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2 A Markov Model for Evolutionary Algorithms2.1 Optimization modelIn the following, we will onsider stohasti proesses, or random funtions,whih are time-indexed families of random variables on a probabilisti spae(
; IP), and more preisely, Markov proesses. We aim at �nding the maximumof a funtion h : IRn 7! IR+. We suppose that the problem is onsistent:� h does not reah its upper bound at in�nity, i.e. there does not exist asequene xi of points in IRn suh that limi!1 jxij =1 and limi!1 h(xi) =supIRn h� the set of maxima Argmax (h) = fx 2 IRnjh(x) = supIRn hg is �niteAn evolutionary algorithm an be de�ned as an operator ating on populations,i.e. subsets of X = IRn. Sequenes of populations f�tg, indexed by the set Tof simulation times, a subset of IN, are produed by iterating this operator.Considering only populations of a �xed size d, an EA will be desribed as anoperator R from Xd into itself. A new population �t+1 is omputed from theurrent one �t at time t by applying R, so that �t+1 = R (�t). This algorithm willonverge, from an initial population �o 2 Xd, if �t onverges towards the maximalset of h when t goes to in�nity, that is: limt!1max fd (x;Argmax (h)) ; x 2 �tg =0. We an even suppose that the operator itself depends on t, we thus write�t+1 = Rt (�t). Rt is usually a random operator.2.2 Markov ModelThe olletion of populations over time is a disrete-time stohasti proess�t 2 X; t 2 T . At this point, assumptions on the random operator Rt mustbe made. We will de�ne a reprodution operator Rt by an elementary transitionprobability �(t; x; � ) = IP (�t+1 2 � j�t = x), the probability for the populationat time t+1 to be in a set of possible populations � if the population at time twas x 2 X .The existene of suh a transition probability makes f�tg a Markov proess.We dedue from � a global transition probability P (s; x; t; � ) = IP (�t 2 � j�s = x)to get from x 2 X at time s 2 T into � at time t 2 T :P (s; x; s; � ) = 1l� (x) ( that is 1 if x 2 � ; 0 otherwise )8t 2 T; x 2 X;P (s; x; t+ 1; � ) = ZX �(t; y; � )P (s; x; t; dy)We will not atually work on these transition probabilities, but rather on theassoiated densities �(t; x; � ) = R� �(t; x; u) du, and P (s; x; t; � ) = R� p(s; x; t; u) du.Here are some basi properties (Æ is the Dira distribution entered at 0):p(s; x; s; y) = Æ(y � x) , p(s; x; s+ 1; y) = �(s; x; y)and p(s; x; t+ 1; y) = ZX p(s; x; t; u)�(t; u; y) du



A operator Dt an be introdued, de�ned for a measurable funtion f froma vetor spae E into X by, 8t 2 T; x 2 X :Dtf(x) = ZX f(u)�(t; u; x) du (1)If f represents some riterion on the population at time t, then Dtf is an esti-mation of this riterion at time t+1. We look forward in time, using the knownvalues of f on the urrent population together with the information on possibleo�springs to ompute this estimation. We an rewrite the above equations usingDt: p(s; x; s; y) = Æ(y � x) and p(s; x; t+ 1; y) = D (p(s; x; t; �)) (y)Moreover, sine the populations are meant to be only sets, the order of oor-dinates onX is irrelevant: any permutation must leave � unhanged. If we de�ne,8� 2 Sd (the set of all permutations on d elements), x� = �x�(1); x�(2); : : : ; x�(d)�,we an write this ondition as: 8(x; u) 2 X2;8i 2 [[1; d℄℄,�(t; x; u) = �(t; x; u�) and �(t; x; u) = �(t; x� ; u)2.3 Evolutionary ModelTo shorten the proofs, we have restrited the model to individuals taken in IR, sothat X = IRd. This does not a�et the model's generality. In the �rst approahdesribed here, we will only use mutation to generate o�springs, so that oneindividual has one, and only one, o�spring. This ondition is very restritive, andin doing this we are stepping bak from the general de�nition of evolutionaryalgorithms, involving seletion (individuals an have none or many o�springs)and rossover (an individual is born from at least two parents).The initial population is generated with respet to a random isotropi law Q,that is in terms of distribution: Q(� ) = R� q(u)du where q is isotrope. De�ningp(t; x); t 2 T; x 2 X , by IP(�t 2 � ) = R� p(t; x) dx, we get:p(0; x) = q(x) and p(t+ 1; x) = ZX p(t; u)�(t; u; x) duThe mutation proess an be split into two phases: the strength of the mu-tation of a partiular individual, and the �shape� of the mutation itself. If wedo not disriminate between individuals, we should �x one for all the shape ata given time. Keeping in mind we should use isotropi funtions sine popula-tions are unordered sets, we an mutate individuals following a density gt, withgt(�u) = gt(u). Let m(x) be a �mutation vetor� in IR+d, where mi(x) is ourmutation deision on the i-th individual in the population. mi(x) = 0 stands for�no mutation at all�, and the probability of mutations grows with mi(x). We anrewrite � as:



�(t; x; y) = Ymi(x)=0 Æ(yi � xi) Ymi(x)6=0 gt(yi � xi)or �(t; x; y) = dYi=1 1mi(x)gt�yi � ximi(x) �A very simple example of deision funtion an be de�ned as follows: let �,0 � � � 1 be a threshold value,mi(x) = �0 if h(xi)� a(x) � �(b(x)� a(x))1 otherwisewhere a(x) is the lowest value of the �tness funtion h on the population x, andb(x) its highest value. That means the individuals with �tness lower than thethreshold � mutate.We ould also use a variation of elitist seletion, by letting mi(x) = 0 if xi isamong the �:d better individuals in population x, and 1 otherwise.But there is no need to restrit mi to binary values. For instane, mi(x) =h(xi)Pdj=1 h(xj) ould be used, whih represents still another adaptation of the sele-tion onept to our model.We will need in the following a generi de�nition of this model:.De�nition 1: EA proessUsing the onventions stated above, we will all �EA proess� with parameters[q; �℄ a Markov proess fXtg, taking its values in X = Rd and its times in R+ ,with the properties: P (Xt 2 � ) = Z� p(t; x) dx (2)p(0; x) = q(x) and p(t+ 1; x) = ZX p(t; u):�(t; u; x) du (3)We will all q the initialization funtion of the EA, � its transition funtion, andp its density.3 Perturbation theory3.1 Exponential momentsFreidlin and Wentzell's perturbation theory makes an extensive use of expo-nential moments of the measures of interest. The measures �t, where �t(� ) =IP(�t 2 � ) = R� p(t; x) dy, are examined here. Their exponential moments are:Ht(�) = ln ZX eh�;xip(t; x)dx (4)



As in setion 2.2, we an introdue an operator Gt, de�ned for a measurablefuntion f from a vetor spae E into X by, 8t 2 T; x 2 X :Gtf(x) = ZX f(u)�(t; x; u) du (5)(the variables are swithed in omparison to the ones of the Dt de�nition). Gtdoes the opposite of Dt: instead of looking forward in time, trying to estimatethe future value of some riterion f , it looks bakward, estimating the value ofthis riterion on the previous population. We then write:Ht+1(�) = ln ZX p(t; u)Gt �eh�;�i� (u) duIterating this result, and letting �tf(x) = lnGt �ef� (x), we get:Ht(�) = ln ZX q(x)e(Qts=1 �s)(eh�;�i)(x)dx3.2 Moments propertiesThe properties we are interested in apply to the iterates of the � operator onlinear funtions. Let us de�ne a funtion t from IR into IR+ by:t(s) = ln ZIR es ugt(u) du (6)t is atually the exponential moment assoiated with gt, the mutation law, andsummarizes all the useful information on it from the point of view of exponentialmoments. We get:Ht+1(�) = ln ZX p(t; u)eh�;uiePdi=1 t(�i mi(u)) duwhere d is the population's size, p its density at time t, and m the mutationdeision.Freidlin and Wentzell's perturbation theorem gives only asymptoti informa-tions on a probability distribution. However, under somewhat more restritiveonditions and minor hanges in the original proof, we have established an upperbound on the distributions, that applies globally instead of asymptotially (seeappendix B for proofs).Let us reall the Legendre's transform de�nition:.De�nition 2: Legendre's transformGiven H : X ! IR onvex, the Legendre's transform of H is, for x 2 X :LH(x) = supu2X (hu; xi �H(u)) (7).Theorem 1: Uniform boundLet ��h	 ; h 2 IR+ be a family of probability measures on X . For � 2 X , wede�ne Hh(�) = ln RX eh�;xi d�h(x). Hh is onvex. Let us make the followinghypotheses:



� for any �xed �, h 7! Hh(�) is a non-inreasing funtion� there exists some non-inreasing funtion � : IR�+ ! IR�+ suh that:� limh!0 �(h) =1� 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) exists and the limit H is C1Then for r 2 IR, v 2 X , we have: �h (fx 2 X; hv; xi � rg) � e��(h) infhv;xi�r LH(x)Note 1: To preserve Freidlin and Wentzell's notations, we have used here a parameterh to index the family of measures, and examined their behavior as h! 0. However, tobe onsistent with the indexing of populations by t in EAs, results will be stated usingt!1 in the following.Note 2: In the following we will respetively speak, for LH and �, of an �ationfuntional� and a normalization fator for the familly of measures ��h	.We are speially interested in the ase v = �ei, where ei is the base vetorwith null omponents exept for the oordinate i: we then have xi � r or xi �r. Let us suppose the onditions of the theorem are ful�lled. We will buildhyperubi �balls�, by exluding 2:d half-spaes. These half-spaes being de�nedby some relation like xi > r, a permutation on the oordinates doesn't hangeanything, and we will get an exponential upper bound on the probability to beoutside this ball. Taking into aount setions 3.1 and 3.2's results on the Goperator (equation 5), we get:.Theorem 2: Probability asymptotisLet us examine an EA proess with isotropi initialization funtion q, and withtransition funtion �, with:�(t; x; y) = dYi=1 1mi(x)gt�yi � ximi(x) �If there exists:� an non-dereasing funtion � : R+ ! R+ , with limh!0 �(h) =1,� a funtion � 7! H(�) suh that 8�; 1�(t)Ht (�(t)�) � H(�),then 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) exists. And if we letA = fx 2 X j9i; jxi � xoj � rg, we get: P (t; A) � 2:d:e��(t) infA LH(x)4 Convergene speed4.1 Partiular values of gtIn order to use theorem 2, let us assume that our mutation kernel gt has thefollowing form: gt(u) = ktg(kt:u) where g = 121l[�1;1℄. This yields: t =  � skt�,where: (s) = ln 12 R 1�1 esu du = ln sinh s� ln s.Let us reall that m(u) is the mutation deision vetor, where mi(u) standsfor the mutation rate of the i-th individual in population u. As 0 � (s) � s, we



obtain: Ht+1(�) = ln ZX p(t; u)eh�;uiePdi=1 ��i mi(u)kt � duHt(�) � Ht+1(�) � ln ZX p(t; u)eh�;u+m(u)kt i du4.2 How to get an usable ation funtional LH?The previous relation shows whih riterion on kt and m implies the existeneof some � for whih the limit exists, and for whih theorem 2 is not triviallyveri�ed:� If H0(�) > Cj�j1+�, the limit H(�) will not exist.� If P1s=0 1kt onverges, H0(�) � Ht(�) � H0(�) + j�jP1s=0 1kt , and LH isin�nite almost everywhere.The limit will exist if P1t=0 1kt 
�; RX p(t; u)m(u) du� is �nite.When 1�(t)Ht(�(t)�) onverges towards H(�), the upper bound theorems apply.To get a non-trivial result, we need that 1 > infAr;xo LH(x) > 0, whih will betrue, if H is onvex, for large enough radius r. Finally, we get an exponentialbound on probabilities of being outside a disk D of radius r around an optimum.4.3 Sojourn timesThe sojourn time of an EA proess in a region D of the populations spae X ,for a given simulation (that is, a run of the algorithm), an be de�ned as:�(D) = 1Xt=0 1lD(�t)This random variable an be understood as the number of elementary timeunits during whih the population is inside D. If theorem 2 applies, we get theimmediate upper bound:E (�(D)) = 1Xt=0 P (t;XnD) � 1Xt=0 2:d:e��(t) infXnD LH(x)that, together with Chebyhev's inequality, provides an estimate of the timeafter whih the EA has �onverged� into D:.Theorem 3: Convergene speedIf theorem 2 (probability asymptotis) applies, then:IP 1X0 1lXnD(�t)dt > l! � 1l 1Xt=0 2:d:e��(t) infXnD LH(x)In other words, the probability to be outside D during more than l time unitsis bounded by 1lE (�(D)).



5 Limits and prospetsThe use of the onvergene theorems presented above is triky: without an ex-pliit form of � in the general ase, we need to treat this problem for everypartiular ase, taking into aount the exat mutation operator (that is, theproperties of m) and the harateristis of the objetive funtion.The ritial role of the values 1kt 
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13. A. Trouvé, Rough large deviation estimates for the optimal onvergene speed ex-ponent of generalized simulated annealing algorithms. 199314. M.D. Vose. Formalizing geneti algorithms. In Geneti Algorithms, Neural Net-works and Simulated Annealing Applied to Problems in Signal and Image proess-ing. The institute of Eletrial and Eletronis Engineers In., 8th-9th May 1990.Kelvin Conferene Centre, University of Glasgow.15. Y. Landrin-Shweitzer, E. Lutton. Perturbation theory for Evolutionary Algo-rithms. Inria Researh Report, 2000.Appendix A: Notations[[m;m0℄℄ set of the integers i 2 IN;m � i � m0[x; x0℄ set of the reals u 2 IR; x � u � x0Y X set of the funtions f : X 7! YSd permutations group on [[m;m0℄℄1lX harateristi funtion of a set XIP (E) probability of an event Ed population sizeX set of all individualsp(t; x) probability density to have a population x at time tq(x) probability density for the initial population�(t; u; x) probability density to produe a population x at time t+ 1 if the po-pulation at time t is uAppendix B: Sketh of the proofsUniform bound theoremWe begin by stating here some lemma usefull in the proof of our main theorem,and whose proofs, rather straightforward, an be found in [15℄..Lemma 1: Hyperplane separation, real aseLet H be a onvex funtion on R, suh that H(0) = 0 and LH be stritly onvex.Let A be a range in R, with s(A) = infx2A LH(x). With these assumptions, 8 2 R�+ ,there exists some w 2 R verifying 8x 2 A;w:x�H(w) � s(A)� .Lemma 2: Hyperplane separationLet H 2 U (X), r 2 R and v 2 X suh that 8t 2 R; 8q 2 X j hv; qi = 0, we have H(tv+q) = H(tv � q) (that means v is a symmetry axis for H). If A = fx 2 X; hv; xi � rg,s(A) = infx2A LH(x), 8 2 R�+ there exists w 2 X verifying: 8x 2 A; hw; xi �H(w) �s(A)� .Lemma 3: Limit from belowLet Hh : X ! IR onvex suh that 8� 2 X; 8(h; h0) 2 R�+2 with h0 � h, we haveHh0(�) � Hh(�). Let � 2 (R�+)R�+, stritly dereasing, verifying:� limh!0 �(h) =1� 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) existsThen 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) is reahed from below.We are now able to prove theorem 1:Proof Let s = infhv;xi>r LH(x). If s =1, �h (fx 2 X; hv; xi > rg) = 0In the other ase, let w 2 X suh that 8x j hv; xi > r; hw; xi �H(w) � s.



Using the exponential Chebyhev's inequality, we get:�h (fx 2 X; hv; xi > rg) � �h (fhw; xi �H(w) � sg)� ZX e�(h)(hw;xi�H(w)�s) � e�(h)� 1�(h)Hh(�(h)w)�H(w)�e��(h)s � e��(h)ssine the H limit is reahed from below. �Appliation to EAs.Lemma 4: Exponential moments' properties ILet us onsider an EA proess with density p and transition funtion �. For � 2 X,we de�ne Ht(�) = ln RX eh�;xip(t; y)dyLet E be a vetor spae, and f 2 EX measurable, Gtf(x) = RX f(u)�(t; x; u) du, and�tf(x) = ln RX ef(u)�(t; x; u) du = lnGt �ef� (x)ThenHt+1(�) = ln RX p(t; u)Gt �eh�;�i� (u) du, andHt(�) = ln RX q(x)e(Qts=1 �s)(eh�;�i)(x)dx..Lemma 5: Exponential moments' properties IILet us onsider an EA proess with density p and transition funtion � given by theexpression: �(t; x:y) = dYi=1 1mi(x)gt�yi � ximi(x) �ThenHt+1(�) = ln RX p(t; u)eh�;uiePdi=1 t(�i mi(u)) du, where t(s) = ln RRes ugt(u) du..Lemma 6: Exponential moments' properties IIILet us onsider an EA proess with isotropi initialization funtion q, and with transi-tion funtion � =Qdi=1 1mi(x)gt � yi�ximi(x)�, with a mutation deisionm verifying: 8� 2 Sd,8x 2 X; 8i 2 [[1; d℄℄ ;mi(x�) = m�(i)(x) (with x� = �x�(1); x�(2); : : : ; x�(d)�).Then 8� 2 Sd, Ht(�) = Ht(��).Using lemma 4, 5 and 6, we an now prove theorem 2:Proof Lemma 5, taking into aount that t(s) � 0, yields Ht+1(�) � Ht(�).We then use lemma 3 to prove that 1�(t)Ht (�(t)�) is inreasing, so it onverges if itremains bounded, and theorem 1 applies. Sine H is unhanged when oordinatesare permutated, infh�ei;xi�r LH(x) does not depend on i.Let A+i (r) = fx 2 Xjxi � rg, and A�i (r) = fx 2 Xjxi � rg. infA+i (r) LH(x) doesnot depend on i, and infA�i (r) LH(x) neither.If A = fx 2 Xj9i; jxi � xoj � rg, then A = Si A+i (xo + r)SiA�i (xo � r), and:infA LH(x) = min infA+i (xo+r)LH(x); infA�i (xo�r)LH(x)!We thus get P (t; A) � 2:d:e��(t) infA LH(x)�


