
Take it EASEAPierre COLLET, Evelyne LUTTON,Projet Fractales | INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, FrancePierre.Collet@inria.fr, Evelyne.Lutton@inria.fr | Tel : +33 (0)1 39.63.55.52http://www-rocq.inria.fr/fractalesMarc SCHOENAUEREAAX { CMAPX | �Ecole Polytechnique, 91128 Palaiseau cedex, FranceMarc.Schoenauer@polytechnique.frhttp://www.eeaax.polytechnique.frJean LOUCHETAMI { LEI | �Ecole Nationale Sup�erieure de Techniques Avanc�ees,35 Boulevard Victor, 75011 PARIS, FranceLouchet@ensta.frhttp://www.ensta.fr/�louchetJanuary 24, 2000

Category : Genetic Algorithms

AbstractEvolutionary algorithms are not straightforward to implement and the lack of any specialised languageforces users to reinvent the wheel every time they want to write a new program. Over the last years,evolutionary libraries have appeared, trying to reduce the amount of work involved in writing such algorithmsfrom scratch, by o�ering standard engines, strategies and tools. Unfortunately, most of these libraries arequite complex to use, and imply a deep knowledge of object programming and C++. To further reducethe amount of work needed to implement a new algorithm, without however throwing down the drain allthe man-years already spent in the development of such libraries, we have designed EASEA (acronym forEAsy Speci�cation of Evolutionary Algorithms): a new high-level language dedicated to the speci�cationof evolutionary algorithms. EASEA compiles .ez �les into C++ object �les, containing function calls to achosen existing library. The resulting C++ �le is in turn compiled and linked with the library to producean executable �le implementing the evolutionary algorithm speci�ed in the original .ez �le.EASEA v0.3 is available on the web at: http://www-rocq.inria.fr/EVO-Lab/ .

1

1 IntroductionNot so long ago, evolutionary algorithms were considered as mere fantasies set up by mad computer scientists.No respectable researcher would ever have considered using such algorithms to do anything serious. Thingshave changed however over the years and many end-users (chemists, physicists, mathematicians, . . .) haveended up selling their scienti�c souls to Darwin. Unfortunately taking this decision is not the hardest part oftheir ordeal: the evolutionary algorithm they have been dreaming of remains to be written and many of themare only occasional programmers, used to procedural languages such as Pascal or Fortran. This is veryunderstandable as they are not state of the art computer scientists after all.One way to speed up the process is to use one of the many existing evolutionary libraries. All is for the best asthey o�er very powerful tools provided . . . one is uent enough with constructors, copy-constructors, destructorsand such niceties involved by relatively low-level object languages.The next hurdle is then to learn how to use the library, to understand the intricate data structures and tomemorise the necessary several hundred object types, functions and variables and the way they are inter-related. This can be quite time consuming when all major evolutionary libraries are written in C++ and makefull use of object programming.All in all, many physicists, chemists, mathematicians and other scientists who otherwise would be capable ofwriting relatively simple functions in C, Fortran or Lisp are denied experimentation of evolutionary algorithmsdue to the sheer complexity of their implementation.The aim of EASEA (EAsy Speci�cation of Evolutionary Algorithms) is to hide this complexity behind ahigh-level language, allowing scientists to concentrate on evolutionary algorithms, rather than on their imple-mentation.2 Previous workSome research teams have already felt the need for a speci�c evolutionary language. They have howeverchosen a theoretic viewpoint, trying to enrich the evolutionary paradigm with new concepts or features not yetimplemented [6, 7, 9, 10].We have chosen a radically di�erent approach, trying to be as pragmatic as possible. Our goal was to start withthe realisation of a minimal working prototype, able to implement almost any problem. We count on feedbackfrom end-users to guide the evolution of EASEA.3 Presentation of EASEA3.1 IntroductionSeveral important ideas lie behind the EASEA language and compiler :� EASEA must be general enough to be able to write virtually any evolutionary algorithm.� Conceptually speaking, a language such as EASEA needs not be tied to a speci�c evolutionary library.Hence, EASEA must be able to operate di�erent evolutionary libraries.� EASEA should aim to hide away all programming mechanisms not explicitly needed to describe theevolutionary algorithm.� EASEA source �les must be simple enough to be written automatically by a graphic user interface.
2

Figure 1: EASEA mode of operation3.2 Mode of operationThe speci�cations of EASEA show that an EASEA compiler should be able to produce C++ source code usingdi�erent evolutionary libraries.Two libraries have been chosen to start with: GAlib |a widely used C++ genetic library [5]| and EO(Evolutionary Objects [3]) developed at the University of Granada (Spain) within the Evonet [1] framework.EASEA{EO is still under development while EASEA{GAlib is already operational. The EASEA{GAlib com-piler uses for input an ascii �le with a .ez su�x. Its output is a GAlib C++ source �le including calls to GAlibfunctions and objects. The resulting C++ �le must then be compiled by a C++ compiler and linked with theGAlib library (cf. �gure 1). The produced executable implements the evolutionary algorithm described in theoriginal EASEA source �le.4 EASEA compiler4.1 DescriptionEASEA is written in C++, using Lex and Yacc (in fact ALex and AYacc [4]). The EASEA compiler is somewhatunusual in the sense that it produces source code in another language rather than microprocessor instructions.As EASEA syntax is rather simple, most serious errors come in fact from user-functions which are compiledby a host C++ compiler. The nice consequences are that such errors are trapped by the very elaborate hostcompiler syntax analyser and that semantic errors (bugs) are as elaborately dealt with by the host compilersymbolic debugger. The not so nice consequence is that the human end-user must somehow debug the C++code produced by EASEA.The main di�culty resides in the fact that humans usually �nd compiler-produced source code quite di�cultto read.A second reason voting for highly readable generated C++ is that we think EASEA can also be used as aprimer: EASEA creates a C++ source �le which can be a starting point for an evolutionary algorithm that willbe re�ned afterwards.Our main concern has then been to improve presentation and to have EASEA-generated C++ look as humanas possible.This feat is mainly achieved through :1 a man-made template �le |galib.tpl for the GAlib version. As one can infer by its name, the GAlibtemplate �le contains the framework of a generic GAlib evolutionary algorithm, ready to be �lled up withuser-speci�c information found in the EASEA .ez source �le.2 very carefully typeset code, whenever EASEA generates code to �ll up the blanks : indentation is respected,meaningful variable names are used and comments are generated from scratch to explain what the createdcode is supposed to do.The compiler contains two main parts: one responsible for the genome analysis and the other responsible forcode production. 3

4.2 Genome declaration analysisEASEA genome declarations look very much like C or C++ structure declarations. char, int, double, boolare accepted as basic types. Modi�ers are accepted, allowing arrays and pointers to be declared. Finally, it ispossible to declare new types (classes in fact, as EASEA is fully object-oriented).Let us imagine, as a demonstrative example, a genome representing a polygon:Side{ int Coord[2];Side *pNext;}Genome{ Side *pList;int NbSides;}This genome is made of a pointer towards a linked list of sides and of NbSides, an integer containing the numberof elements in the linked list.A side is made of an array of two coordinates and a pointer towards the next side.All variables are stored in a symbol table, along with their type and size (arrays). New user types are storedalong with the elements they contain.4.3 Generation of complete C++ classesThe template �le is in fact an empty shell, containing the source code for a generic GALib evolutionary algorithm.The EASEA compiler copies lines from the template �le towards the object .cpp �le until it comes across acompiler directive telling it to insert information which is to be found in the user-supplied .ez �le.The user-de�ned types and functions are then inserted in the output .cpp �le, as well as the genome declaration:� New types are inserted as new C++ classes, with all methods necessary to obtain fully edged C++ classes(constructor, destructor, copy-constructor, operator=, operator==, operator!=, operator<<, operator>>).Here is for instance the operator= member function, transparently created by the EASEA compiler forclass Side:Side operator=(Side &EASEA_Var) { // Operator=if (pNext) delete pNext;EASEA_Var.pNext ? pNext = new Side(*(EASEA_Var.pNext)) : pNext=NULL;{for(int EASEA_Ndx=0; EASEA_Ndx<2; EASEA_Ndx++)Coord[EASEA_Ndx]=EASEA_Var.Coord[EASEA_Ndx];}return *this;}{ The Coord array has been automatically expanded and each of its elements are assigned individually.{ If the R-value pNext pointer is not null (EASEA Var.pNext), a new Side object is created, and itscopy-constructor is invoked with the object pointed to by the R-value pNext pointer. This new Sideobject is assigned to the L-value pNext pointer.As an intelligent copy-constructor has also been created automatically for class Size, this results ina recursive copy of the linked list.� The genome is derived from the GAlib genome class. As for new user classes, all necessary methods aretransparently created.Here is for instance the derived GAlib polygonGenome class declaration, created out of the previous Genomedeclaration:// User Genomeclass polygonGenome : public GAGenome {// Default methods for class polygonGenomepublic:GADefineIdentity("polygonGenome", 251);static void Initializer(GAGenome&);static int Mutator(GAGenome&, float);static float Comparator(const GAGenome&, const GAGenome&);static float Evaluator(GAGenome&);static int Crossover(const GAGenome&, const GAGenome&, GAGenome*,GAGenome*); 4

polygonGenome::polygonGenome() :GAGenome(Initializer, Mutator,Comparator){evaluator(Evaluator); crossover(Crossover);// Zeroing pointerspList=NULL;}polygonGenome(const polygonGenome & orig) { copy(orig); }polygonGenome operator=(const GAGenome &);virtual GAGenome *clone(GAGenome::CloneMethod) const ;virtual void copy(const GAGenome & c);virtual int equal(const GAGenome& g) const;virtual int read(istream & is);virtual int write(ostream & os) const ;// Class membersint NbSides;Side *pList;};Of course, as for new types, all generic member functions are created transparently (constructor, destructor,copy-constructor, operator=), as well as all member functions required by GAlib (clone, copy, equal, read,write, Comparator).The remaining member functions required by GAlib (Initializer, Mutator, Evaluator and Crossover) are,(in v0.3), user-speci�c. This means that EASEA will look for their code in the .ez �le, under the names ofGenome::initializer, Genome::mutator, Genome::crossover, Genome::evaluator, as can be seen in theextensive example of section 5. Future versions of EASEA will implement representation-independent operatorsin the line of Radcli�e's work [7].In v0.3, EASEA expects to �nd C++ source code, that will be directly inserted in the resulting .cpp, quali�edby minor changes described in the next section.4.4 Remaining independent of host librariesAccepting di�erent host libraries means that EASEA cannot force the programmer to use the GAlib-speci�cGARandomDouble function. This would mean that an EASEA .ez source �le would not recompile if anotherlibrary were to be used.The solution is for EASEA to provide (as in any new language), its own speci�c prede�ned functions andkeywords. Whenever such functions or keywords appear in the .ez source �le, the EASEA compiler translatesthem to their GAlib (or EO) equivalent. As such, the EASEA random function call will be translated in itsGALib equivalent: GARandomDouble.Identically, EASEA keywords are translated into their host-library equivalent. For example, variables parent1,parent2, child1 and child2 are prede�ned in the EASEA crossover function (cf. section 5). Those namesare translated into their GAlib counterparts (mom, dad, bro and sis) . . . if the GAlib library is to be used, ofcourse.This is how EASEA source �les can try to be as independent as possible from host libraries.4.5 Host libraries prerequisitesAlthough EASEA source �les can conceptually be completely decoupled from the underlying host library, thisis not the case right now. GAlib expects functions such as mutator, evaluator and crossover to behave acertain way: the evaluator function should return a float, the crossover function should return the numberof created children (one or two), the mutator is supposed to return the number of mutations which occurred inthe genome.Unfortunately, it is very improbable that other libraries should have exactly the same expectations.For the moment being, the EASEA manual describes how the GAlib library expects genetic operators to behave.In the future, one can expect EASEA to impose its own prerequisites. If they are a superset of all the infor-mation needed by the di�erent supported host libraries, EASEA will be able to generate the appropriate codeimplementing the behaviour expected by each library. 5

4.6 User-space for external functions and variablesUp to now, the end-user has been o�ered to modify only four genome-related functions. This might not provesu�cient if additional functions or external variables are needed. Therefore, EASEA v0.3 source �les can containa section which will be included verbatim.This o�ers real freedom to the programmer, who can even include C++ compiler directives in this section.5 EASEA extensive source �le for a simple exampleHere is one of the smallest examples of .ez source �le, implementing the well-known onemax problem (max-imising the number of ones in an array of booleans). It is included to show how simple a .ez source �le lookslike. A quick glance shows that EASEA code looks very much like C++, stripped of much of its syntax. C++style comments are accepted and function bodies are written in pure C++.As soon as complex type operators (for arrays, lists, trees) already implemented by evolutionary libraries areaccepted by EASEA, user-written initialiser, crossover and mutator functions will be superuous (cfsection 7)./* EASEA implementation of the ONEMAX problem */Genome { bool x[15]; }Standard functions :Genome::initializer :for (int i=0;i<15;i++) Genome.x[i]=tossCoin(.5)?1:0;Genome::crossover : // Must return the number of concerned childrenint GeneratedChildren=0;int CrossoverPosition=(int)random(0,15);if (&child1){for(int i=0;i<15;i++)if (i<CrossoverPosition) child1.x[i]=parent1.x[i];else child1.x[i]=parent2.x[i];GeneratedChildren++;}if (&child2){for(int i=0;i<15;i++)if (i<CrossoverPosition) child2.x[i]=parent2.x[i];else child2.x[i]=parent1.x[i];GeneratedChildren++;}return GeneratedChildren;Genome::mutator : // Must return the number of mutationsint NbMut=0;for (int i=0;i<15;i++)if (tossCoin(PMut)){NbMut++;Genome.x[i]=Genome.x[i]?0:1;}if (NbMut==0) identicalGenome=true; // saves evaluation timereturn NbMut;Genome::evaluator : // Must return the score as a floatfloat Score=(float)0.0;for (int i= 0; i<15;i++)Score+=(int)Genome.x[i];return Score;Run parameters :Population size : 30 // PSizeNumber of generations : 30 // NbGenMutation probability : 0.1 // PMutCrossover probability : 1 // PCrossGenetic engine : SteadyStateEnd of genome file. 6

To give a rough idea of the volume of code generated by EASEA, onemax.ez is 49 lines long, and the generatedGALib-compatible onemax.cpp �le is more than seven times longer with 377 lines.6 PerformanceThe concern about performance surfaces whenever a piece of code is generated by a compiler. First of all, asfar as syntax is concerned, EASEA produced C++ �les are not that di�erent from what human-produced codewould have looked like . . . after debugging. Semantically speaking, it is true that when writing minor classes,a human programmer will not take the pain of writing code for operators that he knows will never be called.Although such re�nement could be included with much pain in EASEA (a �rst pass could determine whichoperators of which classes will be needed), the only drawback is that the selection scheme will deal with slightlylarger objects than necessary.However, this cost is negligible, mainly owing to two facts:1 EASEA generates source code, which is destined to be compiled by an extremely evolved C++ compiler.The code optimisation taking place in the C++ compiler will minimise the lack of optimisation of theEASEA output.2 EASEA-generated code only concerns the manipulation of genome objects which usually represents onlya few percents of the total execution time of an evolutionary algorithm (usually overwhelmingly used upby the user-written evaluation function).7 Future workFeedback from scienti�c users is already very positive and shows that v1.0 is still far ahead. Necessary improve-ments include :1 support of other libraries (among which EO),2 utilisation of host libraries complex types and operators (arrays, lists, trees, . . . and their correspondingoperators),3 implementation of default representation-independent operators for user-de�ned genomes,4 ability to allow user-de�ned function calls written in any programming language.The �rst point is very important, as supporting at least two di�erent libraries is what will give EASEA inde-pendence with reference to evolutionary libraries. This will also guide the evolution of the EASEA languagetowards the really abstract evolutionary programming language it aims to be.The second point will drastically simplify EASEA source �les: most evolutionary libraries already o�er complexstructures (arrays, lists, trees, . . .) and their corresponding operators. As soon as EASEA is capable of makinguse of those complex types and their default operators, default initialisation, mutation and crossover functionswill not be needed anymore in .ez �les, unless the programmer feels the need to specialise some of them.There is another way of removing genome-speci�c operators from .ez �les: in many cases, user genomeswill be aggregates of available types (e.g.: vectors of structures made of oats, integer and symbolic compo-nents). It is thus possible to de�ne default operators for such representations using Radcli�e's ideas [7]. Thethree crossover operators (Random Respectful Recombination, Random Assorting Recombination and RandomTransmitting Recombination) as well as the Binomial Minimal Mutation are perfect candidates for that. Ofcourse, representation-speci�c operators will still be allowed in .ez �les, as it is acknowledged that they areoften more e�cient than representation-independent operators [8]. Nevertheless, providing yet e�cient defaultoperators will be an important step towards real newcomers in the �eld (e.g.: \I only want to evolve my vectorof structures and don't want to hear about it in the �nal result").The last point is equally important to scienti�c users: many already have their own extremely complex evaluationfunctions, painstakingly written in Fortran or some other language. Heterogeneous function calls could allowthem to re-use such evaluation functions, or even plug a hardware device onto the computer which would returna physical evaluation of parameters contained in a genome.7

8 ConclusionMany important �elds in computer science have their speci�c languages (Fortran, C/C++, Lisp, Prolog,Smalltalk, . . .). Even complex applications such as databases or spread-sheets have developed their ownlanguage ! EA programmers remain however with C++, an inadapted and di�cult to use low-level objectlanguage. As a result, many scientists have no other choice than wasting a lot of time with becoming computerprogrammers and rewriting their own evolutionary algorithms. Due to thoroughly di�erent programming tech-niques and languages, their programs are barely comparable, which is a great obstacle to scienti�c cooperationand emulation.The simplicity of EASEA programming is demonstrated with the source code for the onemax problem insection 5. Although the EASEA v0.3 compiler is still minimal (it should not be necessary, for instance, to re-write completely initialisation, crossover and mutation functions for as basic a structure as an array of booleans)v0.3 can handle linked lists, trees or much more complex structures while hiding from the end-user all of theobscure uninteresting code necessary to operate object-oriented libraries.EASEA source �les are designed to be recompilable with minimal e�ort on di�erent libraries, so that di�erentresearch teams will be able to try out each others' implementations in their own environment.We hope that EASEA will be able to o�er the scienti�c community the means to try out evolutionary algorithmswith a minimal time investment as far as programming is concerned. The EASEA v0.3 compiler and its manualare available on the net [2].References[1] Evonet home page: http://www.evonet.polytechnique.fr .[2] E. Lutton et al., EVO-Lab home page (EASEA v0.3): http://www-rocq.inria.fr/EVO-Lab/ .[3] J. J. Merelo, EO home page: http:/fast.to/EO , Granada University.[4] P. Stearns, ALex & AYacc home page: http://www.bumblebeesoftware.com , Bumblebee Software Ltd.[5] M. Wall, GAlib home page: http://www.mit.edu/people/moriken/doc/galib , MIT.[6] I. Landrieu, B. Naudts, \An Object Model for Search Spaces and their Transformations," Arti�cial Evolu-tion conference, EA'99, 3-5 Nov 99, Dunkerque, France, 1999.[7] N. J. Radcli�e, \Forma Analysis and Random Respectful Recombination," ICGA'91, proceedings pp222-229, 1991.[8] N. J. Radcli�e and P. D. Surry, \Fitness variance of formae and performance prediction," FOGA'95,pp51-72, Morgan Kaufmann publ., 1995.[9] P. D. Surry and N. J. Radcli�e, \Formal Algorithms + Formal Representation = Search Strategies,"PPSN'96, proceedings 1141 pp366-375, 1996.[10] P. D. Surry, \A Prescriptive Formalism for Constructing Domain-Speci�c Evolutionary Algorithms," PhDthesis, University of Edinburgh, 1998.

8

