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talesAbstra
t. When 
onsidering 
ontinuous spa
es EA, a 
onvenient tool tomodel these algorithms is perturbation theory. In this paper we presentpreliminary results, derived from Freidlin-Wentzell theory, related to the
onvergen
e of a simple EA model. The main result of this paper yields abound on sojourn times of the Markov pro
ess in subsets 
entered aroundthe maxima of the �tness fun
tion. Exploitation of this result opensthe way to 
onvergen
e speed bounds with respe
t to some statisti
almeasures on the �tness fun
tion (likely related to irregularity).1 Introdu
tionWhile strong results have been obtained in a re
ent past 
on
erning the 
onver-gen
e behaviour of parti
ular appli
ations of Evolutionary Algorithms (EAs),espe
ially in the dis
rete 
ase, no generi
 theory has been proposed to deal aton
e with a wider variety of frameworks.In this paper, we will show how 
lassi
al sto
hasti
 analysis tools 
an be usedin order to build a model of EA, �rst step toward a theoreti
al toolkit that 
ouldapply to a wide range of evolutionary problems.The main mathemati
al results we will rely on are inspired by Freidlin andWentzell's [1℄ fundamental work about sto
hasti
 perturbations of dynami
 sys-tems, a ne
essary tool to obtain global time-related equivalents on Markov pro-
esses. And EA modeling prin
iples are based on Raphaël Cerf's [8℄ and OlivierFrançois [10℄ works on GA 
onvergen
e. The prin
iples of Olivier François'MOSES model, using only sele
tion or mutation in a dis
rete 
ontext, havebeen partly reused in this paper to build a 
ontinuous-spa
e model of EA.Considering a very simple model of EA, presented in se
tion 2, with no
rossover and a very basi
 sele
tion s
heme, enables us to fo
us on EAs' globalbehaviour along time, with a�ordable 
omputational 
omplexity.With stronger hypotheses on exponential moments in the main theorem ofFreidlin and Wentzell's perturbation theory, we prove a global bound on mea-sures (theorem 2, se
tion 3), in pla
e of an asymptoti
 bound.In se
tion 4 this stronger version of the theorem is used to get an exponentialbound on probabilities for populations to lie in well-
hosen sets, yielding anexisten
e theorem (theorem 3) on time-exponential bounds for sojourn times.



2 A Markov Model for Evolutionary Algorithms2.1 Optimization modelIn the following, we will 
onsider sto
hasti
 pro
esses, or random fun
tions,whi
h are time-indexed families of random variables on a probabilisti
 spa
e(
; IP), and more pre
isely, Markov pro
esses. We aim at �nding the maximumof a fun
tion h : IRn 7! IR+. We suppose that the problem is 
onsistent:� h does not rea
h its upper bound at in�nity, i.e. there does not exist asequen
e xi of points in IRn su
h that limi!1 jxij =1 and limi!1 h(xi) =supIRn h� the set of maxima Argmax (h) = fx 2 IRnjh(x) = supIRn hg is �niteAn evolutionary algorithm 
an be de�ned as an operator a
ting on populations,i.e. subsets of X = IRn. Sequen
es of populations f�tg, indexed by the set Tof simulation times, a subset of IN, are produ
ed by iterating this operator.Considering only populations of a �xed size d, an EA will be des
ribed as anoperator R from Xd into itself. A new population �t+1 is 
omputed from the
urrent one �t at time t by applying R, so that �t+1 = R (�t). This algorithm will
onverge, from an initial population �o 2 Xd, if �t 
onverges towards the maximalset of h when t goes to in�nity, that is: limt!1max fd (x;Argmax (h)) ; x 2 �tg =0. We 
an even suppose that the operator itself depends on t, we thus write�t+1 = Rt (�t). Rt is usually a random operator.2.2 Markov ModelThe 
olle
tion of populations over time is a dis
rete-time sto
hasti
 pro
ess�t 2 X; t 2 T . At this point, assumptions on the random operator Rt mustbe made. We will de�ne a reprodu
tion operator Rt by an elementary transitionprobability �(t; x; � ) = IP (�t+1 2 � j�t = x), the probability for the populationat time t+1 to be in a set of possible populations � if the population at time twas x 2 X .The existen
e of su
h a transition probability makes f�tg a Markov pro
ess.We dedu
e from � a global transition probability P (s; x; t; � ) = IP (�t 2 � j�s = x)to get from x 2 X at time s 2 T into � at time t 2 T :P (s; x; s; � ) = 1l� (x) ( that is 1 if x 2 � ; 0 otherwise )8t 2 T; x 2 X;P (s; x; t+ 1; � ) = ZX �(t; y; � )P (s; x; t; dy)We will not a
tually work on these transition probabilities, but rather on theasso
iated densities �(t; x; � ) = R� �(t; x; u) du, and P (s; x; t; � ) = R� p(s; x; t; u) du.Here are some basi
 properties (Æ is the Dira
 distribution 
entered at 0):p(s; x; s; y) = Æ(y � x) , p(s; x; s+ 1; y) = �(s; x; y)and p(s; x; t+ 1; y) = ZX p(s; x; t; u)�(t; u; y) du



A operator Dt 
an be introdu
ed, de�ned for a measurable fun
tion f froma ve
tor spa
e E into X by, 8t 2 T; x 2 X :Dtf(x) = ZX f(u)�(t; u; x) du (1)If f represents some 
riterion on the population at time t, then Dtf is an esti-mation of this 
riterion at time t+1. We look forward in time, using the knownvalues of f on the 
urrent population together with the information on possibleo�springs to 
ompute this estimation. We 
an rewrite the above equations usingDt: p(s; x; s; y) = Æ(y � x) and p(s; x; t+ 1; y) = D (p(s; x; t; �)) (y)Moreover, sin
e the populations are meant to be only sets, the order of 
oor-dinates onX is irrelevant: any permutation must leave � un
hanged. If we de�ne,8� 2 Sd (the set of all permutations on d elements), x� = �x�(1); x�(2); : : : ; x�(d)�,we 
an write this 
ondition as: 8(x; u) 2 X2;8i 2 [[1; d℄℄,�(t; x; u) = �(t; x; u�) and �(t; x; u) = �(t; x� ; u)2.3 Evolutionary ModelTo shorten the proofs, we have restri
ted the model to individuals taken in IR, sothat X = IRd. This does not a�e
t the model's generality. In the �rst approa
hdes
ribed here, we will only use mutation to generate o�springs, so that oneindividual has one, and only one, o�spring. This 
ondition is very restri
tive, andin doing this we are stepping ba
k from the general de�nition of evolutionaryalgorithms, involving sele
tion (individuals 
an have none or many o�springs)and 
rossover (an individual is born from at least two parents).The initial population is generated with respe
t to a random isotropi
 law Q,that is in terms of distribution: Q(� ) = R� q(u)du where q is isotrope. De�ningp(t; x); t 2 T; x 2 X , by IP(�t 2 � ) = R� p(t; x) dx, we get:p(0; x) = q(x) and p(t+ 1; x) = ZX p(t; u)�(t; u; x) duThe mutation pro
ess 
an be split into two phases: the strength of the mu-tation of a parti
ular individual, and the �shape� of the mutation itself. If wedo not dis
riminate between individuals, we should �x on
e for all the shape ata given time. Keeping in mind we should use isotropi
 fun
tions sin
e popula-tions are unordered sets, we 
an mutate individuals following a density gt, withgt(�u) = gt(u). Let m(x) be a �mutation ve
tor� in IR+d, where mi(x) is ourmutation de
ision on the i-th individual in the population. mi(x) = 0 stands for�no mutation at all�, and the probability of mutations grows with mi(x). We 
anrewrite � as:



�(t; x; y) = Ymi(x)=0 Æ(yi � xi) Ymi(x)6=0 gt(yi � xi)or �(t; x; y) = dYi=1 1mi(x)gt�yi � ximi(x) �A very simple example of de
ision fun
tion 
an be de�ned as follows: let �,0 � � � 1 be a threshold value,mi(x) = �0 if h(xi)� a(x) � �(b(x)� a(x))1 otherwisewhere a(x) is the lowest value of the �tness fun
tion h on the population x, andb(x) its highest value. That means the individuals with �tness lower than thethreshold � mutate.We 
ould also use a variation of elitist sele
tion, by letting mi(x) = 0 if xi isamong the �:d better individuals in population x, and 1 otherwise.But there is no need to restri
t mi to binary values. For instan
e, mi(x) =h(xi)Pdj=1 h(xj) 
ould be used, whi
h represents still another adaptation of the sele
-tion 
on
ept to our model.We will need in the following a generi
 de�nition of this model:.De�nition 1: EA pro
essUsing the 
onventions stated above, we will 
all �EA pro
ess� with parameters[q; �℄ a Markov pro
ess fXtg, taking its values in X = Rd and its times in R+ ,with the properties: P (Xt 2 � ) = Z� p(t; x) dx (2)p(0; x) = q(x) and p(t+ 1; x) = ZX p(t; u):�(t; u; x) du (3)We will 
all q the initialization fun
tion of the EA, � its transition fun
tion, andp its density.3 Perturbation theory3.1 Exponential momentsFreidlin and Wentzell's perturbation theory makes an extensive use of expo-nential moments of the measures of interest. The measures �t, where �t(� ) =IP(�t 2 � ) = R� p(t; x) dy, are examined here. Their exponential moments are:Ht(�) = ln ZX eh�;xip(t; x)dx (4)



As in se
tion 2.2, we 
an introdu
e an operator Gt, de�ned for a measurablefun
tion f from a ve
tor spa
e E into X by, 8t 2 T; x 2 X :Gtf(x) = ZX f(u)�(t; x; u) du (5)(the variables are swit
hed in 
omparison to the ones of the Dt de�nition). Gtdoes the opposite of Dt: instead of looking forward in time, trying to estimatethe future value of some 
riterion f , it looks ba
kward, estimating the value ofthis 
riterion on the previous population. We then write:Ht+1(�) = ln ZX p(t; u)Gt �eh�;�i� (u) duIterating this result, and letting �tf(x) = lnGt �ef� (x), we get:Ht(�) = ln ZX q(x)e(Qts=1 �s)(eh�;�i)(x)dx3.2 Moments propertiesThe properties we are interested in apply to the iterates of the � operator onlinear fun
tions. Let us de�ne a fun
tion 
t from IR into IR+ by:
t(s) = ln ZIR es ugt(u) du (6)
t is a
tually the exponential moment asso
iated with gt, the mutation law, andsummarizes all the useful information on it from the point of view of exponentialmoments. We get:Ht+1(�) = ln ZX p(t; u)eh�;uiePdi=1 
t(�i mi(u)) duwhere d is the population's size, p its density at time t, and m the mutationde
ision.Freidlin and Wentzell's perturbation theorem gives only asymptoti
 informa-tions on a probability distribution. However, under somewhat more restri
tive
onditions and minor 
hanges in the original proof, we have established an upperbound on the distributions, that applies globally instead of asymptoti
ally (seeappendix B for proofs).Let us re
all the Legendre's transform de�nition:.De�nition 2: Legendre's transformGiven H : X ! IR 
onvex, the Legendre's transform of H is, for x 2 X :LH(x) = supu2X (hu; xi �H(u)) (7).Theorem 1: Uniform boundLet ��h	 ; h 2 IR+ be a family of probability measures on X . For � 2 X , wede�ne Hh(�) = ln RX eh�;xi d�h(x). Hh is 
onvex. Let us make the followinghypotheses:



� for any �xed �, h 7! Hh(�) is a non-in
reasing fun
tion� there exists some non-in
reasing fun
tion � : IR�+ ! IR�+ su
h that:� limh!0 �(h) =1� 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) exists and the limit H is C1Then for r 2 IR, v 2 X , we have: �h (fx 2 X; hv; xi � rg) � e��(h) infhv;xi�r LH(x)Note 1: To preserve Freidlin and Wentzell's notations, we have used here a parameterh to index the family of measures, and examined their behavior as h! 0. However, tobe 
onsistent with the indexing of populations by t in EAs, results will be stated usingt!1 in the following.Note 2: In the following we will respe
tively speak, for LH and �, of an �a
tionfun
tional� and a normalization fa
tor for the familly of measures ��h	.We are spe
ially interested in the 
ase v = �ei, where ei is the base ve
torwith null 
omponents ex
ept for the 
oordinate i: we then have xi � r or xi �r. Let us suppose the 
onditions of the theorem are ful�lled. We will buildhyper
ubi
 �balls�, by ex
luding 2:d half-spa
es. These half-spa
es being de�nedby some relation like xi > r, a permutation on the 
oordinates doesn't 
hangeanything, and we will get an exponential upper bound on the probability to beoutside this ball. Taking into a

ount se
tions 3.1 and 3.2's results on the Goperator (equation 5), we get:.Theorem 2: Probability asymptoti
sLet us examine an EA pro
ess with isotropi
 initialization fun
tion q, and withtransition fun
tion �, with:�(t; x; y) = dYi=1 1mi(x)gt�yi � ximi(x) �If there exists:� an non-de
reasing fun
tion � : R+ ! R+ , with limh!0 �(h) =1,� a fun
tion � 7! H(�) su
h that 8�; 1�(t)Ht (�(t)�) � H(�),then 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) exists. And if we letA = fx 2 X j9i; jxi � xoj � rg, we get: P (t; A) � 2:d:e��(t) infA LH(x)4 Convergen
e speed4.1 Parti
ular values of gtIn order to use theorem 2, let us assume that our mutation kernel gt has thefollowing form: gt(u) = ktg(kt:u) where g = 121l[�1;1℄. This yields: 
t = 
 � skt�,where: 
(s) = ln 12 R 1�1 esu du = ln sinh s� ln s.Let us re
all that m(u) is the mutation de
ision ve
tor, where mi(u) standsfor the mutation rate of the i-th individual in population u. As 0 � 
(s) � s, we



obtain: Ht+1(�) = ln ZX p(t; u)eh�;uiePdi=1 
��i mi(u)kt � duHt(�) � Ht+1(�) � ln ZX p(t; u)eh�;u+m(u)kt i du4.2 How to get an usable a
tion fun
tional LH?The previous relation shows whi
h 
riterion on kt and m implies the existen
eof some � for whi
h the limit exists, and for whi
h theorem 2 is not triviallyveri�ed:� If H0(�) > Cj�j1+�, the limit H(�) will not exist.� If P1s=0 1kt 
onverges, H0(�) � Ht(�) � H0(�) + j�jP1s=0 1kt , and LH isin�nite almost everywhere.The limit will exist if P1t=0 1kt 
�; RX p(t; u)m(u) du� is �nite.When 1�(t)Ht(�(t)�) 
onverges towards H(�), the upper bound theorems apply.To get a non-trivial result, we need that 1 > infAr;xo LH(x) > 0, whi
h will betrue, if H is 
onvex, for large enough radius r. Finally, we get an exponentialbound on probabilities of being outside a disk D of radius r around an optimum.4.3 Sojourn timesThe sojourn time of an EA pro
ess in a region D of the populations spa
e X ,for a given simulation (that is, a run of the algorithm), 
an be de�ned as:�(D) = 1Xt=0 1lD(�t)This random variable 
an be understood as the number of elementary timeunits during whi
h the population is inside D. If theorem 2 applies, we get theimmediate upper bound:E (�(D)) = 1Xt=0 P (t;XnD) � 1Xt=0 2:d:e��(t) infXnD LH(x)that, together with Cheby
hev's inequality, provides an estimate of the timeafter whi
h the EA has �
onverged� into D:.Theorem 3: Convergen
e speedIf theorem 2 (probability asymptoti
s) applies, then:IP 1X0 1lXnD(�t)dt > l! � 1l 1Xt=0 2:d:e��(t) infXnD LH(x)In other words, the probability to be outside D during more than l time unitsis bounded by 1lE (�(D)).



5 Limits and prospe
tsThe use of the 
onvergen
e theorems presented above is tri
ky: without an ex-pli
it form of � in the general 
ase, we need to treat this problem for everyparti
ular 
ase, taking into a

ount the exa
t mutation operator (that is, theproperties of m) and the 
hara
teristi
s of the obje
tive fun
tion.The 
riti
al role of the values 1kt 
�; RX p(t; u)m(u) du� emphasizes the impor-tan
e of the regularity of the m de
ision fa
tor, strongly linked to the regularityof the �tness fun
tion h. An analysis of the impa
t of some regularity measureon the values of �, H and LH is �rst to be done. There are eviden
es that �fra
-tal� quantities su
h as Legendre multifra
tal spe
tra have 
ommon features withquantities involved in this study. Future works will also 
on
ern the analysis ofirregularities for some 
onstrained 
lasses of �tness fun
tions, as in [11℄.Finally, we worked on a voluntarily simpli�ed framework respe
tively to thetraditional models of EAs. Further e�orts will also 
on
ern a more realisti
 EAmodel involving 
rossover and advan
ed sele
tion s
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h Report, 2000.Appendix A: Notations[[m;m0℄℄ set of the integers i 2 IN;m � i � m0[x; x0℄ set of the reals u 2 IR; x � u � x0Y X set of the fun
tions f : X 7! YSd permutations group on [[m;m0℄℄1lX 
hara
teristi
 fun
tion of a set XIP (E) probability of an event Ed population sizeX set of all individualsp(t; x) probability density to have a population x at time tq(x) probability density for the initial population�(t; u; x) probability density to produ
e a population x at time t+ 1 if the po-pulation at time t is uAppendix B: Sket
h of the proofsUniform bound theoremWe begin by stating here some lemma usefull in the proof of our main theorem,and whose proofs, rather straightforward, 
an be found in [15℄..Lemma 1: Hyperplane separation, real 
aseLet H be a 
onvex fun
tion on R, su
h that H(0) = 0 and LH be stri
tly 
onvex.Let A be a range in R, with s(A) = infx2A LH(x). With these assumptions, 8
 2 R�+ ,there exists some w 2 R verifying 8x 2 A;w:x�H(w) � s(A)� 
.Lemma 2: Hyperplane separationLet H 2 U (X), r 2 R and v 2 X su
h that 8t 2 R; 8q 2 X j hv; qi = 0, we have H(tv+q) = H(tv � q) (that means v is a symmetry axis for H). If A = fx 2 X; hv; xi � rg,s(A) = infx2A LH(x), 8
 2 R�+ there exists w 2 X verifying: 8x 2 A; hw; xi �H(w) �s(A)� 
.Lemma 3: Limit from belowLet Hh : X ! IR 
onvex su
h that 8� 2 X; 8(h; h0) 2 R�+2 with h0 � h, we haveHh0(�) � Hh(�). Let � 2 (R�+)R�+, stri
tly de
reasing, verifying:� limh!0 �(h) =1� 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) existsThen 8� 2 X;H(�) = limh!0 1�(h)Hh (�(h)�) is rea
hed from below.We are now able to prove theorem 1:Proof Let s = infhv;xi>r LH(x). If s =1, �h (fx 2 X; hv; xi > rg) = 0In the other 
ase, let w 2 X su
h that 8x j hv; xi > r; hw; xi �H(w) � s.



Using the exponential Cheby
hev's inequality, we get:�h (fx 2 X; hv; xi > rg) � �h (fhw; xi �H(w) � sg)� ZX e�(h)(hw;xi�H(w)�s) � e�(h)� 1�(h)Hh(�(h)w)�H(w)�e��(h)s � e��(h)ssin
e the H limit is rea
hed from below. �Appli
ation to EAs.Lemma 4: Exponential moments' properties ILet us 
onsider an EA pro
ess with density p and transition fun
tion �. For � 2 X,we de�ne Ht(�) = ln RX eh�;xip(t; y)dyLet E be a ve
tor spa
e, and f 2 EX measurable, Gtf(x) = RX f(u)�(t; x; u) du, and�tf(x) = ln RX ef(u)�(t; x; u) du = lnGt �ef� (x)ThenHt+1(�) = ln RX p(t; u)Gt �eh�;�i� (u) du, andHt(�) = ln RX q(x)e(Qts=1 �s)(eh�;�i)(x)dx..Lemma 5: Exponential moments' properties IILet us 
onsider an EA pro
ess with density p and transition fun
tion � given by theexpression: �(t; x:y) = dYi=1 1mi(x)gt�yi � ximi(x) �ThenHt+1(�) = ln RX p(t; u)eh�;uiePdi=1 
t(�i mi(u)) du, where 
t(s) = ln RRes ugt(u) du..Lemma 6: Exponential moments' properties IIILet us 
onsider an EA pro
ess with isotropi
 initialization fun
tion q, and with transi-tion fun
tion � =Qdi=1 1mi(x)gt � yi�ximi(x)�, with a mutation de
isionm verifying: 8� 2 Sd,8x 2 X; 8i 2 [[1; d℄℄ ;mi(x�) = m�(i)(x) (with x� = �x�(1); x�(2); : : : ; x�(d)�).Then 8� 2 Sd, Ht(�) = Ht(��).Using lemma 4, 5 and 6, we 
an now prove theorem 2:Proof Lemma 5, taking into a

ount that 
t(s) � 0, yields Ht+1(�) � Ht(�).We then use lemma 3 to prove that 1�(t)Ht (�(t)�) is in
reasing, so it 
onverges if itremains bounded, and theorem 1 applies. Sin
e H is un
hanged when 
oordinatesare permutated, infh�ei;xi�r LH(x) does not depend on i.Let A+i (r) = fx 2 Xjxi � rg, and A�i (r) = fx 2 Xjxi � rg. infA+i (r) LH(x) doesnot depend on i, and infA�i (r) LH(x) neither.If A = fx 2 Xj9i; jxi � xoj � rg, then A = Si A+i (xo + r)SiA�i (xo � r), and:infA LH(x) = min infA+i (xo+r)LH(x); infA�i (xo�r)LH(x)!We thus get P (t; A) � 2:d:e��(t) infA LH(x)�


