
CATEGORY: Genetic ProgramingIndividual GP: an Alternative Viewpoint for the Resolution ofComplex Problems.Pierre COLLET �, Evelyne LUTTONy, Fr�ed�eric RAYNALz,INRIA - Rocquencourt, B.P. 105,78153 LE CHESNAY Cedex, France Marc SCHOENAUER xEAAX-CMAPx, Ecole Polytechnique,91128 Palaiseau Cedex, FranceAbstractAn unususal GP implementation is proposed,based on a more \economic" exploitationof the GP algorithm: the \individual" ap-proach, where each individual of the popula-tion embodies a single function rather thana set of functions. The �nal solution is thena set of individuals. Examples are presentedwhere results are obtained more rapidly thanwith the conventional approach, where all in-dividuals of the �nal generation but one arediscarded.1 IntroductionWe present a more \economic" approach of the res-olution of some complex problems such as the onesrelated to Iterated Function Systems: it is based onthe co-evolving capacities of populations in GA/GP.The solution to the problem is then represented bythe whole population (or a subset of the whole popu-lation) and not any more by a single individual (just as\classi�er systems" approaches, see [10], or as in [14]for Evolution Strategy). We have chosen to call thisapproach \individual." Although it is more complexto implement (mainly with respect to the �tness com-putations) it allows to build more e�cient algorithmsin some particular cases.We describe the general characteristics of such an ap-proach in section 2. We then present how it can beapplied in an e�cient way to problems related to the� Collet@cheverny.u-bourgogne.fry Evelyne.Lutton@inria.fr, +33 1 39 63 55 23z Frederic.Raynal@inria.frx Marc.Schoenauer@polytechnique.fr, +33 1 69 33 4619

study of some fractal objects (used for image compres-sion); 2D attractors of non-linear Iterated FunctionSystems (IFS). Theoretical background for IFS andPolar IFS is presented in section 3. Section 4 presentsan application to the random generation of 2D Polar-IFS attractors with a �xed surface. Section 5 describeshow individual GP has been used to solve the inverseproblem for Polar IFS.2 Individual GPThe standard approach, which uses evolutionary meth-ods as stochastic optimisers (where a set of individu-als in the search space evolves, via speci�c, classicalor genetic operators, so that the best individual of thepopulation converges towards the desired optimum)may sometimes seem wasteful: only the best individ-ual of the �nal population is kept, while the others arediscarded. The behaviour of GA however leads us tothink that an important part of the �nal populationbears signi�cant information on the structure of thesearch space. This observation has led to, and jus-ti�ed such techniques as sharing, or niching (see [10])that get more out of evolutionary algorithms than onlyguiding the best individual towards the global opti-mum.If the solution to the problem is represented by an im-portant set of individuals, or by the whole population1,the implementation of the algorithm is more delicate:� Not all optimisation problems can be formulatedas a union of sub-problems.� One must be able to correctly evaluate the con-tribution of each of the individuals to the globalsolution (one can quite often use a local evalua-1This approach is not new, and is usually referred to as\Michigan" type GA's



tion function for an individual along with a globalevaluation function for the whole population).� Finally, it seems indispensable to use a \sharing"method with a well chosen distance function toplace each individual with reference to the others.The evolution of the system can be seen as seekinga position of balance.3 Fractal shapes based on IteratedFunction Systems3.1 IFS TheoryAn IFS (Iterated Function System) 0 =fE; (wn)n=1;::;Ng is a collection of N functions de�nedon a complete metric space (E; d).Let W be the operator de�ned on the space of subsetsof E2: 8 K � E; W (K) = [n21;:::;N wn(K)Then, if the wn functions are contractive (the IFS isthen called a hyperbolic or contractive IFS), there ex-ists a unique set A such that: W (A) = A. A is calledthe attractor of the IFS.Recall:A mapping w : E ! E, from a metricspace (E; d) into itself, is called contractiveif there exists a positive real number s < 1such that:d�w(x); w(y)� � s � d(x; y) 8x; y 2 EThe uniqueness of a hyperbolic attractor is a resultof the Contractive Mapping Fixed Point Theorem forW , which is contractive according to the Hausdorffdistance:dH(A;B) = max�maxx2A�miny2B d(x; y)�;maxy2B �minx2A d(x; y)��From a computational viewpoint, an attractor can begenerated according to two techniques:� Stochastic method (toss-coin):Let x0 be the �xed point of one of the wi func-tions. We build the points sequence xn as fol-lows: xn+1 = wi(xn), i being randomly chosen inf1::Ng.2wn(K) represents the set fwn(x); x 2 Kg

Then Sn xn is an approximation of the real at-tractor of 0. The larger n, the more precise theapproximation.� Deterministic method:From any initial set S0, we build the sets sequencefSng: Sn+1 =W (Sn) = Sn wn(Sn)When n tends towards1, Sn is an approximationof the real attractor of 0.3.2 Polar IFSProblems associated to a�ne IFS, i.e.: when the wi area�ne 1D or 2D functions, have been extensively stud-ied, mainly because fractal compression techniquesrely on a�ne IFS modelling. A major challenge is totackle the inverse problem for non-a�ne IFS. Previouswork on this subject have raised the idea to use GPfor the resolution of such problems, [15], [5].The main problem which arises when manipulatingnon-linear IFS (mixed IFS, [15], for instance) is themanagement of the contractance constraint. This isquite tricky when one tries to solve the associated in-verse problem using stochastic methods.Let us use a subset of non-linear functions, wi, conc-tracting with respect to a point Pi:8M 2 E = [0; 1]2 jj������!Piwi(M) jj < jj���!PiM jj (1)which can be transcribed in polar coordinates centredon Pi as:������!Piwi(M) = 0@ �th(k � F (�; �)) + 12G(�; �) 1A (2)F (�; �) and G(�; �) are random non-linear functionswhich can be represented with a tree (as for mixed-IFS functions).The form � th(k�F (�;�))+12 insures that the relation (1)is veri�ed, because the factor th(k�F (�;�))+12 is always< 1. The form of this factor has been chosen in orderto make a rather smooth bijective mapping of IR onto(0; 1), see �gure 1. k is �xed to 10�7 for the samereasons.The �xed points Pi of these wi functions are:8M 2 E limn!1wni (M) = Pi
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xFigure 1: The y = th(kx)+12 curve with k = 10�7

Figure 2: Examples of Polar IFS attractorsHowever, these functions are not systematically con-tractant, see [5] for details.The restriction to functions verifying (2) does not un-fortunately prevent us from checking whether the func-tions are contractant or not. This restriction is how-ever very interesting, because functions constructedthis way are quite often contractant and have a knownunique �xed point. What is more, this set of func-tions is general enough to produce a wide variety ofshapes through their attractor, see �gure 2. They arequite easy to use in such applications as the solvingof the inverse problem or the interactive generation ofattractors.4 Random generation of Polar IFSattractors with a prescribed surfaceA �rst problem that can be solved using GP is the ran-dom generation of non-linear IFS attractors. Due tothe contractance constraints, the space of possible setsof wi functions which admit an attractor is very sparse.If one wants to �nd IFS attractors that have com-pact, \nice," or �xed criteria, the problem becomesextremely di�cult. Solutions have been proposed in[18] in an interactive manner for the \artistic" genera-tion of attractors, similar to Karl Sims techniques [19].

This approach is based on a conventional exploitationof GP: a whole IFS (i.e.: a set of wi functions) is rep-resented as an individual of a population.If an individual of the population encodes a single wifunction, the IFS is represented by the whole popula-tion, or by a part of the population. We present belowhow this structure can be evolved to produce an IFShaving an attractor of arbitrary surface in the image.The advantage of using Polar IFS is twofold:1. each function converges towards a �xed point, andthe functions are rather frequently contractive,see [5] for experiments,2. access to the �xed point of the function is direct.This second point allows to consider in a di�erent waygenetic operators on �xed points and on tree structuresof an individual that represents a wi function. Geneticoperators are classical GP mutation and crossover forthe tree structured part of the wi. Fixed points aremutated according to a random shot in a disk of ra-dius � centered on it. Fixed points crossover is a classi-cal barycentric crossover whose parameter is randomlychosen in [�1; 2] for each o�spring (x0 = x+(1�)y).The main problem of \individual" approaches is thecareful design of the �tness function, and the use of asharing scheme, in order to disperse the individuals ofthe population.The �tness function can be made up of two main con-tributions: a local �tness which measures the intrinsiccharacteristic of the individual, and a global �tnessthat stems from the global performance of the popula-tion, redistributed on each individual, proportionallyto its \contribution."� Local Fitness: a combination of three terms ac-cording to:1. The �xed point position with respect to theimage (represented as 2, the [0; 1]2 square).A very simple property of attractors is thatthe �xed point of each wi belongs to the at-tractor of fwig. If we thus wish that the at-tractor of the fwig be inside the image, the�xed points have to be within 2.A �rst term is proportional to the inverse dis-tance between the �xed point xi of wi and 2:F1(wi) = 11 +D(xi;2)F1 is maximum and equals 1 when xi 2 2,and tends to zero when xi is far away from2.



Table 1: Parameters setting for the random generationof attractors, using GA-LibSIGMA 0.2Local �tness tuning � = 20Mutation probabilitiesconstant ! constant 0.15according to a Gaussianlaw of variance SIGMAvariable ! constant 0.02randomly chosen in [�1; 1]constant ! variable 0.06variable ! variable 0.08function ! function 0.08(same arity)�xed points: 0.03according to a uniformlaw in the circleof radius SIGMACrossover probabilityPCROSS 0.95for trees and �xed pointsSharing� (Goldberg [10]) 2*SIGMAPopulation replacement schemereplacement percentage 50%Overlaping populations2. The wi(2) position with respect to 2: Wecompute the image wi(2), in order to testif it is included in 2.Let #[X ] be the number of pixels (accordingto the considered image resolution) of the setX , then: F2(wi) = #[wi(2)T2]#[wi(2)]F2(wi) is maximum (and = 1) if wi(2) � 2.3. The size of wi(2) in 2:F3(wi) = #[wi(2)T2]#[2]We have chosen to favour wi's that generatelarge images.The local �tness for individual wi is:Floc(wi) = F1(wi) + F2(wi) + �F3(wi) (3)� tunes the relative importance of term F3 in com-parison to F1 and F2 (F1 and F2 tend easily toone, while F3 is more di�cult to increase).

� Contractivity constraints:The contractance test can be included in the com-putation of the image of wi(2). At the same time,the mean contraction factor ki can be estimated.If the function is not contractive, F2 is not com-puted and is directly �xed to zero, as well as Flocin order to discard this individual.� Global �tness:The N (to be determined with respect to the lo-cal �tness3) best individuals of the evolved pop-ulation represent a solution to our problem. Atoss-coin algorithm can thus be used in order tocompute the attractor 0 of these individuals, anda global �tness can be de�ned for a prescribedimage occupancy S 2 [0; 1] as:Fglob = 21 + 100(#[0]#[2] � S)2Fglob is a measurement of the distance between#[0]#[2] and S. The function has been chosen so thatFglob = 1 when #[0] = S � 10%.This global �tness can be distributed on the N wiwhich have been selected from the current pop-ulation (the global �tness of the individuals thathave not been selected is simply Floc), proportion-nally to their contribution to 0 i.e.: to F2(wi), orgrossly to ki (in fact related to ki = P kjN ):F (wi) = Floc(wi)�N kiP kj Fglob (4)Fglob is used as a multiplicative factor, thus im-proving (if � 1) or degrading the individuals' �t-ness with respect to their global performance.Fglob can also be used as a stopping criterion forthe GP: stop the algorithm when the target sur-face is approximated with a �xed threshold.A GP with sharing is used, the distance being simplythe euclidean distance between �xed points of the wifunctions.Results obtained with the parameter setting of table 1are presented in �gures 3 and 4.5 Resolution of the inverse problemfor Polar IFSThe inverse problem for 2D IFS can be stated as fol-lows:3In fact, we select all the contractive individuals of thepopulation with F3(wi) > 0:1



density 0.24 density 0.2 density 0.2210 generations 9 generations 20 generations6 functions 7 functions 10 functionsFigure 3: Three di�erent runs of the algorithm:128x128 random attractors generated for S = 0:2, witha population size of 20 individuals, the algorithm isstopped as soon as #[0]#[2] > S.for a given 2D shape (a binary image), �nd aset of contractive maps whose attractor pro-duces a similar shape, the similarity being de-termined by a pre-de�ned distance function.An interesting tool for the resolution of the inverseproblem is the so-called collage theorem [2]:Collage theorem: Let A be the attractor of the hy-perbolic IFS 0 = fE; (wn)n=1;::;Ng:8K � E; dH�K;W (K)� < " ) dH(K;A) < "1� �� being the smallest number such that:8n 2 f1; ::; Ng;8(x; y) 2 E2;d�wn(x); wn(y)� < � � d(x; y)This theorem means that the problem of �nding anIFS 0 whose attractor is close to a given shape A, isequivalent to the minimisation of the distance:dH�A; n[i=1wi(A)�under the constraint that the wi are contractive func-tions.We will see below that the \individual" approach al-lows to use information stemming from both collagetheorem and toss-coin algorithm, in order to solve theinverse problem e�ciently.In the same way as in section 4, each wi is mainlyevaluated as a function of the position of its �xed point(which is always de�ned and known, thanks to the useof polar IFS) and as a function of the coverage �wi(A)�of the target shape (A). A distance is de�ned on thesearch space (sharing method) to get the individualsto be as far as possible one of each other (linked to theeuclidian distance between the wi �xed points). The

density 0.41 density 0.41 density 0.4153 generations 54 generations 91 generations12 functions 10 functions 19 functionsFigure 4: Three di�erent runs of the algorithm:128x128 random attractors generated for S = 0:4, witha population size of 30 individuals, the algorithm isstopped as soon as #[0]#[2] > S.wi population then evolves so that the best individualsof the population get the best and most economicalcovering of the target image. A = [wi(A).� Constrained �xed points: The �xed points xiof individuals wi are randomly chosen among thecontour points of the target shape A in the initialgeneration4. Mutation and crossover are adaptedin order to insure that the xi always stay on thecontour of A.Mutation of and individual wi is for its �xed pointxi a uniform random shot among the contourpoints in a neighbourhood of �xed size, and arandom modi�cation of the tree structure for itsfunction tree.Crossover between individuals wi and wj does notmodify their �xed points, and is a classical GPcrossover (subtree exchange) between their treestructures.� Local �tness: a combination of two terms ac-cording to:1. The position of wi(A) with respect to A.As the wi �xed points are constrained to be-long to A. We can compute the image wi(A),in order to test the set wi(A) with respect toA.Let #[A] be the number of pixels of A, theterm F1(wi) is:F1(wi) = 11 +#[wi(A)nA]4This constraint is related to a conjecture by MichelDekking that there always exist solutions to the inverseproblem where �xed points are on the edges of the targetshape. This result has been proven in the case of a�ne IFSin [6].



Table 2: Fitness parameters for the inverse problem,using GA-LibLocal �tness tuning � = 0:4Mutation probabilitiesconstant ! constant 0.15according to a Gaussianlaw of variance SIGMAvariable ! constant 0.05randomly chosen in [�1; 1]constant ! variable 0.06variable ! variable 0.08function ! function 0.08(same arity)�xed points: 0.4, linearly decreasingwith generationuniform random choiceamong contour pixels in aneighborhood of radius4 pixelsCrossover probabilityPCROSS 1.for trees and �xed pointsSharing� (Goldberg [10]) 2*SIGMAPopulation replacement schemereplacement percentage 50%Overlaping populationsF1(wi) is maximum (and equals 1) if wi(A) �A.2. The coverage of A with wi(A).A term F2 has also to be de�ned, that cor-responds to the maximisation of the size ofwi(A)TA.F2(wi) = #[wi(A)TA]#[A]F2(wi) is maximum (and equals 1) if A �wi(A).The local �tness of the individual wi is a linearcombination of the previous terms.Floc(wi) = (1� �)F1(wi) + �F2(wi) (5)This �tness represents an interpretation of the\collage" property of an IFS, i.e.: one searches forthe set of best wi's such that A = Swi(A). Onealso understands the bene�t of a sharing schemein order to have an economic coverage of A withthe sets wi(A).� Contractivity constraints are considered as insection 4.

� Global �tness:The N (to be determined with respect to the local�tness5) best individuals of the evolved popula-tion are evaluated via a toss-coin algorithm. Theattractor 0 of these best individuals is computed,the global �tness then is:Fglob = 1#[0]�x20DIST (x) + #[0TA]#[A]DIST (x) is the pixel value of x in the distanceimage of target shape A6.Fglob is a measurement of the distance between 0and A. The �rst term of this sum represents themean distance of the set 0 to A (1 if 0 � A), thesecond term is 1 if A � 0.This global �tness is distributed on N best wi,proportionally to their contribution to the targetapproximation in an additive manner.F (wi) = Floc(wi) + kiFglobFglob can also be used to stop the algorithm, i.e.:when the target is approximated with a �xedthreshold.
Target approx. 85.54% approx. 85.06%22 generations 19 generations19 functions 20 functionsFigure 5: Two runs of the algorithm: 64x64 target,with a population size of 300 individuals, the algorithmis stopped as soon as #[0]#[A] > 85%.Results obtained with the parameter setting of table2, are presented in �gures 5 and 6.6 ConclusionThe aim of this paper was to show the interest of us-ing optimisation strategies for evolutionary algorithms5We select all the contractive individuals having a F1near 1, i.e.: whose �xed points are close to the target shapeA. This set is then �ltered by a simple clustering schemein order to select only the best individuals of each cluster.6A distance image is the transformation of a black &white image (the target shape A) into a grey-level one,where the level a�ected to each image point is a functionof its distance to the original shape A. It can be easilycomputed by a simple algorithm (see [4]).



Target approx. 60.46% approx. 60.13%256x256 target 128x128 target1000 indiv. 2000 indiv.38 generations 64 generations15 functions 27 functionsFigure 6: Two runs of the algorithm: Dolphin target,the algorithm is stopped as soon as #[0]#[A] > 60%.other than the usual direct implementation that identi-�es the �tness function to the function to be optimised.Of course an individual approach can only be used onspeci�c problems such as the ones we presented here.The careful design of �tness functions and balance be-tween local terms and global terms is crucial for thequality and e�ciency of the method.However, the examples we have exhibited in this pa-per show the bene�t of individual strategies: for theinverse problem a rough approximation of the shape isobtained very rapidly while �ne tuning are longer toobtain. In comparison to the \direct" implementation,one needs a reduced number of generations (and con-sequently a reduced number of �tness evaluations) toconverge to an acceptable result7. An interesting ex-periment in the case of the inverse problem (that mayalso prove that \individual" approaches have still to beconsidered as \regular" Evolutionary algorithms) is torun the GP algorithm without the global �tness term :results are almost similar, the inuence of the global�tness is small. The implementation of the individualapproach we describe here di�er thus from Credit As-sigment Problems [10], where no information is avail-able to measure the e�ciency of individuals, exceptthe one that comes from a global evaluation and thathas to be dispatched on individuals.We also show that Polar IFS is an interesting modelthat simpli�es the manipulation of non-linear IFS. Fu-ture work on this topic concern:7A precise comparison between these approaches is notstraightforward : due to the di�erence of individuals and�tness functions structures in each approach, a comparisonwith respect to the number of generations or �tness eval-uations is not convenient. A more precise analysis as wellas an hybrid implementation (where individual and globalGA collaborate) is a part of future works we intend to doon this topic
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