
Issues on the Optimisation of Evolutionary Algorithms CodePierre Collet1CMAP�E
ole Polyte
hnique91128 Palaiseau
edex - Fran
ePierre.Collet�polyte
hnique.fr Jean Lou
hetENSTA25 Bd Vi
tor75015 Paris - Fran
eJean.Lou
het�ensta.fr Evelyne LuttonINRIAProjet FRACTALES78150 Le Chesnay - Fran
eEvelyne.Lutton�inria.frAbstra
t - The aim of this paper is to show thatthe
ommon belief, in the evolutionary
ommunity,that evaluation time usually takes over 90% of thetotal time, is far from being always true. In fa
t,many real-world appli
ations showed a mu
h lowerper
entage. This raises several questions, one of thembeing the balan
e between �tness and operators
om-putational
omplexity: what is the use of elaboratingsmart evolutionary operators to redu
e the numberof evaluations if as a result, the total
omputationtime is in
reased ?I. Introdu
tionIn a re
ent resear
h work, we
ompared two evolu-tionary libraries with the help of testben
h fun
tions[20℄.During the extensive tests that were involved, we
amea
ross the fa
t that the time spent by an evolutionaryalgorithm in the evaluation/�tness fun
tion was not ashigh as expe
ted.In fa
t, it appeared that the overhead indu
ed by ge-neti
 operators (sele
tion, mutation, re
ombination, et
.)was far from being negligible in many
ases. Therefore,it
ame down to us that people may not always be opti-mising the right pie
e of
ode.After shortly dis
ussing EA
ode optimisation, wewill des
ribe four very di�erent evolutionary algorithmswhere the evaluation fun
tion takes from 98% of the totaltime down to 26% only.We will then use
ommon testben
hes to try to showthat in some
ases, over-optimising evolutionary opera-tors may not be a ni
e idea after all.II. Optimising the EA
odeMany people have been working on the optimisation ofthe
ode of Evolutionary Algorithms, with the result thatmany papers are available on the subje
t. As s
ientists,resear
hers
on
entrated on the optimisation of the algo-rithm itself using the widespread knowledge on this �eld.As an example, many resear
h works were
ondu
ted onoptimising the size of the population [15℄, [2℄: Fu
hs[11℄1European Commission IST Programme 1999-12679 (Future andEmerging Te
hnologies).

uses testben
hes to �nd the optimal population size to re-du
e the number of evaluations, Colin Reeves[25℄ tries to�nd the minimum population size with no performan
eloss.However, with a smaller population size,
onvergen
eto lo
al optima tends to appear rapidly. One is thereforetempted to improve (read
omplexify) geneti
 operatorsto �ght against premature
onvergen
e [28℄.All in all, most people try to minimise the number ofevaluations by all possible means [24℄, on the fair groundthat the evaluation fun
tion of their problem is extremelydemanding in CPU time.Moreover, one often refers to a re
eived theory thatthe CPU time spent in the evaluation fun
tion usuallya

ounts for more than 90% of the total time.In fa
t, empiri
al and experimental
omparisons provejust as diÆ
ult as theoreti
al demonstrations [33℄, [32℄.Many fa
tors need to be taken into a

ount to evaluatethe eÆ
ien
y of a given algorithm for a given problemand many test sets have been introdu
ed over the years[6℄, [1℄, [26℄, [5℄, [22℄, [9℄, [16℄, [31℄. Some studies were fo-
ussed on the �tness value as an eÆ
ien
y measure, otherones
onsider s
alability [32℄,
omputational eÆ
ien
y (interm of number of fun
tion evaluations), parameters set-ting [10℄, [21℄, quality a
hievable within a given time [34℄.Few tests were really
onsidering
omputational
omplex-ity issues, dire
tly related to CPU time.A re
ent study
omparing two evolutionary libraries(GALib and EO) on testben
h fun
tions using theEASEA
ompiler2 [7℄, [20℄ showed that the two librarieswere giving very similar results although EO[8℄, a mod-ern library making extensive use of C++ templates, wasusing more CPU time to handle genomes. While this wasnot at �rst a great
on
ern,
loser examination revealedthat in many
ases, the �gure of 90% was not rea
hed,even with relatively
omplex evaluation fun
tions.2EASEA (EAsy Spe
i�
ation of Evolutionary Algorithms) is alanguage dedi
ated to evolutionary libraries now developed withinthe DREAM European Proje
t. Its aim is to relieve the program-mer of the task of learning how to use evolutionary libraries andobje
t-oriented programming by only spe
ifying the algorithm in a.ez sour
e �le.

III. Experimental resultsAs testben
hes may not re
e
t reality, we looked ba
kat real appli
ations rather than ben
hmark fun
tions. Al-though in some
ases, evaluation took well over 90% ofthe total time, we dis
overed that in many implementa-tions, the per
entage was mu
h smaller indeed.In all
ases, the programmers of these experimentshave been trying to minimise evaluation time, some-times by adding more information than ne
essary in thegenome, or by using elaborate re
ombination or mutationoperators.The extra time spent in the evolutionary algorithmimproved the exploration of the sear
h spa
e. However,the indu
ed extra CPU-
ost
ould have been used to getmore evaluations done. The following experiments showthat a balan
e must be found.A. Inverse problem for aÆne IFSIterated fun
tions system (IFS) theory is an importanttopi
 in the domain of fra
tals, mainly for image
om-pression appli
ations.A major
hallenge of both theoreti
al and pra
ti
alinterest is the resolution of the so-
alled inverse problem.Ex
ept for some parti
ular
ases, no exa
t solution isknown. Some solutions exist based on deterministi
 orsto
hasti
 optimization methods, but as the fun
tion tobe optimised is extremely
omplex, most of them makesome a priori restri
tive hypotheses. Solutions based onGA or ES have been presented for aÆne IFS [13℄, [23℄,and more re
ently on a GP for non aÆne IFS [3℄.The following test
ase is a simple implementation inEASEA of an EA for the resolution of the inverse problemfor aÆne IFS, with a variable number of fun
tions. Theattra
tor simulation stage is however still very expensive,meaning that the �tness fun
tion takes most of the totaltime.The standard EASEA output reads:S
ore = 2130.927620 image size: 256x256Elapsed time: 118.77s for 14516 evaluations.Time spent in evaluation fun
tion:116.3s = 97.9204% of total time.POP_SIZE=100, NB_GEN=500With 97.92% of the total time spent in the evaluationfun
tion, this example behaves as expe
ted.B. The Fly AlgorithmThis example [17℄, taken from Image Pro
essing (stereo-vision) uses the \Parisian Evolution" paradigm, in whi
hea
h individual in the population represents a part ofthe solution rather than the solution itself in a way sim-ilar to some arti�
ial life simulations. It pro
esses im-

age data from two digital
ameras in order to build athree-dimensional representation of the s
ene. Here, thealgorithm evolves a population of \
ies" whi
h are 3-Dpoints in spa
e, using an Evolution Strategy.A
y's �tness value is a measurement of the
onsisten
yof the proje
tions of the
y on the two images so thatthe
ies' �tness values are statisti
ally biased in favourof those lying on the surfa
es of visible obje
ts.On
e evolved, the population of
ies spreads onto thesurfa
es of the obje
ts and the model of the s
ene is the
y population taken as a whole.As is often the
ase with Parisian Evolution, popula-tion size is large, typi
ally 5000
ies. Faster pro
essingmay be a
hieved using down to 1000
ies, at the ex-pense of mu
h less a

urate results. Geneti
 operatorsare standard: ranking, gaussian mutation and bary
en-tri

rossover. On the other hand, ea
h �tness
al
u-lation requires lo
al image pro
essing to
orrelate theneighbourhoods of the
y's proje
tions on ea
h image,in
luding some proje
tive geometry to
al
ulate the lo
algradient norm and 25 pixel grey value square di�eren
esper
y.The genome only
onsists of 3 integers
orrespondingto the three x; y; z
oordinates of the
y. Our tests gavethe following average values on 200 generation runs fortwo population sizes:population = 1000elapsed time: 1560 millise
ondsevaluation (in
luding gradient) 78.4 %geneti
 operators (in
l. sele
tion) 21.6 %population = 5000elapsed time: 4690 millise
ondsevaluation (in
luding gradient) 66.0 %geneti
 operators (in
l. sele
tion) 34.0 %On this example, even though the
hromosome is verysmall, the
ontribution of geneti
 operators to the to-tal time is far from negligible, probably due to the
on-jugation of the sele
tion fun
tion (ranking) and a largepopulation.C. Mass and Generalised Spring Physi
al Model Identi-�
ationMe
hani
al models, using point masses and generalisedsprings, are used in several appli
ations su
h as syntheti
musi
, man-ma
hine gestural
ommuni
ation and imageanimation, in order to model dynami
ally deformable ob-je
ts. They essentially use two-extremities (\binary")bonds as in Cordis-Anima [19℄, but may also use three-extremities (\ternary") bonds [18℄. The inverse prob-lem
onsisting of �nding me
hani
al parameters (springsti�ness, lengths at rest, non-linearities, damping
oef-

�
ient values) in order to reprodu
e a given kinemati
traje
tory, has been �rst solved using a
ustom-designedadaptive Evolution Strategy using multiple
ost fun
-tions and hybridised with a gradient des
ent fun
tion[18℄. Re
ent extensions [29℄ allow to enri
h the vis
oelas-ti
 model through the addition of \mus
le" bonds, i.e.:a
tive neural-
ontrolled bonds able to add external en-ergy to the system.The
omplexity of the task strongly depends on thenumber of bonds, the genome length (i.e.: the numberof bond parameters to be identi�ed), and the number ofkinemati
 frames used in the referen
e sequen
e. Ea
hevaluation needs a
omplete me
hani
al simulation of thesequen
e, involving physi
al for
es
al
ulations and mo-tion integration.Here are the results of three representative experi-ments:Test sequen
e: horse1. This is a real-world sequen
eof a real horse walking at a trot. The horse is repre-sented with 35 masses, 53 binary bonds (39 springswith 4 parameters and 14 dampers with 2 parame-ters) plus 3 ternary bonds (2 params ea
h), giving atotal
hromosome length of 3840 bytes:Sequen
e length: 53 frames.generations: 1010population: 1000.184 parametersevaluation 73.4 %geneti
 operators 26.6 %Test sequen
e: horse2. This example is based on thesame real-world horse sequen
e, with 35 masses, onlyusing binary bonds (39 springs with 4 parametersand 14 dampers with 5 params) for a
hromosomelength of 4464 bytes:Sequen
e length: 53 frames.generations: 1010population: 500226 parametersevaluation 69.17 %geneti
 operators 30.83 %In spite of the
omplexity of the �tness
al
ulation, theshare of geneti
 operators is still high, again around 30%.Test sequen
e: mus
le. This �nal test uses a synthe-sised referen
e sequen
e generated by 3 masses on10 images, in
luding three \mus
le" bonds (4
on-ne
tion weights + 4 me
hani
al parameters = 8 pa-rameters ea
h). Unlike the two previous examples,this test sequen
e was devised in the framework ofthe development of the mus
le model, but does notrepresent any realisti
 obje
t due to its low numberof masses and bonds.

Sequen
e length: 10 framesgenerations: 1010population: 200024 parametersevaluation 11.03 %geneti
 operators 88.97%With a small size problem and a short �tness fun
tion,evaluation per
entage drops down to 11 %.D. PPSN VIThis real-world example
omes from the PPSN VI
on-feren
e organisation. The
onferen
e re
eived 156 papersto be reviewed by 178 reviewers. As su
h a massive as-signment represents several days' work for a
onferen
eorganiser, it was de
ided that an evolutionary algorithmshould be given the task to automati
ally assign papersto reviewers [4℄.As ea
h paper needed to be reviewed by four reviewers,ea
h reviewer needed to read an average of 155�4=178 =3:48 papers. It was de
ided that the EASEA programwould assign 3 reviewers per paper, and that a fourthone would be added manually.Su
h an assignment is quite diÆ
ult to
onstru
t be-
ause it is not possible to give any reviewer any paper toreview. A strong
onstraint must not be violated (a re-viewer must not review a paper of whi
h he is an author)and many soft
onstraints need to be satis�ed, that
anbe in
luded as penalties within a �tness fun
tion:� It is preferable that all reviewers should have 3 to 5papers to review (rather than 0 or 12).� It is preferable that reviewers should not know au-thors personally. This is of
ourse very diÆ
ult fora
omputer to tell. However, e-mail addresses �elds
an be
ompared,� The assignment should take reviewers' preferen
esinto a

ount (titles and abstra
ts were provided tothe reviewers before the assignment so that they
ould express their preferen
es).� The program should try to mat
h papers and review-ers with a maximum of keywords in
ommon.All in all, four databases
ontained the ne
essary in-formation:1. A reviewers database,
ontaining the name, the e-mail address, and a list of keywords
orrespondingto the �elds in whi
h they are
ompetent.2. A papers database,
ontaining the identi�
ationnumber, the title, the list of authors, a list of e-mailaddresses and a list of keywords.3. A �le
ontaining the reviewer ID, along with a listof paper IDs he would rather review.As mu
h information was needed to attribute thepenalties, the genome of ea
h individual was quite huge:

Mat
h { int KeywContribution;int Will_Unwill_Contribution;int KwMat
h[4℄;int ReviewerId[4℄;int Id;int Nb;int reviewer[4℄;}Genome { Mat
h paper[156℄;int NbPapersPerReviewer[178℄;int Distribution[10℄;int NbPapersPerReviewerContribution;int Will_Unwill_Contribution;int TotalKeywContribution;} On a Pentium ar
hite
ture, one instan
e of the Mat
h
lass takes 64 bytes, giving a total size of 10 748 bytesfor the genome.The best result was obtained with 5 million genera-tions of 40 individuals, for a total of around 200 millionevaluations.In this
ase, evaluations were very simple (addingpenalties depending on the violated
onstraints), and thetime spent in the evaluation fun
tion only amounted to26.4% of the total time.As the total time was 41 hours and 40 minutes on aPENTIUM II 300 Mhz, more than 32 hours were spent ongenome handling routines, mutation and re
ombinationin
luded. IV. Testben
hes with EASEAThe previous examples showed that it is possible to�nd real world problems with
ompletely di�erent pro-portions of evaluation time over total time. We there-fore reverted to standard ben
hmarks implemented inEASEA to minutely explore this area. Many su
h fun
-tions are available (Sphere, A
kley Path, Griewangk,Rastrigin, Rosenbro
k, S
hwefel, Weierstrass, et
. [30℄)and their EASEA implementation
an be found on theEASEA web page (http://www-ro
q.inria.fr/EASEA/).A. Choosing test fun
tionsSome fun
tions are extremely simple (Sphere) and onlytake mi
ro-se
onds to evaluate, when more elaborateones (Weierstrass) in
lude a loop allowing to tune thepre
ision of the result (and at the same time the evalu-ation time). Moreover, these fun
tions
an be run withdi�erent dimensions, meaning that the size of the genome
an be
hanged while still having meaningful results.We therefore dis
arded very fast test fun
tions (likeSphere, where the evaluation time never goes beyond 10-15% of the total time) and very long fun
tions (Weier-strass with a long loop) where evaluation time never

omes under 97% of the total time.Some fun
tions showed the very interesting propertyof keeping a nearly
onstant evaluation per
entage what-ever the dimension. What happens is that as the dimen-sion in
reases, the evolutionary algorithm needs to dealwith larger genomes to
lone, mutate, re
ombine, whi
hwould lead to a smaller evaluation per
entage. However,as dimension in
reases, evaluation also takes more time,tending to
ounterbalan
e the previous e�e
t.Some test fun
tions (S
hwefel and Griewangk) weredoubly interesting in that their nearly
onstant evalua-tion per
entage was around 60-70%, whi
h happened tobe the value for the Fly and Mass/Spring model algo-rithms, and whi
h in our experien
e seems to be a not soinfrequent value.If some odd behaviour were to appear on EAs showingthis relatively high evaluation per
entage, it would alsoappear on algorithms like PPSN, where only 26% of thetotal time was devoted to evaluation.As we wanted to explore the balan
e between operator
omplexity and evaluation time, we de
ided to
ompareEAs with and without \optimised" EA operators. Wetherefore de
ided to test a very powerful tool des
ribedby S
hwefel in [27℄: the log-normal self-adaptive gaus-sian mutation operator. This smart operator |originally
reated for Evolution Strategies| was designed in orderto explore lo
ally, as well as globally, a bounded sear
hspa
e.Log-normal mutation allows to make variable sizedrandom jumps. It may be
ome self-adaptive in the sensethat a sigma mutation parameter is also evolved by theEA, thus adapting the exploration range of this muta-tion a

ordingly to the evolution state of ea
h individ-ual. This operator makes the algorithm more eÆ
ient ines
aping from lo
al maxima.Its implementation is simple: sigma mutation param-eters are added to ea
h
omponent of the genome, (thusdoubling the genome size if ea
h gene was a
oating pointvalue). The sigma parameters are evolved exa
tly in thesame way as the original genome: they are re
ombinedand mutated (gaussian mutation of �xed radius). Themutation of the original genome
omponents is a log-normal mutation, with the
orresponding variable sigmaen
oded in the genome.B. Explaining the tests and the resultsS
hwefel's smart mutation operator drasti
ally
uts downthe number of evaluations by improving the explorationof the sear
h spa
e thanks to its self-adapting
apabili-ties. The a
hieved e�e
t is spe
ta
ular when very
ostlyevaluation fun
tions are involved: the little added time

to
ompute the sigma mutation parameters is
ounterbal-an
ed with drasti
 savings in CPU evaluation time. Thetrade-o� is however not so bene�
ial with our sele
tedfun
tions.We
ondu
ted the following experiment to show thetrade-o�:1. We ran the ben
hmarks on a wide range of dimen-sions (note the log s
ale) with a standard mutationoperator with a �xed number of evaluations (24,151),and stored the results.2. We ran the same ben
hmarks over the same set ofdimensions with S
hwefel's mutation operator untilwe got a smaller or equal �tness value (these fun
-tions must be minimised).Griewangk with standard mutationDim. Eval. # Total Eval. % Fitness10 24151 3.84s 39.1% 0.51531 24151 4.56s 45.2% 4.187100 24151 6.76s 54.8% 42.010316 24151 14.10s 59.4% 252.4301000 24151 37.13s 65.3% 843.6423162 24151 111.24s 65.3% 3169.14210000 24151 356.98s 64.7% 10845.621Griewangk with adaptive mutationDim. Eval. # Total Eval. % Fitness10 4351 1.21s 38.1% 0.47931 4471 2.03s 30.0% 4.053100 6151 5.28s 18.7% 41.120316 8311 18.70s 14.5% 247.3301000 12151 81.62s 14.2% 840.6893162 16111 336.23s 13.2% 3158.23210000 24151 1616.57s 13.3% 10820.232

� �

��

� � �

�� �

� � � �
	
 ��

� �� � � � � � � � �� � �� � � �� � � � � � � � � �� �� ! � " ! # $ �� � %& ' () *+ ,- . / 01 2 3 4 /- / 05 6 7 81 - 9 4- / 05 6 :
+ ,- . / 01 2 3 4 /- / 05 6 7 ; < =

>

?@ @

A B B

CD D

EF F

GH H H

GI H H

GJ H H

GK H H

GL H H

MN OP QR S QT
UV WX Y Z U

[\]^ _ `a b c d de fg h
i

jk l mn o p qr p s t lu vw xy y

z{ |} ~� {� ~Figure 1: Tests on the Griewangk fun
tionIt is quite
lear that the adaptive mutation operatorworks really well: it drasti
ally redu
es the number ofevaluations for equal or better �tness values, and as faras total time is
on
erned, the EA is therefore mu
h fasterwhen the problem is relatively simple to solve (until di-mension 316). However, when things get tough |i.e.:when the problem gets so diÆ
ult than the smart muta-

tion operator is not eÆ
ient any more| having a
om-plex and therefore
ostly mutation fun
tion be
omes ahuge handi
ap. For dimension 10000, adaptive mutationis more than four times slower (
f. �gure 1).If we look at the evaluation time per
entage, the algo-rithm with the non adaptive mutator stabilises around65% |i.e.: at about the same per
entage as the Flyand Mass/Spring model algorithms| while the evalua-tion time per
entage of the algorithm with adaptive mu-tation drops to 13% of the total time. This may be whathappened to the PPSN VI example quoted previously.S
hwefel with standard mutationDim. Eval. # Total Eval. % Fitness10 24151 3.79s 48.6% 120931 24151 4.45s 39.5% 7315100 24151 6.63s 53.5% 27965316 24151 12.74s 58.2% 1141331000 12151 33.12s 59.8% 3691343162 24151 97.39s 60.3% 124699010000 24151 313.22s 58.8% 4086970S
hwefel with adaptive mutationDim. Eval. # Total Eval. % Fitness10 24151 5.11s 33.0% 116231 9871 3.79s 23.2% 7223100 6031 5.17s 14.9% 27499316 3271 7.32s 17.2% 1139951000 3991 26.09s 13.1% 3689143162 4351 87.55s 12.2% 124224010000 8311 543.43s 12.1% 4084840

� �

��

� � �

�� �

� � � �
	
 ��

� �� � � � � � � � �� � �� � � �� � � � � � � � � �� �� ! � " ! # $ �� � %& ' () *+ ,- . / 01 2 3 4 /- / 05 6 7 81 - 9 4- / 05 6 :
+ ,- . / 01 2 3 4 /- / 05 6 7 ; < =

>

?@ @

AB B

CD D

E F F

G H H

IJ J

KL MN OP Q OR
ST UV W X S

YZ [\] ^_ ` a b bc de f
g

hi j kl m n op n q r js tu vw w

xy z{ |} y~ |Figure 2: Tests on the S
hwefel fun
tionThe symptoms look the same on S
hwefel's fun
tion.Although, for a strange reason, it does not seem to han-dle the very simple
ases very well (maybe until 31), theS
hwefel adaptive mutator is most e�e
tive until and be-yond dimension 3162 when again things get tougher. Thesimple mutation wins again beyond dimension 10000 (
f.�gure 2).As far as evaluation time per
entage is
on
erned, wealso see a big drop down to 12% of total time, while thenon-adaptive fun
tion remains stable at around 59%.

V. Con
lusionWhen it is obvious that the �tness fun
tion
ontainsintensive and very long
al
ulations, (above 95% of thetotal time, as for the Inverse IFS problem), trying tominimise the number of evaluations is the right way togo, whatever this involves
on
erning the evolutionaryoperators. Saving one single evaluation may be worth it.However, if the algorithm takes ages to
ompleteand the evaluation fun
tion does not seem that CPU-
onsuming, great
are should be taken when \optimis-ing" the evolutionary part of the algorithm. Going forsmart operators may save time, if and only if the added\intelligen
e" is really e�e
tive over the problem at hand.Otherwise, if the problem is simply too
omplex, stream-lining evolutionary operators might be the right way togo, to get as many evaluations as possible and to letDarwin handle the
ase.The latest version of EASEA 0.6
 now displays evalu-ation time per
entage as a default feature, so that users
an have a rough idea on what part of the
ode theyshould optimise. This paper suggests that with an evalu-ation time below 60% of total time, \optimising" the EAby writing more
omplex operators may be the wrongthing to do. A
knowledgementsWe would like to thank Amine Boumaza and BogdanStan
iules
u for the data on the Flies algorithm and theMass/Spring Model.Bibliography[1℄ D. A
kley, "A Connexionist Ma
hine for Geneti
 Hill
limbing",Kluwer A
ademi
 Publishers, 1987.[2℄ J.T. Alander , \On Optimal Population Size of Geneti
 Al-gorithms", Pro
. of CompEuro'92, pp65-70, IEEE Comp. So
.Press., 1992.[3℄ P. Collet, E. Lutton, F. Raynal, M. S
hoenauer, Polar IFS +parisian geneti
 programming = eÆ
ient IFS inverse problemsolving, Geneti
 Programming and Evolvable Ma
hines Jour-nal, 1(4):339{361, 2000. O
tober.[4℄ P. Collet, E. Lutton, M. S
hoenauer, \PPSN VI Reviewer andPapers: an EASEA Mat
h", INRIA Resear
h Report RR-4177,Mar
h 2001.[5℄ Y. Davidor, A Naturally O

urring Ni
he and Spe
ies Phe-nomenon: The model and �rst results. In L. Booker and R. Belew,eds, Pro
 of the Fourth ICGA, pp 257-263, Morgan-Kau�man,1991.[6℄ K. A. De Jong, "The Analysis of the behavior of a
lass of ge-neti
 adaptive systems", PhD Dissertation, Univ. Mi
higan, AnnArbor. MI, 1975.[7℄ P. Collet, E. Lutton, M. S
hoenauer, J. Lou
het, \Take itEASEA", PPSN VI, Paris - Fran
e, Sept. 16-20, 2000. LNCS1917, Springer Verlag.EASEA home page: http://www-ro
q.inria.fr/EVO-Lab/ .[8℄ M. Keijzer, J. J. Merelo, G. Romero, M. S
hoenauer, \EvolvingObje
ts: a general purpose evolutionary
omputation library",EA'01: the 5th nternational
onferen
e on Arti�
ial Evolution.Springer Verlag 2001.EO home page: http://www.
map.polyte
hnique.fr/EO .

[9℄ S. Forrest, M. Mit
hell, "Relative Building-Blo
k Fitness and theBuilding Blo
k hypothesis", in L. D. Whitley, ed, FOGA 2, pp109-126, Morgan-Kau�man, 1993.[10℄ O. Fran
ois, C. Lavergne, "Design of Evolutionary Algorithms {A statisti
al perspe
tiv", IEEE Trans. on Evolutionary Compu-tation, vol 5, Number 2, pp 129-148, Apr. 2001.[11℄ M. Fu
hs, \Large Population are Not Always the Best Choi
ein Geneti
 Programming", GECCO'99, Morgan-Kaufmann,pp1033-1038[12℄ GAlib home page:http://www.mit.edu/people/moriken/do
/galib .[13℄ B. Goertzel. Fra
tal image
ompression with the geneti
 algo-rithm. Complexity International, 1, 1994.[14℄ D. Goldberg, K. Deb, "A
omparative analysis of sele
tions
hemes used in geneti
 algorithms" FOGA 1, pp 69-93, 1991.[15℄ J. J. Grefenstette, \Optimisation of Control Parameters for Ge-neti
 Algorithms", IEEE Trans. on Systems, Man and Cybernet-i
s, pp122-128, 1986.[16℄ A. Griewangk, "Generalized des
ent for global optimization".Journal of optimization theory and appli
ations. vol 34, number1, pp 11-39. 1981.[17℄ J. Lou
het, \Using an Individual Evolution Strategy for Stereo-vision", Geneti
 Programming and Evolvable Ma
hines, Vol. 2,No2, Mar
h 2001, Kluwer A
ademi
 Publishers, 101-109.[18℄ J. Lou
het, \An Evolutionary Algorithm for Physi
al MotionAnalysis", British Ma
hine Vision Conferen
e, York, BMVAPress, pp.701-710, September 1994[19℄ A. Lu
iani, S. Jimenez, J.L. Florens, C. Cadoz, O. Raoult, \Com-putational Physi
s: a Modeller Simulator for Animated Physi
alObje
ts", Pro
. Eurographi
s Conferen
e, Wien, Sept 1991, El-sevier[20℄ E. Lutton, P. Collet, J. Lou
het, \EASEA Comparisons on TestFun
tions : GALib Versus EO", EA01: 5th
onferen
e on Arti�alEvolution, 2001, Le Creusot, Fran
e, September 2001.[21℄ B. Miller, "Noise, Sampling, and EÆ
ient Geneti
 Algorithms",IlliGAL Report No. 97001, May 1997.[22℄ H. M�uhlenbein, M. S
homis
h, J. Born. The parallel Geneti
 Al-gorithm as Fun
tion Optimizer. In L. Booker and R. Belew, eds,Pro
 of the Fourth ICGA, pp 271-278, Morgan-Kau�man, 1991.[23℄ D. J. Nettleton and R. Garigliano. Evolutionary algorithms anda fra
tal inverse problem. Biosystems, 33:221{231, 1994.[24℄ J. Periaux, B. Mantel, M. Sefrioui, B. Stou�et, J.-A. Desideri,S. Lanteri, N. Mar
o, \Evolutionary Computational Methods for
omplex design in aerodynami
s", 36th Ameri
an Institute ofAeronauti
s and Astronauti
s Conferen
e, Reno, 1997.[25℄ C. Reeves, \Using Geneti
 Algorithms with Small Populations",S. Forrest Editor, Pro
eedings of the 5th ICGA, San Mateo, Cal-ifornia, Morgan Kaufmann, 1993.[26℄ J. D. S
ha�er, D. Whitley, L. J. Eshelman, R. Das, "A studyof Control Parameters A�e
ting Online Performan
e of Geneti
Algorithms for Fun
tion Optimization", in J. D. S
ha�er, ed,Pro
. of the Third ICGA, pp 51-60, Morgan-Kau�man, 1989.[27℄ H-P. S
hwefel, \Numeri
al Optimization of Computer Models",Wiley, Chi
hester, 1981.[28℄ M. Sefrioui, J. Periaux, J.G. Ganas
ia, \Fast Convergen
eThanks to Diversity", L.J. Fogel, P.J. Angeline, T. Bae
k Eds,Pro
eedings of the 5th Annual Conferen
e on Evolutionary Pro-gramming, San Diego, IEEE Comp. So
. Press, MIT Press, 1999.[29℄ B. Stan
iules
u, J. Lou
het, \Evolving Physi
al Models to Under-stand Motion in Image Sequen
es", ESIT'2000, September 14-15,Aa
hen, Germany[30℄ A test fun
tion set: http://www.geatbx.
om/do
u/f
nindex.html[31℄ A. Torn, A. Zilinska, "Global Optimization". LNCS 350. SpringerVerlag Berlin.[32℄ D. Whitley, S. B. Rana, J. Dzubera, K. E. Mathias, "EvaluatingEvolutionary Algorithms", Arti�
ial Intelligen
e, vol 85, number1-2, pp 245-276, 1996.[33℄ D. H. Wolpert and W. G. Ma
ready, "No free lun
h theorems foroptimization", IEEE Trans. on Evolutionary Computation, vol 1,pp 67-83, Apr. 1997.[34℄ B-T. Zhang, J-J KIM, "Comparison of Sele
tion Meth-ods for Evolutionary Optimization", Evolutionary Op-timization, vol2, number 1, pp 55-70, 2000,
ite-seer.nj.ne
.
om/arti
les/zhang00
omparison.html

