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IFS polaires et stratégie �individuelle� de programmationgénétique : une méthode e�cace de résolution duproblème inverse pour les IFSRésumé : Lorsque l'on s'intéresse aux IFS (systèmes de fonctions itérées) non a�nes,la résolution du problème inverse (c'est-à-dire trouver l'IFS dont l'attracteur approxime aumieux une forme bidimensionnelle donnée) devient un problème très complexe. Ce problèmea déjà été résolu avec succès à l'aide de stratégies de programmation génétique, fondéessur une représentation des fonctions sous forme d'arbres. La principale di�culté de cetteapproche étant la gestion e�cace des contraintes de contractance sur les fonctions, nousproposons ici l'emploi d'une représentation polaire des IFS non a�nes, centrée sur le point�xe de chaque fonction. Cette représentation a deux principaux avantages :1. une contrainte simple sur la dé�nition de la composante radiale de chaque fonctionassure sa convergence vers un point �xe (le point central de sa representation polaire),2. l'accès au point �xe de chaque fonction est direct (il n'est plus nécessaire de l'estimercomme dans l'approche en coordonnées cartésiennes).Nous présentons ensuite une stratégie originale de programmation génétique, fondée surune exploitation plus �économique� des stratégies évolutionnaires : l'approche �individuelle�,où chaque individu de la population représente une seule fonction (au lieu d'un IFS complet).La solution au problème étant fournie par un ensemble d'individus de la population �nale,des résultats sont obtenus de façon plus rapide et plus e�cace que dans la version classiqueoù tous les individus de la population �nale sauf un (le meilleur) sont écartés.Mots-clé : Algorithmes Génétiques, optimisation, systèmes des fonctions itérées, pro-blème inverse.



Polar IFS + Individual Genetic Programming 31 IntroductionIterated Functions System (IFS) theory is an important topic in fractals, and providespowerful tools for the investigation of fractal sets. The action of systems of contractivemappings to produce fractal sets has been considered by many authors (see for example[15, 2, 3, 9, 12]), and most fractal image compression techniques are based on IFS [5, 17, 10].A major challenge of both theoretical and practical interest is the resolution of the inverseproblem � �nding an IFS whose attractor is a target 2D shape [19, 29, 28, 4]. An exactsolution can be found in some particular cases, but in general, no exact solution is known.1.1 IFS representationsThe IFS inverse problem problem can be formulated as an optimisation problem: some com-putational solutions exist, based on deterministic or stochastic optimisation methods. Asthe function to be optimised is extremely complex, some a priori restrictive hypotheses arenecessary. Usually, the search space is that of a�ne IFS, with a �xed number of functions[5, 16, 27]. Solutions based on Evolutionary Algorithms have recently been presented fora�ne IFS [28, 11, 26, 21].Some previous work [18] dealt with general non-a�ne IFS using Genetic Programming(GP), termed mixed IFS:� such IFS are capable to create a wide variety of shapes,� GP o�ers an easy representation for evolving general functions.However, without other guideline than target shapes, functions de�ned by GP parse-treesare rarely contractive. Moreover, their �xed point needs to be numerically estimated.This paper considers an alternative representation of non-a�ne IFS. Each function isrepresented in polar coordinates with respect to a central point. The term �Polar IFS� willbe used to designate an IFS built on such functions. There are many advantages to polarrepresentation:� a simple constraint on the radial coordinate ensures the convergence towards the cen-tral point, which happens to be the �xed point of the function (see section 3);� polar IFS can be represented as GP parse-trees with a simple wrapper; the associatedinverse problem can hence be solved using GP;� handling of contractance constraints is simpler than with mixed IFS, though thecontractance still has to be checked numerically; however, the proportion of contractiveIFS in the set of Polar IFS is far greater than in the set of Mixed IFS (see section 3.2).Hence, polar IFS provide a more e�cient (less sparse) search space to the optimisationalgorithm than Mixed IFS.
RR n�o3849



4 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER1.2 IFS evolutionAll of the above-mentioned works dealing with the inverse problem have used what canbe called a standard approach to evolve IFS: an individual is a fully �edged IFS, made ofseveral functions �independently of the representation (polar or mixed). In this approach,the solution is the best individual of the �nal population. All individuals but one arediscarded, which seems a great waste, as the elaboration of each of them has used the sameamount of CPU-time as the winner.An alternative approach has been proposed in the Classi�er framework: in Classi�erSystems (CS), the �Pittsburgh� approach [7, 25] individuals are complete rule bases, whereasin the �Michigan� approach [14, 13, 30] individuals are single rules, and the solution is builtusing several individuals (rules) of the population.In this paper, the �Michigan� approach is transposed in the framework of IFS. We namedit individual approach (section 4): single contractive functions are evolved using GP, andIFS are built using individuals (functions) from the population. The main di�culty of thisapproach is the de�nition of the partial �tness for a single function � the direct transpositionof the Bucket Brigade algorithm in CS is impossible. Section 5 presents a problem-speci�capproach.Finally, section 6 describes how Polar IFS and the individual approach are implementedto solve some instances of IFS inverse problem. Results on three images, together withcomparisons with previous results from [18] are presented and acknowledge the power of theproposed approach.2 Iterated Function SystemsThis section brie�y recalls the basis of IFS theory and the numerical algorithms most widelyused to compute the attractors of an IFS.2.1 Notations and de�nitionsDe�nition 1: Let (F; d) be a complete metric space, and (wi)i=1;::;N be a collection offunctions de�ned from F into F .
 = fF; (wi)i=1;::;Ng is called an IFS (Iterated Function System).A central notion in IFS theory is that of contractive mappings:De�nition 2: A mapping w : F ! F , from a metric space (F; d) into itself, is calledcontractive if there exists a positive real number s < 1 such that:8(x; y) 2 F 2; d�w(x); w(y)� � s:d(x; y)The smallest of such numbers s is called the contraction ratio of w.A crucial result about contractive mappings is the following: INRIA



Polar IFS + Individual Genetic Programming 5Theorem Contractive Mapping Fixed Point Theorem:If (F; d) is a complete metric space, and W : F ! F is a contractive mapping, then W hasa unique �xed point.All mappings can also be applied to subsets of F , and give the following:De�nition 3: An IFS 
 = fF; (wi)i=1;::;Ng induces an operator W de�ned on the space ofsubsets of F by: 8K � F; W (K) = [i2[0;N ]wi(K)De�nition 4: An IFS 
 = fF; (wi)i=1;::;Ng is called hyperbolic (or contractive) if all func-tions wi are contractive. The contraction ratio of 
 is the minimum of the contraction ratioof the wi.Proposition If an IFS 
 = fF; (wi)i=1;::;Ng is contractive, there exists a unique set A � F ,called the attractor of the IFS 
, such that:W (A) = AThe uniqueness of an attractor for contractive IFS is a result of the Contractive MappingFixed Point Theorem for the mappingW acting on P(F ); dH , which is contractive accordingto the Hausdor� distance dH :De�nition 5: The Hausdor� distance between two subsets A and B of F is de�ned by:dH(A;B) = max�maxx2A�miny2B d(x; y));maxy2B �minx2A d(x; y)��2.2 Computing the attractorThere are two main techniques to compute the attractor of a contractive IFS.� Deterministic method:From any kernel S0, build the sequence fSng of subsets of F :Sn+1 =W (Sn) = N[i=1wi(Sn)For large values of n, Sn is an approximation of the actual attractor of 
.� Stochastic method (toss-coin):Let x0 be the �xed point of one of the wi functions. We build the sequence of pointsxn as follows: xn+1 = wi(xn), i being randomly chosen in f1::Ng.Then Sn xn is an approximation of the real attractor of 
. The larger n, the moreprecise the approximation.RR n�o3849



6 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER2.3 Inverse problemThe inverse problem for 2D IFS can be stated as follows:Find a contractive IFS the attractor of which is exactly a given shape (a binaryimage).However, this problem is generally relaxed into:Find a contractive IFS the attractor of which is as close as possible of a givenshape for a pre-de�ned distance function.A tool that is usually used for the simpli�cation of the previous problem is the Collagetheorem, which states that �nding an IFS 
 whose attractor is close to a given shape I , isequivalent to minimising the distance dH�I;SNi=1 wi(I)� with the constraint that all wi arecontractive functions.Collage theorem [4]Let A be the attractor of the hyperbolic IFS 
 = fF; (wi)i=1;::;Ng, and � the contractionratio of 
. Then:8K � F; dH�K;W (K)� < " ) dH(K;A) < "1� �;However, some di�culties arise when dH�I;SNi=1 wi(I)� is to be minimised:� The �tness depends on the contractance of the mappings; if one of the mappings ispoorly contractive (i.e. � close to 1), then the term 11�� may become very large, andthe bound thus becomes meaningless.In the case of a�ne IFS, it is possible to estimate � and thus to minimise 11��dH�I;SNi=1 wi(I)�to overcome this di�culty. However, for non-linear IFS, the contraction ratio may notbe uniform over the domain F which makes it almost impossible to estimate.� Computing the Hausdor� distance itself is CPU-time consuming. Moreover, the Haus-dor� distance often is counter-intuitive: Figure 1 presents two pairs of shapes [(a), (b)]and [(a'), (b')] with dH [(a), (b)] = dH [(a'), (b')]. While (a) and (b) are perceived assimilar, (a') and (b') look quite di�erent.These drawbacks led some authors of this paper [18] to consider a �tness function basedon the toss-coin algorithm and on more intuitive distances between shapes (namely pixelsdi�erences or Euclidian distance), instead of the Hausdor� distance.Section 5 will demonstrate how the �individual� approach allows one to use informationsstemming from both collage theorem and toss-coin algorithm in order to solve the inverseproblem.
INRIA



Polar IFS + Individual Genetic Programming 7
(a) (b) (a’) (b’)Figure 1: Hausdor� distance may be counter-intuitive. Here, dH [(a), (b)] = dH [(a'), (b')]though the shapes appear very di�erent.3 Polar IFSThis section introduces the Polar representation of non-a�ne IFS, and discusses the contrac-tance issue. Experiments are presented to show the advantage of Polar IFS versus generalnon-a�ne IFS.3.1 Polar representationThe main di�culty which arises when manipulating non-linear IFS is the handling of thecontractance constraint. There is no general analytic way to check the contractance of a non-a�ne function, and experimental tests require heavy computations while only giving a hinton contractance. For instance, less that 15% of random functions actually are contractive(see [18], and also experiments of section 3.2). This empirical fact motivated the introductionof an alternative representation.3.1.1 Local contractanceThe �rst idea is to de�ne a weaker contractance condition that will be easier to check:De�nition 6: A mapping w : F ! F , from a metric space (F; d) into itself, is called locallycontractive with respect to point P if there exists a positive real number s < 1 such that:8M 2 F 2; jj�����!P w(M) jj < sjj��!PM jjThe smallest of such numbers s is called the local contraction ratio of w.It is obvious that if w is locally contractive w.r.t. P , then P is the unique �xed pointof w. Nevertheless, local contractance does not imply global contractance, as demonstratedby the following counter-example.

RR n�o3849



8 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER3.1.2 A counter-exampleIf x <= �1 w0(x; y) = � 0:5x� 10:5y �If 1 <= x <= �1 w0(x; y) = � 0:25(x2 � 3x� 10)0:25(3 + x)y �If x >= 1 w0(x; y) = � x� 4y �If x <= �1 w1(x; y) = � x+ 4y �If 1 <= x <= �1 w1(x; y) = � 0:25(�x2 � 3x+ 10)0:25(3� x)y �If x >= 1 w1(x; y) = � 1 + 0:5x0:5y �Functions w0 et w1 are continuous. Their �xed points are respectively P0 = (�2; 0) andP1 = (2; 0), and they satisfy:8X 2 [�4; 4]� [�4; 4]; d�Pn; wn(X)� � sd(Pn; X) with s < 1They are however not contractive and do not de�ne a unique attractor for the fw0; w1gIFS: there exists several sets, such that A = W (A) = w0(A) [ w1(A) (see �gure 2) and theWn(X) sequences are not always convergent when n!1 (see �gure 3).Though this counter-example seems to ruin all e�orts to easily design contractive map-pings to use to build IFS, the next sections will show that indeed, bene�ts can arise fromusing locally contractive functions in IFS.3.1.3 GP representation and wrapperWhen using GP trees to represent IFS, two approaches are possible to tackle the contrac-tance requirement: transform GP trees into contractive mappings, or eliminate a posteriorinon contractive mappings. The latter approach always works, but can be very time consu-ming, as many trees that are generated along evolution have to be eliminated (see [18]).This eugenistic approach was proposed because no cleaner way could be found to generatecontractive mappings in two dimensions.But, together with local contractance goes the idea of polar representation: if one consi-ders a locally contractive mapping w with �xed point P , then points can be representedusing (�; �) coordinates centered on P 1, and w itself can thence be de�ned easily using1i.e. ~PM = (� cos(�); � sin(�)) INRIA



Polar IFS + Individual Genetic Programming 9
A0 B0

A1 B1A2 B2

A3 B3

x0 x1Figure 2: W (A0 [ B0) = A0 [ B0, W (A1 [ B1) = A1 [ B1, W (A2 [ B2) = A2 [ B2,W (A3 [ B3) = A3 [ B3, and W (x0 [ x1) = x0 [ x1.
X W (X) W 2(X) W 3(X) W 4(X)
X W (X) W 2(X) W 3(X) W 4(X)
X W (X) W 2(X) W 3(X) W 4(X)Figure 3: Three examples for which the sequence Wn(X) diverges.
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10 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUERsuch coordinates. The important fact is that the local contractance condition becomes acontractance condition on the one-dimensional function giving � �and it is straightforwardto transform a random one-dimensional function into a contractive function.De�nition 7: A Polar IFS is a set of locally contractive functions wi with respective �xedpoints Pi such that each wi is de�ned in polar coordinates w.r.t. Pi by two one-dimensionalfunctions Fi and Gi by:wi �� !Pi = 0@ �th(ki � Fi(�; �)) + 12Gi(�; �) 1APi (1)for some real number ki.The particular form of the � function ensures the local contractance�as th(ki�Fi(�;�))+12 <1 whatever the value of Fi.A locally contractive function can hence be represented by one point P in [0; 1]2 and twofunctions F and G, which can be evolved as GP trees. Equations (1) are used as wrapper,which ensures the local contractance of the mapping. Moreover, �gure 4 shows that a widevariety of shapes can be obtained using that representation.

Figure 4: Examples of Polar IFS attractors3.2 Contractance testsThe previous subsection highlighted the fact that contractance veri�cation cannot be avoi-ded for Polar IFS. However this section will experimentally show that the proportion of
INRIA



Polar IFS + Individual Genetic Programming 11
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xFigure 5: y = th(kx)+12 curve with k = 10�7contracting mappings in the set of locally contractive mappings de�ned by equation (1) islarger than for general mixed IFS. Hence the cost of contractance veri�cation will be muchlower for Polar IFS than for Mixed IFS.This section presents some statistical tests that have been performed on two di�erent setsof functions in order to experimentally approximate their respective proportion of contractivefunctions. The �rst set of functions is the set of mixed IFS, i.e. general non-linear IFS builtfrom general random GP trees. The second set is the set of locally contractive functionsde�ned by de�nition 7 whose components F and G are random GP trees. In both cases, therandom trees are built from the basic nodes and terminals described in section 5.1.As an analytical computation of the contraction ratio is generally out of reach, a nume-rical estimation of this ratio has to be done experimentally: for each mapping w, a sampleof pairs of distinct points (Pi; Qi) in [0; 1]2 is de�ned, and the minimum of d�w(Pi);w(Qi)�d(Pi;Qi)gives the approximate contraction ratio for w.The cost of the approximation is of course proportional to the number of points in thesample: four tests with di�erent samples have been tried on n�n images, and the results arepresented in Tables 1, 2 and 3. Three tests are based on a pre-de�ned set of pairs (dependingon the resolution of the image), while the fourth one selects points uniformly.1. All-pixels test :Every pixel of the image is checked with every other pixel of the image. It is the mostaccurate test, but also the most CPU-consuming.2. Twist test :This test starts from the two pixels at two opposite corners of the image, and eachpoint scans symmetrically each half image, line by line, until the center pixel is reached(see �gure 6).3. Square test :All pixels of the image are tested against their immediate neighbour (see �gure 7).

RR n�o3849



12 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER4. Random test :n pairs of points are selected randomly, uniformly in [0; 1]2.

Figure 6: The Twist test. Figure 7: The Square test.For some yet unclear reasons, the Twist test seems quite ine�cient, while the Square testseems much more accurate (i.e. gives results closer to the All-pixels test) on Polar IFS thanon mixed IFS. Hence the Square was found to realize a good compromise between e�ciencyand cost, and was used for all experiments presented in the following.Tables 2 and 3 show two other major results :1. The Square test results are not very far from the All-pixels test results for Polar IFS.Furthermore, the ratio of functions deemed contractive does not decrease drasticallywith the resolution of the images: less than 2.55% di�erence between 128� 128 and512 � 512. This means that the Square test can be considered as quite accurate,regardless of the image resolution above 128� 128.2. the proportion of contractive Polar IFS much larger than that of Mixed IFS : morethan 50% compared to less than 10%.4 Individual approach in evolutionary computationThe standard approach when using evolutionary methods as stochastic optimisers is to evolvea population of potential solutions to the problem at hand, each of them called individuals.The output of the algorithm is in that case the best individual encountered during theevolution. All other individuals are discarded, whatever information they might bear.In some cases, however, potential solutions are lists of items, and an alternate possibilityis to evolve a population of such items, and to build a solution by combining di�erent itemsof the current population. Such an approach is very popular in Classi�er Systems, whereitems are rules, and solutions are rule bases: The well-known Michigan approach evolvesrules, and a solution is a rule base made of some of the best individuals of the �nal populationINRIA



Polar IFS + Individual Genetic Programming 13
# of wi computed # of comparisonsall pixels n2 (n2�1)(n2�2)2twist n2 n22square n2 n2random 2n nTable 1: Complexity of the various testsn # of wi computed all-pixels twist square random16 256 10.26 24.46 21.64 14.6732 1024 10.46 24.16 21.80 13.7364 4096 9.42 23.96 21.62 13.25128 16384 - 24.03 22.08 13.39256 65536 - 23.94 21.19 13.04512 262144 - 23.91 21.18 -Table 2: Proportion of contractive functions (%) for each test for mixed IFSn # of wi computed all-pixels twist square random16 256 62.48 90.56 64.94 74.2932 1024 58.82 88.91 60.72 69.2864 4096 56.12 88.08 57.91 64.30128 16384 - 87.39 56.44 62.14256 65536 - 87.24 55.26 60.00512 262144 - 87.03 53.89 -Table 3: Proportion of contractive functions (%) for each test for polar IFS

RR n�o3849



14 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER[14, 13, 30]. On the other hand, the so-called Pittsburgh approach evolves populations ofcomplete rule bases [7, 25].Similarly to the Michigan approach in CS, the individual approach proposed here consistsin evolving a population of locally contractive functions, and to build an IFS by picking upfunctionsin the population.Clearly, only problems where the solution can be set apart into separate components canbe handled using an individual approach. However, another necessary condition is to beable to accurately evaluate the local �tness of a single component, i.e. its usefulness to theglobal �tness of the solution.Fortunately, the IFS inverse problem o�ers some nice ways to evaluate the contributionof a single function of the system to its global performance: consider the target shape A; if anIFS (wi) is a solution of the inverse problem, then A = [wi(A). Hence a local �tness for a wishould consider positively the part of wi(A) lying inside A, and negatively the part of wi(A)lying outside A. Furthermore, the position of the �xed points also gives some indications.It should lie inside the target shape A, but the relative positions of the �xed points of twolocally contractive functions also de�ne semi-distances between individuals, which can beused to implement some sharing mechanism to keep diversity in the populations and preventall functions in the populations to become similar.5 Polar IFS + individual GP5.1 GP componentsAs described in section 3.1, a locally contractive mapping is de�ned by two functions (F (�; �)and G(�; �)) and a point P . Whereas P is simply represented by its two real-valued coordi-nates that do not need further description, F and G are modeled as GP-trees, similarly toMixed IFS [18] .Nodes and terminals: The trees are built from a set of terminals, which consist of thevariables � and �, constants in [�1; 1], and a set of nodes, built from the following set ofbasic real-valued functions:

INRIA



Polar IFS + Individual Genetic Programming 15Unary nodes:2� �x� 1x for x 62 [�1; 1]� cos(x)� sin(x)� th�1(x)� psqrt(x) = sign(x)pjxj� plog(x) = sign(x) log(jxj),if x 6= 0

Binary nodes:� +� �� �� �
Initialization: The initialization procedure for the GP trees is a simple recursive randomchoice into the joint set of node and terminals until either terminals are drawn on all branchesor the maximum depth is reached.As for the �xed points, they are randomly chosen among the contour points of the targetshape A. This idea comes from the conjecture by Dekking [8] that there always existssolutions to the inverse problem where �xed points are on the edges of the target shape.This result has been proven in the case of a�ne IFS in [8].Crossover: the standard GP crossover is used on both trees: it performs swaps of randomlyselected sub-trees between the parents.The �xed points are not modi�ed by crossover.Mutation : Di�erent mutation operators are used, taking into account both the treesrepresenting the F and G functions and P , the center of the locally contractive mapping athand.� No mutation acting on nodes has been retained, due to the too drastic e�ects of sucha perturbation on the phenotypic behavior of the corresponding tree.� For the same reason (too drastic e�ect), the only mutations of terminals �nally retainedare the mutation of the values of constant terminals and the mutation of variableterminals into constant terminals.� Constants: the precise adjustment of constant terminals is critical when handlingnumerical trees (i.e. trees that represent a real-valued function). Whereas John Koza'sseminal work considered only a �nite number of possible values for constant terminal,relying on arithmetic to possibly generate any value (e.g. using +, * and � it is possible2sign(x) returns the sign of x, i.e.: sign(x) = 1 if x � 0 sign(x) = �1 otherwise.RR n�o3849



16 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUERto approximate within a given precision any real value from integers in [0; 10]), morerecent works consider that speci�c mutation operators are a better approach to the �netuning of constant terminal values. In that perspective, constant terminal values aremodi�ed here by choosing a new value uniformly from a disk of �xed radius (anotheruser-de�ned parameter).Early experimental investigations highlighted the fact that constant terminals tend todisappear from the population. One possible explanation is that the numerical opti-misation of the constant values is a more di�cult task than the symbolic optimisationof the other nodes. The selection operator thus tends to rapidly eliminate functionshaving wrong constant values. This di�erence could come from the fact that the searchspaces of the nodes and variables is �nite while the search space of the constants isin�nite. One way to tackle this di�culty is to implement an optimization loop forconstant values as after the application of any variation operator (mutation or cros-sover). Though quite successful in other frameworks [24], this technique still needs tobe tested in the IFS framework.� Variables: mutations of variables considered here is either their transformation intoconstant terminals, the value of which is randomly drawn within [0; 1], or their trans-formation into another variable.� Fixed points: the mutation operator moves the �xed point of a contractive function bychoosing another point uniformly in a neighborhood of radius 4 pixels from the parent�xed point, while staying on the boundary of the target shape.A niching strategy is mandatory to prevent all individuals to rapidly become similarto the best covering mapping. Here, the dynamic niche sharing has been used [20]. Thistechnique is based on a clusterisation of the populations with respect to a prede�ned inter-individuals distance. The selection operator is also adapted in order to fairly select a givenpercentage of best individual of each niche.Table 5.1 summarizes the parameters used for the evolution. The implementation isbased on the GALib library [1].5.2 Fitness function for individualsThe �tness of an individual in the individual approach is divided into two main parts: thelocal �tness, computed from the characteristics of the individual itself, and the global �tness,that is based on a measurement of how a set of individuals actually solves the problem athand. In the IFS inverse problem framework, the local �tness takes into account the relativepositions of the attractor of a single contractive mapping and the target shape.
INRIA



Polar IFS + Individual Genetic Programming 17
BINARY NODES +, -, *, �UNARY NODES neg, 1/., cos, sin, th�1, psqrt, plogPOPULATION SIZE see results, section 6OPERATORS Mutation probabilitiesconstant ! constant 0.15according to a Gaussianlaw of variance SIGMAvariable ! constant 0.05randomly chosen in [�1; 1]constant ! variable 0.08variable ! variable 0.08function ! function 0.08(same arity)�xed points: 0.1, linearly decreasingalong the generations.Crossover probabilityPCROSS 0.95 for treesno crossover for �xed pointsSELECTION Rankingselection pressure 1.35REPLACEMENT Population replacement schemereplacement percentage 50%Overlapping populationsSTOPPING Based on approximation of targetCRITERION see section 5.3WRAPPER Polar description of contractive mappingssee section 3SPECIAL Dynamic niche sharingFEATURES � 0.05Max nb of clusters 0.5 of POP_SIZETable 4: Tableau for the evolution of polar IFS
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18 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER5.2.1 First goal: wi(A) must lie inside ALet #[A] be the number of pixels of A � F , and let us de�ne F1(wi) as:F1(wi) = #[wi(A)TA]#[wi(A)TA] + #[wi(A)nA]F1(wi) is maximum (and equals 1) i� wi(A) � A.5.2.2 Second goal: maximize the area of wi(A)TALet us de�ne F2, that corresponds to the maximization of the size of wi(A)TA:F2(wi) = #[wi(A)TA]#[A]F2(wi) is maximum (and equals 1) i� A � wi(A).5.2.3 Integration of the contractance constraintsAs described in section 3.2, the contractance test can be included in the computation ofthe image of the target wi(A). In the same time, the mean contraction ratio si can beestimated. If the function is not contractive, F1 and F2 de�ned above are not computedand are directly set to zero.5.2.4 Local �tnessThe local �tness is de�ned as a linear combination of F1, F2 and the distance to 1 of theestimated contraction ratio:Floc(wi) = F1(wi) + F2(wi) + (1� si)where si is the estimated contraction ratio of wi. Due to the term F2, wi(A) tend to �ll A,which is not satisfactory for an IFS. This e�ect is counterbalanced by the term 1� si whichforbids the trivial solution wi = Id.This �tness represents an interpretation of the collage property of an IFS, i.e.: onesearches for the set of best wi's such that A = Swi(A). This is yet another argument forthe use of some niching mechanism in order to avoid that all individuals go to the same bestcoverage of the target shape. Moreover, a side e�ect might be an �economic� coverage of A,i.e. with the smallest possible wi(A)Twj(A) for all i; j.5.3 Global �tness and its repartition on individualsA clusterisation of the current population with respect to a distance de�ned on the searchspace (the mean distance of the images of a set of sample points) yield to the set of the
INRIA



Polar IFS + Individual Genetic Programming 19N individuals to be globally evaluated. These N best individuals build an IFS 
 whichrepresents a potential solution to the inverse problem at hand. A toss-coin algorithm is usedin order to compute its attractor A
, which is then compared to the target A using twoquantities: In
 = #[A
TA]#[A] proportion of points of A
 within the targetOut
 = #[A
nA] number of points of A
 withoutThe global �tness at generation n takes into account both the attractor of the currentIFS 
(n) and the attractor of the IFS constructed at generation n� 1, 
(n� 1). A globalparsimony term is added to favour solutions with smaller number of functions (nothing todo with usual GP parsimony that takes into account the size of the trees).Fglob(n) = [In
(n) � In
(n�1)]� [Out
(n) �Out
(n�1)]+ �[Nb_functions(
(n))�Nb_functions(
(n� 1))]For all results presented in section 6, the parsimony factor � was set to 0:075.This global �tness is simply added to the individual �tness of the �active� individuals wiof the population, according to their participation in the current IFS:� if wi just entered the IFS 
(n) (it did not participate in 
(n� 1)) then:Fitness(wi) = Floc(wi) + Fglob(n)� if wi was already present in 
(n� 1):Fitness(wi) = Floc(wi) + Fglob(n) + Fglob(n� 1)2 � 1[age(wi)]2where age(wi) stands for the number of generations during which wi has been part ofthe IFS.� if wi did just quit the IFS:Fitness(wi) = Floc(wi)� Fglob(n)� if wi does not belong to the IFS:Fitness(wi) = Floc(wi) + Fglob(n� 1)2Its term corresponding to the global �tness decreases along generations.The global contribution term distributed on each individual takes into account the past ofthis individual and its age with respect to the current IFS.Termination criterion: Fglob is also used as a stopping criterion: the algorithm stopswhenever the target is approximated within a �xed threshold, based on Fglob value.RR n�o3849



20 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER5.4 Improving the toss-coin algorithmThe usual stochastic method known as toss-coin has been chosen here to actually computethe attractors, as it is acknowledged to be less CPU-consuming than the deterministic algo-rithm (see section 2.2). Nevertheless, the computation of the attractors is by far the mostcostly step of the whole inverse problem solving process. Hence, great care must be givento its actual implementation. The notion of patience has been introduced to cut down thecomputation time of unpromising evaluations of attractors with the toss-coin algorithm.All calculations are done in the [0; 1]� [0; 1] unit square, discretized into a �nite image(e.g. 512� 512). The following possibilities might happen:1. the attractor is almost uniformly spread within the target shape,2. the attractor is almost uniformly spread across the 512� 512 image,3. the attractor lies mostly out of the target shape,4. the attractor lies within a very small (e.g. 2� 2 pixels) area.IFS attractors have an incredible variety of shapes. Hence it is very unlikely that theyshould produce attractors of the �rst or second kind in the �rst generations.Moreover, the number of pixels is �nite. This means that the drawing speed (frequencyof apparition of new pixels in the attractor) decreases along the iterations.Adaptive optimization criterion Deciding once for all that the toss-coin routine shouldbe iterated 10,000 times for instance is a very bad decision: if the attractor is of the thirdor fourth kind, a lot of cpu time is lost. On the other hand, 10,000 iterations may not beenough to draw a faithful representation of the attractor in the �rst two cases.Optimizing the number of iterations is crucial. Ideally, one should stop iterating thetoss-coin function as soon as the drawing speed of the attractor comes close to 0.The notion of patience is introduced to adaptively adjust the number of iterations: sup-pose a patience of 1,000 iterations. If no newer pixel has been illuminated on the discretizedimage during the last 1,000 iterations, the algorithm stops � guessing that no signi�cantamount of new pixels will come out of the toss-coin routine in the future.Formally speaking, the value of the Patience parameter sets a threshold on the speedof occurrence of new pixels on the image.The patience criterion automatically adapts to both the de�nition of the �nal image, andthe required precision:� On a reduced 64 � 64 image, each pixel represents a large subset of the [0; 1] � [0; 1]domain, and the toss-coin will rapidly stop;� During the �rst generations, a very �ne representation of the attractor is super�uous:one only needs to roughly know if the IFS lies out of the target shape or not. One
INRIA



Polar IFS + Individual Genetic Programming 21can then mischievously increase the value of the Patience variable along with thegenerations: in all experiments, the Patience is initially set to 50 and is incrementedwith every generation. A patience of 1,000 is used to produce the �nal image.6 Results6.1 Sample resultsFigures 8 to 11 present some results of the proposed algorithm for some inverse IFS problems.The parameter settings are those of table 5.1.6.2 Comparative resultsComparison with previous approaches of the inverse problem for IFS is rather uneasy. In-deed, current improvements have come from two sources :� the use of Polar IFS (i.e. a restriction of the search space) has provided an easiersearch space for the optimisation algorithm,� the individual strategy for GP is a very particular way of handling the evolutionaryoptimization. Comparisons in terms of function evaluation with the classical approachis not very meaningful, as an evaluation in a classical evolutionary algorithm and inthe individual approach do not represent the same thing with respect to the functionto be optimised.Figures 12 and 14 present results obtained on the square target. For performance com-parisons in terms of CPU time, one can consider the number of GP tree evaluations.This is roughly equivalent to Population_Size � Number_of_Generations + Number_-of_Selected_Individuals_for_a_Global_evaluation � Number_of_Generations as fas asthe individual approach is concerned compared with 4 � Number_of_Individuals � Num-ber_of_Generations for the classical approach.� Figure 12 presents results obtained with a Genetic Algorithm for a�ne IFS (searchingfor a 4 functions IFS, i.e. for 24 real parameters) this result was obtained usingapproximatively 200,000 evaluations (a population size of 20 individuals during 10,000generations). Figure 13 presents the result of an iterative implementation of the samealgorithm where successive runs are made on more and more precise approximationsof the target (best individuals of the previous run are included in the initial populationof the next GA run). Fewer iterations were necessary in order to obtain similar results(around 55,000).� Figure 14 presents results obtained with a Genetic Programming technique for mixedIFS (from [18]). These results were obtained using approximatively 45,000 evaluations(population size of 30 during 1,500 generations).RR n�o3849



22 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER
Target 49 generations14 functionspixels inside: 85% (blue)pixels outside: 0% (red)Figure 8: 64x64 target, with a population size of 60 individuals, the �xed points of eachfunction are in green.
Target 60 generations13 functionspixels inside: 70% (blue)pixels outside: 2.2% (red)Figure 9: 50x50 target, with a population size of 100 individuals, the �xed points of eachfunction are in green.
Target 400 generations13 functionspixels inside: 60% (blue)pixels outside: 0.36% (red)Figure 10: 80x80 Dolphin target, with a population size of 100 individuals, the �xed pointsof each function are in green. INRIA



Polar IFS + Individual Genetic Programming 23
Target 87 generations31 functionspixels inside: 84.52%pixels outside: 5.03%Figure 11: 128x128 target, with a population size of 200 individuals, the �xed points of eachfunction are in green.� Using an individual scheme on Polar IFS, only 2,940 evaluations were necessary toobtain results of �gure 8.
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24 P. COLLET, E. LUTTON, F. RAYNAL, M. SCHOENAUER
Target 10000 generations4 functionspixels inside: 88.4%pixels outside: 17%Figure 12: Classical GA for a�ne IFS on a 64x64 target, with a population size of 20individuals.

Target iteration 1 iteration 2 iteration 3500 gen. 1,500 gen. 2,500 gen.5 indiv. 10 indiv. 15 indiv.inside: 31% inside: 79% inside: 88%outside: 9% outside: 10% outside: 7%Figure 13: Classical GA for a�ne IFS : iterative scheme for a 64x64 square (4 functions).
Figure 14: Genetic Programming for Mixed IFS on a 64x64 target. From left to right : targetand best images of generations 10, 100, 300 and 1,500. Population size 30 individuals.
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Polar IFS + Individual Genetic Programming 257 Conclusion and perspectivesThis paper has introduced two original features in the framework of IFS inverse problem:� on the fractal side, Polar IFS are an interesting model that simpli�es the manipulationof non-linear IFS. Moreover, the very high proportion of contractive mappings in theset of locally contractive mappings, together with the simple wrapper transforming twogeneral GP trees into a locally contractive mapping result in a very e�cient search;� on the evolutionary side, the IFS framework is another area where a Michigan approachis possible: single functions are evolved, and a subset of the population actually buildsthe solution to the inverse problem. The careful design of both the local and the global�tness functions, as well as their balanced aggregation into the �nal �tness used forselection, are crucial for the success of the method.These �rst experiments lead us to think that making use of a priori information onthe problem to solve, along with other methods can be quite e�cient with the individualapproach. Moreover an approximation of the target shape is obtained very rapidly whilethe representation of details needs more computation time.Future work on this topic concern:� cross-validation tests using the individual approach with mixed IFS representations,and the standard approach with the Polar IFS representation, in order to sort out therespective bene�ts of both original improvement introduced here;� implementation of a individual GP technique in an interactive manner for artisticgeneration of fractal images;� use of the Polar IFS representation as an alternative representation for mechanicalstructures, in the framework of topological optimum design [23].AcknowledgementsThe authors would like to thank Jean-Pierre Tillich for his help in the construction ofthe counter example of section 3, Jacques Lévy Véhel for the numerous discussions wehad about inverse problem for IFS, and Laurent Balagué who helped us a lot in the �nalimplementation of the techniques described in this paper.
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