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Abstract. When considering continuous spaces EA | a convenient tool to
model these algorithms is perturbation theory. In this paper we present
preliminary results, derived from Freidlin-Wentzell theory, related to the
convergence of a simple EA model. The main result of this paper yields a
bound on sojourn times of the Markov process in subsets centered around
the maxima of the fitness function. Exploitation of this result opens
the way to convergence speed bounds with respect to some statistical
measures on the fitness function (likely related to irregularity).

1 Introduction

While strong results have been obtained in a recent past concerning the conver-
gence behaviour of particular applications of Evolutionary Algorithms (EAs),
especially in the discrete case, no generic theory has been proposed to deal at
once with a wider variety of frameworks.

In this paper, we will show how classical stochastic analysis tools can be used
in order to build a model of EA, first step toward a theoretical toolkit that could
apply to a wide range of evolutionary problems.

The main mathematical results we will rely on are inspired by Freidlin and
Wentzell’s [1] fundamental work about stochastic perturbations of dynamic sys-
tems, a necessary tool to obtain global time-related equivalents on Markov pro-
cesses. And EA modeling principles are based on Raphaél Cerf’s [8] and Olivier
Francois [10] works on GA convergence. The principles of Olivier Frangois’
MOSES model, using only selection or mutation in a discrete context, have
been partly reused in this paper to build a continuous-space model of EA.

Considering a very simple model of EA, presented in section 2, with no
crossover and a very basic selection scheme, enables us to focus on EAs’ global
behaviour along time, with affordable computational complexity.

With stronger hypotheses on exponential moments in the main theorem of
Freidlin and Wentzell’s perturbation theory, we prove a global bound on mea-
sures (theorem 2, section 3), in place of an asymptotic bound.

In section 4 this stronger version of the theorem is used to get an exponential
bound on probabilities for populations to lie in well-chosen sets, yielding an
existence theorem (theorem 3) on time-exponential bounds for sojourn times.



2 A Markov Model for Evolutionary Algorithms

2.1 Optimization model

In the following, we will consider stochastic processes, or random functions,
which are time-indexed families of random variables on a probabilistic space
(£2,P), and more precisely, Markov processes. We aim at finding the maximum

of a function h : R"™ — IRT. We suppose that the problem is consistent:

— h does not reach its upper bound at infinity, i.e. there does not exist a
sequence z; of points in IR™ such that lim; , |z;| = 00 and lim;_,, h(z;) =
SUppn» h

— the set of maxima Argmax (h) = {z € R"|h(z) = supp~ h} is finite

An evolutionary algorithm can be defined as an operator acting on populations,
i.e. subsets of X = IR". Sequences of populations {{;}, indexed by the set T'
of simulation times, a subset of IN, are produced by iterating this operator.
Considering only populations of a fixed size d, an EA will be described as an
operator R from X? into itself. A new population &, is computed from the
current one & at time ¢ by applying R, so that {41 = R (&). This algorithm will
converge, from an initial population &, € X ¢, if & converges towards the maximal
set of h when ¢ goes to infinity, that is: lim;_, o, max {d (z, Argmax (h)) ,z € &} =
0.

We can even suppose that the operator itself depends on ¢, we thus write
&1 = Ry (&). Ry is usually a random operator.

2.2 Markov Model

The collection of populations over time is a discrete-time stochastic process
& € X,t € T. At this point, assumptions on the random operator R; must
be made. We will define a reproduction operator R; by an elementary transition
probability &(t,z, ") = IP (&1 € ') = x), the probability for the population
at time ¢ 4+ 1 to be in a set of possible populations I" if the population at time ¢
was ¢ € X.

The existence of such a transition probability makes {&} a Markov process.
We deduce from @ a global transition probability P(s,z,t,I") = P (& € I'|és = z)
to get from 2z € X at time s € T into " at time ¢t € T":

P(s,x,s,I") = Ip(x) ( that is 1 if z € I" , 0 otherwise )
Vte T,z € X,P(s,x,t+1,I) :/ &(t,y, I')P(s,x,t,dy)

X

We will not actually work on these transition probabilities, but rather on the
associated densities ¢(t,x,I') = [ ¢(t,x,u) du, and P(s,x,t,I") = [, p(s,z,t,u) du.
Here are some basic properties (§ is the Dirac distribution centered at 0):

p(s,az,s,y) = (5(:[/ - ZL“) ) p(S,:U,S + ]-7y) = QS(S,ZL“,y)

and p(s,z,t + 1,y) = / p(s, 2,1, w)(t, u, y) du
X



A operator D; can be introduced, defined for a measurable function f from
a vector space E into X by, Vi€ T,z € X:

D, f(z) = /X Fw)é(t, u, ) du 1)

If f represents some criterion on the population at time ¢, then D;f is an esti-
mation of this criterion at time ¢+ 1. We look forward in time, using the known
values of f on the current population together with the information on possible
offsprings to compute this estimation. We can rewrite the above equations using
Dti

p(s,x,s,y) = 6(y - J") and p(s,x,t + lay) =D (p(S,iU,t, .)) (y)

Moreover, since the populations are meant to be only sets, the order of coor-
dinates on X is irrelevant: any permutation must leave ¢ unchanged. If we define,
Vo € 84 (the set of all permutations on d elements), z, = ($a(1) y Ta(2)s - - - ,xa(d)),
we can write this condition as: V(z,u) € X?2,Vi € [1,d],

¢t z,u) = ¢(t, x,us) and ot z,u) = o(t, 75, u)

2.3 Evolutionary Model

To shorten the proofs, we have restricted the model to individuals taken in IR, so
that X = IR?. This does not affect the model’s generality. In the first approach
described here, we will only use mutation to generate offsprings, so that one
individual has one, and only one, offspring. This condition is very restrictive, and
in doing this we are stepping back from the general definition of evolutionary
algorithms, involving selection (individuals can have none or many offsprings)
and crossover (an individual is born from at least two parents).

The initial population is generated with respect to a random isotropic law @,
that is in terms of distribution: Q(I") = [, q(u)du where g is isotrope. Defining
p(t,x),t € T,x € X, by IP(§ € I') = [, p(t, ) dx, we get:

p(0,2) = q(x) and p(t+1,2) = /Xp(t,u)(ﬁ(t,u,x) du

The mutation process can be split into two phases: the strength of the mu-
tation of a particular individual, and the “shape” of the mutation itself. If we
do not discriminate between individuals, we should fix once for all the shape at
a given time. Keeping in mind we should use isotropic functions since popula-
tions are unordered sets, we can mutate individuals following a density g¢;, with

gi(—u) = g¢(u). Let m(z) be a “mutation vector” in ]R+d, where m;(z) is our
mutation decision on the i-th individual in the population. m;(z) = 0 stands for
“no mutation at all”, and the probability of mutations grows with m;(z). We can
rewrite ¢ as:



ot,e,y) = [ owi—wz) ] aulvi— )

m;(z)=0 m;(xz)#0
or ot,x ):ﬁ L Yi— i
y Uy Y P m; (ZL’) gt m; (ZU)

A very simple example of decision function can be defined as follows: let a,
0 < a <1 be a threshold value,

0if h(z;) —a(z) > alb(z) —a(x
mi(m):{lothe(zrw)ise @ () )

where a(z) is the lowest value of the fitness function h on the population z, and
b(x) its highest value. That means the individuals with fitness lower than the
threshold a mutate.

We could also use a variation of elitist selection, by letting m;(x) = 0 if z; is
among the a.d better individuals in population z, and 1 otherwise.

But there is no need to restrict m; to binary values. For instance, m;(z) =

% could be used, which represents still another adaptation of the selec-
j=1 J

tion concept to our model.

We will need in the following a generic definition of this model:
>Definition 1: EA process
Using the conventions stated above, we will call “EA process” with parameters
[q, #] a Markov process {X;}, taking its values in X = R? and its times in Ry,
with the properties:

P(X;el)= /Fp(t,x) dx (2)
p(0,2) = q(z) and p(t + 1,2) = /Xp(t,u).qﬁ(t,u,x) du (3)

We will call ¢ the initialization function of the EA, ¢ its transition function, and
p its density.

3 Perturbation theory

3.1 Exponential moments

Freidlin and Wentzell’s perturbation theory makes an extensive use of expo-
nential moments of the measures of interest. The measures u!, where pt(I") =
IP(¢ € I') = [, p(t, x) dy, are examined here. Their exponential moments are:

Hi(a) = ln/X e p(t, x)dx (4)



As in section 2.2, we can introduce an operator G, defined for a measurable
function f from a vector space E into X by, Vi € T, x € X:

Gof(x) = /X F(w)(t, 2, u) du (5)

(the variables are switched in comparison to the ones of the D; definition). G,
does the opposite of Dy: instead of looking forward in time, trying to estimate
the future value of some criterion f, it looks backward, estimating the value of
this criterion on the previous population. We then write:

H' ) = ln/Xp(t,u)Gt (e<o‘7'>) (u) du

Iterating this result, and letting I3 f(z) = In Gy (ef) (z), we get:

H'(a) :ln/Xq(x)e( ts=1rs)(e(a'.))(:c)d:c

3.2 Moments properties

The properties we are interested in apply to the iterates of the I' operator on
linear functions. Let us define a function 7; from IR into Ry by:

Y(s) = ln/]ReS “gi(u) du (6)

v is actually the exponential moment associated with g;, the mutation law, and
summarizes all the useful information on it from the point of view of exponential
moments. We get:

H ' (a) = ln/ p(t,u)e<°"“>ezg=1%(“i mi(W) dy
X

where d is the population’s size, p its density at time ¢, and m the mutation
decision.

Freidlin and Wentzell’s perturbation theorem gives only asymptotic informa-
tions on a probability distribution. However, under somewhat more restrictive
conditions and minor changes in the original proof, we have established an upper
bound on the distributions, that applies globally instead of asymptotically (see
appendix B for proofs).

Let us recall the Legendre’s transform definition:
>Definition 2: Legendre’s transform
Given H : X — IR convex, the Legendre’s transform of H is, for x € X:

LH (z) = sup ((u,z) — H(u)) (7)
ueX

>Theorem 1: Uniform bound
Let {u"},h € RT be a family of probability measures on X. For a € X, we

define H"(o) = In [ el@®) duh(z). H" is convex. Let us make the following
hypotheses:



— for any fixed a, h — H"(a) is a non-increasing function
— there exists some non-increasing function X : R, — IR’ such that:
o limh_,o )\(h) = o0

e Va € X, H(a) = limy_sg ﬁH" (A(h)a) exists and the limit H is C*

Then forr € R,v € X, we have: p* ({z € X, (v,z) > r}) < e M) nf(o0)>r LH(2)

Note 1: To preserve Freidlin and Wentzell’s notations, we have used here a parameter
h to index the family of measures, and examined their behavior as h — 0. However, to
be consistent with the indexing of populations by ¢ in EAs, results will be stated using
t — oo in the following.

Note 2: In the following we will respectively speak, for LH and ), of an “action
functional” and a normalization factor for the familly of measures {uh }

We are specially interested in the case v = *e;, where ¢e; is the base vector
with null components except for the coordinate ¢: we then have z; < r or z; >
r. Let us suppose the conditions of the theorem are fulfilled. We will build
hypercubic “balls”, by excluding 2.d half-spaces. These half-spaces being defined
by some relation like z; > r, a permutation on the coordinates doesn’t change
anything, and we will get an exponential upper bound on the probability to be
outside this ball. Taking into account sections 3.1 and 3.2’s results on the G

operator (equation 5), we get:

>Theorem 2: Probability asymptotics
Let us examine an EA process with isotropic initialization function q, and with
transition function ¢, with:

Vs

o(t,w,y) = 11 mil(a:) 9 (lfn_(;»

If there exists:
— an non-decreasing function X\ : Ry — Ry, with limp_,o A(h) = oo,
— a function a +— H(a) such that Ve, 5 H' (\(t)a) < H(e),
then Va € X, H(a) = limy,_yo %h)Hh (AM(h)a) exists. And if we let
A= {x € X|3i,|x; — xz,| >}, we get: P (t,A) < 2.d.e ) infa LH(2)

4 Convergence speed

4.1 Particular values of g,

In order to use theorem 2, let us assume that our mutation kernel g; has the
following form: g;(u) = kig(ki.u) where g = %]1[_171]. This yields: vz = 7y (k—st),
where: y(s) =In 3 fil e*¥ du = lnsinh s — In s.

Let us recall that m(u) is the mutation decision vector, where m;(u) stands
for the mutation rate of the i-th individual in population u. As 0 < y(s) < s, we



obtain:
aq m;(u)

H'" ' (a) = ln/ p(t,u)e@"“)ezﬁ:”(T) du
X

mk(tu)> du

Hi(a) < HT ) < ln/ p(t,u)e< ’

X

4.2 How to get an usable action functional LH?

The previous relation shows which criterion on k; and m implies the existence
of some A for which the limit exists, and for which theorem 2 is not trivially
verified:

— If H%(a) > Cla|'*¢, the limit H(«) will not exist.

— If 3702, 7 converges, H%(a) < H'(a) < H%(a) + |a| X2 -, and LH is

infinite almost everywhere.

The limit will exist if 37, 7= (e, [y p(t,u)m(u) du) is finite.
When ﬁH t(A(t)a) converges towards H (a), the upper bound theorems apply.

To get a non-trivial result, we need that oo > inf,, , LH(x) > 0, which will be
true, if H is convex, for large enough radius r. Finally, we get an exponential
bound on probabilities of being outside a disk D of radius r around an optimum.

4.3 Sojourn times

The sojourn time of an EA process in a region D of the populations space X,
for a given simulation (that is, a run of the algorithm), can be defined as:

= Z]ID(ft)

This random variable can be understood as the number of elementary time
units during which the population is inside D. If theorem 2 applies, we get the
immediate upper bound:

Z P(t, X\D) < Z 2.d.e~A®) infx\p LH(z)
t=0 t=0

that, together with Chebychev’s inequality, provides an estimate of the time
after which the EA has “converged” into D:

>Theorem 3: Convergence speed
If theorem 2 (probability asymptotics) applies, then:

—X(t) infx\p LH(x
(Z“X\th)dwl) IZQde (1) infx\p LH(a)

In other words, the probability to be outside D during more than ! time units
is bounded by $E (6(D)).



5 Limits and prospects

The use of the convergence theorems presented above is tricky: without an ex-
plicit form of A in the general case, we need to treat this problem for every
particular case, taking into account the exact mutation operator (that is, the
properties of m) and the characteristics of the objective function.

The critical role of the values k% <a, Jx p(t, u)m(u) du> emphasizes the impor-

tance of the regularity of the m decision factor, strongly linked to the regularity
of the fitness function h. An analysis of the impact of some regularity measure
on the values of A\, H and LH is first to be done. There are evidences that “frac-
tal” quantities such as Legendre multifractal spectra have common features with
quantities involved in this study. Future works will also concern the analysis of
irregularities for some constrained classes of fitness functions, as in [11].

Finally, we worked on a voluntarily simplified framework respectively to the
traditional models of EAs. Further efforts will also concern a more realistic EA
model involving crossover and advanced selection schemes.
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Appendix A: Notations

[m,m']  set of the integers i € N,m < i < m/

[z, z' set of the reals u e R,z < u <z’
X set of the functions f: X —» Y
Sy permutations group on [m,m’]
Ix characteristic function of a set X

P (E) probability of an event E

d population size

X set of all individuals

p(t,x) probability density to have a population z at time ¢
q(x) probability density for the initial population

¢(t,u,z) probability density to produce a population z at time t + 1 if the po-
pulation at time ¢ is u

Appendix B: Sketch of the proofs

Uniform bound theorem

We begin by stating here some lemma usefull in the proof of our main theorem,
and whose proofs, rather straightforward, can be found in [15].
>Lemma 1: Hyperplane separation, real case
Let H be a convex function on R, such that H(0) = 0 and LH be strictly convex.
Let A be a range in R, with s(A) = inf,ca LH(z). With these assumptions, Vy € R},
there exists some w € R verifying Ve € A, w.x — H(w) > s(A) —~
>Lemma 2: Hyperplane separation
Let H e U(X), r € Randv € X such that Vt € R, Vg € X| (v,q) =0, we have H(tv+
q) = H(tv — q) (that means v is a symmetry axis for H). If A = {z € X, {v,z) > r},
s(A) = infoea LH(x), Vy € R} there exists w € X verifying: Vo € A, (w,z) — H(w) >
s(4) =7
>Lemma 3: Limit from below
Let H" : X — IR convex such that Yo € X,Y(h,h') € R;> with ' < h, we have
H" (o) > H"(at). Let X € (Ri)Ri, strictly decreasing, verifying:
[ ] limhﬁo )\(h) =0
o Vo € X, H(a) = limpo 537 H" (A(h)a) exists
Then Va € X, H(a) = limp_0 ﬁH” (A(h)) is reached from below.

We are now able to prove theorem 1:

Proof Let s = inf(, ), LH (7). If s = 00, p”" ({z € X, (v,2) > 7}) =0
In the other case, let w € X such that Vz | (v,z) > r,(w,z) — H(w) > s.



Using the exponential Chebychev’s inequality, we get:

p" ({z € X, (v,z) > r}) < p" ({(w,z) — H(w) > 5})
</ AW (w,z)—H (w)=s) eA(h)(% P (A (h)w)— H(w)) “A(h)s < = A(h)s
X

since the H limit is reached from below. I

Application to EAs

>Lemma 4: Exponential moments’ properties I

Let us consider an EA process with density p and transition function ¢. For o € X,

we define H' (o) = In [, e/ p(t,y)dy

Let E be a vector space, and f € EX measurable, Gef( fX o(t, z,u) du, and
=In [, e/™(t,z,u) du =InG¢ (ef) (2)

Then Ht“( =1In [, p(t,u)G: (e(“")> (u) du, and H'(a) = In [ q(a:)e( a1 FS)(S(Q’.>)(x)dw.

>Lemma 5: Exponential moments’ properties II
Let us consider an EA process with density p and transition function ¢ given by the

expression:
i — T
” (ymu) )
i=1 ¢

Then H'™'(a) = In [, p(t,u)e!™™ eZioi 7t (@i mi(W) gy wherey,(s) = In Je €’ du.

IS

(t,w.y) =

>Lemma 6: Exponential moments’ properties III
Let us consider an EA process with isotropic initialization function q, and with transi-

tion function ¢ = Hl ey (z)gt (% (;)) with a mutation decision m verifying: Vo € S,

Ve e X,Vi € [[1,d]] ,ml(xa) = My (j) ( ) (thh To = ($U(1)7$U(2), .. -7$a(d)))-

Then Vo € Sq, H (o) = H' ().

Using lemma 4, 5 and 6, we can now prove theorem 2:
Proof Lemma 5, taking into account that ~:(s) > 0, yields H'"(a) > H'(a).
We then use lemma 3 to prove that )\(t) H' (\(t)a) is increasing, so it converges if it

remains bounded, and theorem 1 applies. Since H is unchanged when coordinates
are permutated, inf (4. ,y>, LH(x) does not depend on i.

Let Af(r) = {z € X|z; > r}, and A; (r) = {z € X|z; <r}. ianf(r)EH(x) does
not depend on 4, and inf ,— LH (z) neither.
If A= {2z € X|3i,|x; —x,| > r}, then A=, A;"(xo +r)U; A7 (o —r), and:

i%f LH(z) = min ( inf LH(z), inf EH(x))

A (zo+r) A7 (zo—1)

We thus get P (¢, A) < 9 d.e M) infa LH(z)



