GA with agiven parameter setting, if the global optima of f 0 and fdi�er. This function may be calculated with the help ofthe Walsh basis :De�nition 1 (Walsh polynomials) They form an orthog-onal basis of the set of functions de�ned on 
l : j(x) = l�1Yt=0(�1)xtjt = (�1)Pl�1t=0 xtjt (1)Where xt and jt denote the the values of the tth bit of thebinary decomposition of x and j.The projection of a function f on this basis is :f(x) = 2l�1Xj=0 wj j(x) with wj = 12l 2l�1Xx=0 f(x) j(x)1Only in an optimization perspective. Recast in a more generalcontext, the success of a GA may not only be related to its ability to�nd a global optimum at each trial, but rather to rapidly �nd goodsolutions.

The coe�cients wj are called Walsh coe�cients and arestrongly related to schemata. Roughly, a given wj is re-lated to schemata having �xed bits at the position where jhas '1' in its binary decomposition. Consequently, the ad-justed Walsh coe�cients (\adjusted" according to geneticoperators) may be calculated :w0j = wj(1� pc �(j)l � 1 � 2pmO(j)) (2)Where O(j) denotes the number of '1' in the binary de-composition and �(j) the distance between the �rst andthe last '1'. f 0(x) = 2l�1Xj=0 w0j j(x) (3)De�ning the two following sets (near optimal sets of fand f 0) for a given � :N� = fx 2 [0::2l] = jf(x)� f�j � �gandN 0� = fx 2 [0::2l] = jf 0(x) � f 0�j � �0 = f 0� � w0f� � w0 �gthe de�nition of static deception follows([9]) :De�nition 2: A function-coding combination is stati-cally deceptive at the level � when N� �N 0� 6= 0.C. Deception analysis on H�older functions.The work presented in [18] aims to characterize the de-ception of a given function f , considered as the binary en-coding of the sampling of a H�older function on the interval[0; 1] :De�nition 3 (H�older function of exponent h [7])Let (X; dX) and (Y; dY ) be two metric spaces. A functionF : X ! Y is called H�older function of exponent h > 0, iffor each x; y 2 X such that dX (x; y) < 1, we have :dY (F (x); F (y)) � k:dX(x; y)h (4)for some k > 0.Although a H�older function is always continuous, it needsnot to be di�erentiable, and if it is H�older with exponent h,it is H�older with exponent h0 for all h0 2]0; h]. Intuitively,we may characterize a H�older function of low exponent has more \irregular" than a H�older function of higher h.It is possible to consequently establish a relation betweenh and jf � f 0j. To reach this point the following basis isused :De�nition 4 (Haar polynomials) They form an orthogo-nal basis of the set of functions de�ned on 
l :H2q+m(x) =( 1 for (2m)2l�q�1 � x < (2m + 1)2l�q�1�1 for (2m + 1)2l�q�1 � x < (2m + 2)2l�q�10 otherwise in f0; : : : ; 2l � 1g (5)With q 2 [0::(l � 1)], m 2 [0::(2q � 1)] and j = 2q +m 2[0::(2l � 1)]. The projection of f on this basis is :f(x) = 2l�1Xj=0 hjHj(x) and hj = 12l�q 2l�1Xx=0 f(x)Hj(x) (6)



3As the Haar coe�cients may be bounded :8j = 2q +m; jhj j � k22�h(q+1) (7)the authors of [18] have proved the following theorem :Theorem 2: Let f be the sampling on l bits of a H�olderfunction of exponent h and constant k, de�ned on [0; 1],and let f 0 be de�ned as in (3). Then :8x 2 f0; : : : ; 2l � 1g jf(x)� f 0(x)j � k �B(pm; pc; l; h)withB(pm; pc; l; h) = pcl� 12�h �2�l(h+1) � 12�(h+1)+ (1 � 2l�h)(2�hl � 1)� l2�hl(1 � 2�h)(2�h � 1)2 �+pm 2�h(2�h � 1)2 �1 + 2�hl(l2�h � l � 1)�We can see that if B grows, f has more and more chancesto be deceptive. Without going into details, B is a functionof 4 real parameters having the following behavior :� B decreases with h.� B increases with pm, pc.� B increases with l, when l is small, reaches a maximumfor a given value lmax, and decreases for l > lmax.III. A bitwise regularity characterization.The previous analysis is based on an irregularity charac-terization with respect to an underlying distance that is theEuclidian distance on [0; 1]. This approach is straightfor-ward for �tness functions de�ned on IR, and in the generalcase it is always possible to consider the �tness functionas the sampling of an underlying one-dimensional H�olderfunction. It is however less evident in this latter case thatthe H�older exponent reects in a simple way the irregulari-ty of the �tness function (it may appear for example moreirregular than it is in a multidimensional space). This isthe reason why we present in this paper a similar irregula-rity analysis but with respect to the Hamming distance onthe set of binary strings. Another justi�cation is also thatthe use of Hamming distance is more closely related to theaction of genetic operators.A. Bitwise regularity coe�cients.Consequently to preceding considerations, we introducethe following coe�cients, that are derived from H�oldergrained exponents with respect to a distance proportionalto the Hamming distance (see [17] for a more detailed jus-ti�cation) :De�nition 5 (Bitwise regularity coe�cients) Let f be afunction de�ned on 
l :8q 2 f0; : : : ; l � 1g; Cq = supx2
lfjf(x)� f(x0l�q�1)jgwith x0l�q�1 and x di�ering only with respect to one bit atthe position (l � q � 1).22The less signi�cant bit being at position 0.

In other terms, the Cq coe�cient represents the max-imum �tness variation due to a bit ip at the position(l � q � 1). Therefore, we can show that :8j = 2q +m; jhj j � Cq2In the same way as in [18], with the help of the Haar basisthe following theorem has been established (see [17] for ademonstration) :Theorem 3: Let f be a function de�ned on 
l with bit-wise regularity coe�cients (Cq)q2f0;:::;l�1g, and let f 0 bede�ned as in (3). Then 8x 2 
l :jf(x)� f 0(x)j � pcl � 1 � l�1Xq=0Cq ��1 + 2q(q � 1)2q �+pm � l�1Xq=0Cq � (q + 1)Furthermore, this result still holds when the order of theCq is reversed, so the �nal bound is the one minimizing thepreceding expression.We also have to note that the bits do not have the samerole in this bound expression. In fact their relative weightis strictly increasing with respect to the index q. Sort-ing (either in increasing or decreasing order) would thenminimize this bound suggesting that the simple change ofcoding consisting in a permutation on the bits would makethe function easier. This feature can be explained by thefact that the one point crossover disrupts more easily acombination of a few genes spread at each extremities ofthe chromosome than if these genes were grouped at oneextremity. Reordering the bits in order to sort the bitwiseregularity coe�cients is then equivalent to group the most\sensible" genes at one extremity of the chromosome. Someexperiments presented in [17] partially support this hypoth-esis, but also reveal that other phenomenons (as epistasisfor example [5]) have to be taken into account in order topredict the sensibility of GA to such encoding changes.B. Bitwise regularity coe�cients compared to H�older expo-nent.If we suppose that the �tness function f is the samplingon l bits of a H�older function of exponent h and constantk, de�ned on [0; 1], the bound of theorem 3 is lower thanthe bound of theorem 2.One can easily show, (see [17]), that :Cq � k � 2�(q+1)h (8)as we have :jhj j � Cq2 and jhj j � k2 � 2�(q+1)hand as the bound on jf � f 0j is a linear function of thebounds on the jhj j, it follows immediately that the boundof theorem 3 is the lowest. Moreover, the estimation of thebitwise regularity coe�cients is computationnaly cheaperthan the estimation of the H�older exponent and its asso-ciated constant k.



4IV. Deception analysis of a GA with uniformcrossover.As we have seen, the bound on jf � f 0j derived from thebitwise regularity coe�cients Cq depends on their relativeorder, due to the use of the one point crossover. The aimof this section is to establish analogous results for the uni-form crossover ([21], for which the positional bias no longerexists).First, we establish the expression the Walsh adjusted co-e�cients of a GA with uniform crossover. The only changeis to replace the schema disruption probability pd for thisversion of crossover :pd �  1��12�O(H)�1! (9)This upper bound is obtained by observing that once the�rst �xed bit of the schema is allocated to one of the o�-springs, it will always survive if all other �xed bits are allo-cated to the same o�spring. As for the one point crossoverpd is conservatively set to � �(h)l�1 �, if we set pd to the upperbound (9), then the new adjusted Walsh coe�cients are :w0j = wj "1� pc 1��12�O(j)�1!� 2pmO(j)#Notice that O(j) no longer depends on the de�ning lengthof the schema. Furthermore as the order of a schema isinvariant with respect to a permutation on the bits, thefollowing theorem has been proven (see [17] for a demon-stration) :Theorem 4: Let f be a function de�ned on 
l with bit-wise regularity coe�cients (Cq)q2f0;:::;l�1g, and let f 0 bede�ned as in (3). Then for all permutation � de�ned onthe set f0; : : : ; l � 1g, 8x 2 
l :jf(x)� f 0(x)j � pc � l�1Xq=0C��1(q)+ pm � l�1Xq=0C��1(q) � (q+1)(10)We immediately see that this upper bound is minimal whenthe C��1(q) are ordered in decreasing order.Practically, if it is possible to get the Cq values (or goodestimations), it is hard to draw conclusions from the valueof the bound (10). But if we consider the e�ect of an en-coding change on it, it is interesting to see if its variation isexperimentally correlated to the performances of the GA.Intuitively, the hypothesis is formulated as follows : if anencoding change (such as a Gray code) induces a decreaseof the bound (10), the GA should perform better with thisnew encoding, and conversely. We present experimentswith the Gray code in the next section.V. Experiments.All the experiments presented here are based on a simpleGA with uniform crossover. Several functions were testedwith di�erent encodings. The speci�ed parameters are :� l : number of bits per chromosome.

l N Gen Runs Pc pm30 128 100 100 1:0 0:005Fct: & Code Bound Avg: Max RatioF1 & Code1 131 75:59 78:64 0:04F1 & Code2 210:3 74:01 78:62 0F1 & Code3 235:2 73:42 78:47 0F1 & Code4 313:6 70:58 78:11 0TABLE IParameters and performances for F1.� N : population size.� Gen : number of generations for a run.� Runs : number of runs.� pc : (uniform) crossover probability.� pm : mutation probability.For each function-encoding combination and for eachgeneration, the average of the population mean �tnessvalue, the average of the best individual �tness value, andthe ratio of populations containing a global optima arerecorded. These performances at the last generation aredispalyed in tables I to VII.The tested encoding change is the Gray code, that is :K : 
l ! 
l ; K(x) = g withgi = � x(l�1) if i = (l � 1)(x(i+1) XOR xi) if (l � 1) < i � 0A. Function f1.This function is one of the De Jong Five-Functions TestBed [15], turned into a maximization problem : F1(X) =(max(f1)� f1(X)), with :f1(X) = 3Xi=1 �X(i)�2 with � 5:12 � X(i) � 5:12This function is 3-dimensional and each component is de-�ned on 10 bits. Four di�erent mappings from 
10 to[�5:12; 5:12] have been experimented. Let x be any of theX(i), coded on 10 bits, b9b8 : : : b1b0 :� Code1 : a classical signed integer binary encoding,mapped to [�5:12; 5:12] : x = 1100 (�1)b9 �P8j=0 2j � bj� Code2 : an unsigned binary integer encoding, mappedto [�5:12; 5:12] : x = 1100 �P9j=0 2j � bj � 512�� Code3 : same as Code1 but with Gray encoding forb8b7 : : : b1b0.� Code4 : same as Code2 but with Gray encoding forb9b8 : : : b1b0.In table I, we see that the bound is increasing with eachnew encoding, and that the performances of the GA de-crease as predicted, though it is measured only with Avg:and Max. The runs that found the global optimum werevery rare, since a lot of solutions have a �tness value veryclose to the optimum (due the absence of scaling, the GAis unable to distinguish them).



5l N Gen Runs Pc pm24 512 50 100 1:0 0:005Fct: & Code Bound Avg: Max RatioF2 & Code1 13350 3880 3910 0:17F2 & Code2 15610 3829 3910 0:1F2 & Code3 16570 3832 3910 0:19F2 & Code4 19070 3741 3910 0:28TABLE IIParameters and performances for F2.l N Gen Runs Pc pm16 200 40 100 1:0 0:005Fct: & Code Bound Avg: Max RatioM2 & Code1 4:86 0:9542 1 1M2 & Code2 5:76 0:9056 0:952 0:42TABLE IIIParameters and performances for M2.B. Function f2.This function is also one of the De Jong Five-FunctionsTest Bed, turned into a maximization problem : F2(X) =(max(f2)� f2(X)), with :f2(X) = 100 � ((X(1))2 �X(2))2 + (1�X(1))2with X(i) 2 [�2:048; 2:048].It is a function of a 2-dimensional parameter whose com-ponents are coded on 12 bits. The same 4 encodings as forF1 are tested.Once again, a lot of points have �tness values very closeto the optimum, so the ratio of populations containing itis more or less random (see table II). In fact, it wouldrequire far more than 4 digits to distinguish the Max per-formances.The Avg performances follow, in order, the predictionsof the bound, except for the comparison between Code2and Code3, for which the bound increase is the lowest andthe performances are roughly identical.C. Function M2.This is a sampling of a 1-dimensional function from [12] :8x 2 [0; 1]; M2(x) = e�2(ln2)( x�0:10:8 )2sin6(5�x)Two encodings are tested :� Code1 : a classical unsigned integer encoding mappedto [0,1]� Code2 : Gray version of Code1.Here the Gray encoding induces an increase of the boundand a decrease of the performances as predicted (see ta-ble III).

l N Gen Runs Pc pm18 512 300 100 1:0 0:005Fct: & Code Bound Avg: Max RatioM7 & Code1 18:9 1:605 1:972 0M7 & Code2 13:8 2:164 2:458 0:16TABLE IVParameters and performances for M7.l N Gen Runs Pc pm24 512 100 100 1:0 0:005Fct: & Code Bound Avg: Max RatioM7 & Code1 43:8 21:35 24 1M7 & Code2 57:1 20:64 24 1TABLE VParameters and performances for EPI6.D. Function M7.This function extracted from [4], is massively multimodaland deceptive. It is composed of sub-functions de�ned on6 bits, which reach their maximum value for two mirrorstrings. Here we used 3 of them (l = 18).Two encodings are tested :� Code1 : the classical encoding.� Code2 : Gray version of Code1.Here the Gray encoding induces a decrease of the boundand an increase of the performances, as predicted (see ta-ble IV).E. Function EPI6.This function is the concatenation of 6 epistatic sub-functions EPI de�ned on 4 bits :EPI(b3b2b1b0) = � P2i=0(1� bi) if b3 = 01 +P2i=0 bi if b3 = 1Two encodings are tested :� Code1 : the classical encoding.� Code2 : Gray version of Code1.Here the Gray encoding induces an increase of the boundand a decrease of the performances, as predicted (see V).F. Function W1.8.This �tness function is a sampling of a Weierstrass func-tion ([7]) of dimension 1.8 (i.e. the H�older exponent is 0.2).The encodings are the same as for M2.Here the increase of the bound is relatively small andonly the Ratio performance decreases as predicted (see ta-ble VI).



6l N Gen Runs Pc pm16 512 100 100 1:0 0:005Fct: & Code Bound Avg: Max RatioW1:8 & Code1 21:6 2:29 2:699 0:95W1:8 & Code2 22:65 2:347 2:701 0:74TABLE VIParameters and performances for W1.8.l N Gen Runs Pc pm12 64 50 500 1:0 0:005Fct: & Code Bound Avg: Max RatioFBM1:5 & Code1 4:658 1:009 1:087 0:344FBM1:5 & Code2 4:609 1:006 1:088 0:36TABLE VIIParameters and performances for FBM1.5.G. Function FBM1.5.This �tness function is a sampling of Fractional Brow-nian Motion ([7]) of dimension 1.5 (H�older exponent 0.5).The encodings are the same as for M2.The decrease of the bound is very small, compared toprevious tests, and except for the Avg:, the performancesslightly increase as predicted (see table VII).VI. Conclusions.The previous tests show that the bound calculated fromthe bitwise regularity coe�cients is a quite reliable tool tocompare encodings as long as its variations are signi�cantenough : when the bound variations are high, the GA be-haves according to the predictions, when they are low (asfor Code2 and Code3 of functions F2, for functions W1.8and FBM1.5) the GA behavior is less predictable.These limitations can be explained in many ways. Theone that seems to us the most appropriate is of the samenature as the Static Building Blocks Hypothesis, pointedout in [13]. If we consider cautiously the calculation off 0, which is the basis of the static deceptivity analysis, wenote that it is assumed that each allele is equally repre-sented at each position. This point of view, even if notlargely exposed here (see [17] for details), should be con-sidered with care in order to continue the work presentedhere and suggests that a dynamical modelization of theGA behavior would be more appropriate. The nonuniformWalsh-schema transform [2] could be the basis of such animprovement. References[1] A. Agapie. Genetic algorithms : Minimal conditions for con-vergence. Arti�cial Evolution, Nimes, France, October 1997,.Springer Verlag, 1997.
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