
Issues on the Optimisation of Evolutionary Algorithms CodePierre Collet1CMAP�Eole Polytehnique91128 Palaiseau edex - FranePierre.Collet�polytehnique.fr Jean LouhetENSTA25 Bd Vitor75015 Paris - FraneJean.Louhet�ensta.fr Evelyne LuttonINRIAProjet FRACTALES78150 Le Chesnay - FraneEvelyne.Lutton�inria.frAbstrat - The aim of this paper is to show thatthe ommon belief, in the evolutionary ommunity,that evaluation time usually takes over 90% of thetotal time, is far from being always true. In fat,many real-world appliations showed a muh lowerperentage. This raises several questions, one of thembeing the balane between �tness and operators om-putational omplexity: what is the use of elaboratingsmart evolutionary operators to redue the numberof evaluations if as a result, the total omputationtime is inreased ?I. IntrodutionIn a reent researh work, we ompared two evolu-tionary libraries with the help of testbenh funtions[20℄.During the extensive tests that were involved, we ameaross the fat that the time spent by an evolutionaryalgorithm in the evaluation/�tness funtion was not ashigh as expeted.In fat, it appeared that the overhead indued by ge-neti operators (seletion, mutation, reombination, et.)was far from being negligible in many ases. Therefore,it ame down to us that people may not always be opti-mising the right piee of ode.After shortly disussing EA ode optimisation, wewill desribe four very di�erent evolutionary algorithmswhere the evaluation funtion takes from 98% of the totaltime down to 26% only.We will then use ommon testbenhes to try to showthat in some ases, over-optimising evolutionary opera-tors may not be a nie idea after all.II. Optimising the EA odeMany people have been working on the optimisation ofthe ode of Evolutionary Algorithms, with the result thatmany papers are available on the subjet. As sientists,researhers onentrated on the optimisation of the algo-rithm itself using the widespread knowledge on this �eld.As an example, many researh works were onduted onoptimising the size of the population [15℄, [2℄: Fuhs[11℄1European Commission IST Programme 1999-12679 (Future andEmerging Tehnologies).

uses testbenhes to �nd the optimal population size to re-due the number of evaluations, Colin Reeves[25℄ tries to�nd the minimum population size with no performaneloss.However, with a smaller population size, onvergeneto loal optima tends to appear rapidly. One is thereforetempted to improve (read omplexify) geneti operatorsto �ght against premature onvergene [28℄.All in all, most people try to minimise the number ofevaluations by all possible means [24℄, on the fair groundthat the evaluation funtion of their problem is extremelydemanding in CPU time.Moreover, one often refers to a reeived theory thatthe CPU time spent in the evaluation funtion usuallyaounts for more than 90% of the total time.In fat, empirial and experimental omparisons provejust as diÆult as theoretial demonstrations [33℄, [32℄.Many fators need to be taken into aount to evaluatethe eÆieny of a given algorithm for a given problemand many test sets have been introdued over the years[6℄, [1℄, [26℄, [5℄, [22℄, [9℄, [16℄, [31℄. Some studies were fo-ussed on the �tness value as an eÆieny measure, otherones onsider salability [32℄, omputational eÆieny (interm of number of funtion evaluations), parameters set-ting [10℄, [21℄, quality ahievable within a given time [34℄.Few tests were really onsidering omputational omplex-ity issues, diretly related to CPU time.A reent study omparing two evolutionary libraries(GALib and EO) on testbenh funtions using theEASEA ompiler2 [7℄, [20℄ showed that the two librarieswere giving very similar results although EO[8℄, a mod-ern library making extensive use of C++ templates, wasusing more CPU time to handle genomes. While this wasnot at �rst a great onern, loser examination revealedthat in many ases, the �gure of 90% was not reahed,even with relatively omplex evaluation funtions.2EASEA (EAsy Spei�ation of Evolutionary Algorithms) is alanguage dediated to evolutionary libraries now developed withinthe DREAM European Projet. Its aim is to relieve the program-mer of the task of learning how to use evolutionary libraries andobjet-oriented programming by only speifying the algorithm in a.ez soure �le.

III. Experimental resultsAs testbenhes may not reet reality, we looked bakat real appliations rather than benhmark funtions. Al-though in some ases, evaluation took well over 90% ofthe total time, we disovered that in many implementa-tions, the perentage was muh smaller indeed.In all ases, the programmers of these experimentshave been trying to minimise evaluation time, some-times by adding more information than neessary in thegenome, or by using elaborate reombination or mutationoperators.The extra time spent in the evolutionary algorithmimproved the exploration of the searh spae. However,the indued extra CPU-ost ould have been used to getmore evaluations done. The following experiments showthat a balane must be found.A. Inverse problem for aÆne IFSIterated funtions system (IFS) theory is an importanttopi in the domain of fratals, mainly for image om-pression appliations.A major hallenge of both theoretial and pratialinterest is the resolution of the so-alled inverse problem.Exept for some partiular ases, no exat solution isknown. Some solutions exist based on deterministi orstohasti optimization methods, but as the funtion tobe optimised is extremely omplex, most of them makesome a priori restritive hypotheses. Solutions based onGA or ES have been presented for aÆne IFS [13℄, [23℄,and more reently on a GP for non aÆne IFS [3℄.The following test ase is a simple implementation inEASEA of an EA for the resolution of the inverse problemfor aÆne IFS, with a variable number of funtions. Theattrator simulation stage is however still very expensive,meaning that the �tness funtion takes most of the totaltime.The standard EASEA output reads:Sore = 2130.927620 image size: 256x256Elapsed time: 118.77s for 14516 evaluations.Time spent in evaluation funtion:116.3s = 97.9204% of total time.POP_SIZE=100, NB_GEN=500With 97.92% of the total time spent in the evaluationfuntion, this example behaves as expeted.B. The Fly AlgorithmThis example [17℄, taken from Image Proessing (stereo-vision) uses the \Parisian Evolution" paradigm, in whiheah individual in the population represents a part ofthe solution rather than the solution itself in a way sim-ilar to some arti�ial life simulations. It proesses im-

age data from two digital ameras in order to build athree-dimensional representation of the sene. Here, thealgorithm evolves a population of \ies" whih are 3-Dpoints in spae, using an Evolution Strategy.A y's �tness value is a measurement of the onsistenyof the projetions of the y on the two images so thatthe ies' �tness values are statistially biased in favourof those lying on the surfaes of visible objets.One evolved, the population of ies spreads onto thesurfaes of the objets and the model of the sene is they population taken as a whole.As is often the ase with Parisian Evolution, popula-tion size is large, typially 5000 ies. Faster proessingmay be ahieved using down to 1000 ies, at the ex-pense of muh less aurate results. Geneti operatorsare standard: ranking, gaussian mutation and baryen-tri rossover. On the other hand, eah �tness alu-lation requires loal image proessing to orrelate theneighbourhoods of the y's projetions on eah image,inluding some projetive geometry to alulate the loalgradient norm and 25 pixel grey value square di�erenesper y.The genome only onsists of 3 integers orrespondingto the three x; y; z oordinates of the y. Our tests gavethe following average values on 200 generation runs fortwo population sizes:population = 1000elapsed time: 1560 milliseondsevaluation (inluding gradient) 78.4 %geneti operators (inl. seletion) 21.6 %population = 5000elapsed time: 4690 milliseondsevaluation (inluding gradient) 66.0 %geneti operators (inl. seletion) 34.0 %On this example, even though the hromosome is verysmall, the ontribution of geneti operators to the to-tal time is far from negligible, probably due to the on-jugation of the seletion funtion (ranking) and a largepopulation.C. Mass and Generalised Spring Physial Model Identi-�ationMehanial models, using point masses and generalisedsprings, are used in several appliations suh as synthetimusi, man-mahine gestural ommuniation and imageanimation, in order to model dynamially deformable ob-jets. They essentially use two-extremities (\binary")bonds as in Cordis-Anima [19℄, but may also use three-extremities (\ternary") bonds [18℄. The inverse prob-lem onsisting of �nding mehanial parameters (springsti�ness, lengths at rest, non-linearities, damping oef-

�ient values) in order to reprodue a given kinematitrajetory, has been �rst solved using a ustom-designedadaptive Evolution Strategy using multiple ost fun-tions and hybridised with a gradient desent funtion[18℄. Reent extensions [29℄ allow to enrih the visoelas-ti model through the addition of \musle" bonds, i.e.:ative neural-ontrolled bonds able to add external en-ergy to the system.The omplexity of the task strongly depends on thenumber of bonds, the genome length (i.e.: the numberof bond parameters to be identi�ed), and the number ofkinemati frames used in the referene sequene. Eahevaluation needs a omplete mehanial simulation of thesequene, involving physial fores alulations and mo-tion integration.Here are the results of three representative experi-ments:Test sequene: horse1. This is a real-world sequeneof a real horse walking at a trot. The horse is repre-sented with 35 masses, 53 binary bonds (39 springswith 4 parameters and 14 dampers with 2 parame-ters) plus 3 ternary bonds (2 params eah), giving atotal hromosome length of 3840 bytes:Sequene length: 53 frames.generations: 1010population: 1000.184 parametersevaluation 73.4 %geneti operators 26.6 %Test sequene: horse2. This example is based on thesame real-world horse sequene, with 35 masses, onlyusing binary bonds (39 springs with 4 parametersand 14 dampers with 5 params) for a hromosomelength of 4464 bytes:Sequene length: 53 frames.generations: 1010population: 500226 parametersevaluation 69.17 %geneti operators 30.83 %In spite of the omplexity of the �tness alulation, theshare of geneti operators is still high, again around 30%.Test sequene: musle. This �nal test uses a synthe-sised referene sequene generated by 3 masses on10 images, inluding three \musle" bonds (4 on-netion weights + 4 mehanial parameters = 8 pa-rameters eah). Unlike the two previous examples,this test sequene was devised in the framework ofthe development of the musle model, but does notrepresent any realisti objet due to its low numberof masses and bonds.

Sequene length: 10 framesgenerations: 1010population: 200024 parametersevaluation 11.03 %geneti operators 88.97%With a small size problem and a short �tness funtion,evaluation perentage drops down to 11 %.D. PPSN VIThis real-world example omes from the PPSN VI on-ferene organisation. The onferene reeived 156 papersto be reviewed by 178 reviewers. As suh a massive as-signment represents several days' work for a onfereneorganiser, it was deided that an evolutionary algorithmshould be given the task to automatially assign papersto reviewers [4℄.As eah paper needed to be reviewed by four reviewers,eah reviewer needed to read an average of 155�4=178 =3:48 papers. It was deided that the EASEA programwould assign 3 reviewers per paper, and that a fourthone would be added manually.Suh an assignment is quite diÆult to onstrut be-ause it is not possible to give any reviewer any paper toreview. A strong onstraint must not be violated (a re-viewer must not review a paper of whih he is an author)and many soft onstraints need to be satis�ed, that anbe inluded as penalties within a �tness funtion:� It is preferable that all reviewers should have 3 to 5papers to review (rather than 0 or 12).� It is preferable that reviewers should not know au-thors personally. This is of ourse very diÆult fora omputer to tell. However, e-mail addresses �eldsan be ompared,� The assignment should take reviewers' preferenesinto aount (titles and abstrats were provided tothe reviewers before the assignment so that theyould express their preferenes).� The program should try to math papers and review-ers with a maximum of keywords in ommon.All in all, four databases ontained the neessary in-formation:1. A reviewers database, ontaining the name, the e-mail address, and a list of keywords orrespondingto the �elds in whih they are ompetent.2. A papers database, ontaining the identi�ationnumber, the title, the list of authors, a list of e-mailaddresses and a list of keywords.3. A �le ontaining the reviewer ID, along with a listof paper IDs he would rather review.As muh information was needed to attribute thepenalties, the genome of eah individual was quite huge:

Math { int KeywContribution;int Will_Unwill_Contribution;int KwMath[4℄;int ReviewerId[4℄;int Id;int Nb;int reviewer[4℄;}Genome { Math paper[156℄;int NbPapersPerReviewer[178℄;int Distribution[10℄;int NbPapersPerReviewerContribution;int Will_Unwill_Contribution;int TotalKeywContribution;} On a Pentium arhiteture, one instane of the Mathlass takes 64 bytes, giving a total size of 10 748 bytesfor the genome.The best result was obtained with 5 million genera-tions of 40 individuals, for a total of around 200 millionevaluations.In this ase, evaluations were very simple (addingpenalties depending on the violated onstraints), and thetime spent in the evaluation funtion only amounted to26.4% of the total time.As the total time was 41 hours and 40 minutes on aPENTIUM II 300 Mhz, more than 32 hours were spent ongenome handling routines, mutation and reombinationinluded. IV. Testbenhes with EASEAThe previous examples showed that it is possible to�nd real world problems with ompletely di�erent pro-portions of evaluation time over total time. We there-fore reverted to standard benhmarks implemented inEASEA to minutely explore this area. Many suh fun-tions are available (Sphere, Akley Path, Griewangk,Rastrigin, Rosenbrok, Shwefel, Weierstrass, et. [30℄)and their EASEA implementation an be found on theEASEA web page (http://www-roq.inria.fr/EASEA/).A. Choosing test funtionsSome funtions are extremely simple (Sphere) and onlytake miro-seonds to evaluate, when more elaborateones (Weierstrass) inlude a loop allowing to tune thepreision of the result (and at the same time the evalu-ation time). Moreover, these funtions an be run withdi�erent dimensions, meaning that the size of the genomean be hanged while still having meaningful results.We therefore disarded very fast test funtions (likeSphere, where the evaluation time never goes beyond 10-15% of the total time) and very long funtions (Weier-strass with a long loop) where evaluation time never

omes under 97% of the total time.Some funtions showed the very interesting propertyof keeping a nearly onstant evaluation perentage what-ever the dimension. What happens is that as the dimen-sion inreases, the evolutionary algorithm needs to dealwith larger genomes to lone, mutate, reombine, whihwould lead to a smaller evaluation perentage. However,as dimension inreases, evaluation also takes more time,tending to ounterbalane the previous e�et.Some test funtions (Shwefel and Griewangk) weredoubly interesting in that their nearly onstant evalua-tion perentage was around 60-70%, whih happened tobe the value for the Fly and Mass/Spring model algo-rithms, and whih in our experiene seems to be a not soinfrequent value.If some odd behaviour were to appear on EAs showingthis relatively high evaluation perentage, it would alsoappear on algorithms like PPSN, where only 26% of thetotal time was devoted to evaluation.As we wanted to explore the balane between operatoromplexity and evaluation time, we deided to ompareEAs with and without \optimised" EA operators. Wetherefore deided to test a very powerful tool desribedby Shwefel in [27℄: the log-normal self-adaptive gaus-sian mutation operator. This smart operator |originallyreated for Evolution Strategies| was designed in orderto explore loally, as well as globally, a bounded searhspae.Log-normal mutation allows to make variable sizedrandom jumps. It may beome self-adaptive in the sensethat a sigma mutation parameter is also evolved by theEA, thus adapting the exploration range of this muta-tion aordingly to the evolution state of eah individ-ual. This operator makes the algorithm more eÆient inesaping from loal maxima.Its implementation is simple: sigma mutation param-eters are added to eah omponent of the genome, (thusdoubling the genome size if eah gene was a oating pointvalue). The sigma parameters are evolved exatly in thesame way as the original genome: they are reombinedand mutated (gaussian mutation of �xed radius). Themutation of the original genome omponents is a log-normal mutation, with the orresponding variable sigmaenoded in the genome.B. Explaining the tests and the resultsShwefel's smart mutation operator drastially uts downthe number of evaluations by improving the explorationof the searh spae thanks to its self-adapting apabili-ties. The ahieved e�et is spetaular when very ostlyevaluation funtions are involved: the little added time

to ompute the sigma mutation parameters is ounterbal-aned with drasti savings in CPU evaluation time. Thetrade-o� is however not so bene�ial with our seletedfuntions.We onduted the following experiment to show thetrade-o�:1. We ran the benhmarks on a wide range of dimen-sions (note the log sale) with a standard mutationoperator with a �xed number of evaluations (24,151),and stored the results.2. We ran the same benhmarks over the same set ofdimensions with Shwefel's mutation operator untilwe got a smaller or equal �tness value (these fun-tions must be minimised).Griewangk with standard mutationDim. Eval. # Total Eval. % Fitness10 24151 3.84s 39.1% 0.51531 24151 4.56s 45.2% 4.187100 24151 6.76s 54.8% 42.010316 24151 14.10s 59.4% 252.4301000 24151 37.13s 65.3% 843.6423162 24151 111.24s 65.3% 3169.14210000 24151 356.98s 64.7% 10845.621Griewangk with adaptive mutationDim. Eval. # Total Eval. % Fitness10 4351 1.21s 38.1% 0.47931 4471 2.03s 30.0% 4.053100 6151 5.28s 18.7% 41.120316 8311 18.70s 14.5% 247.3301000 12151 81.62s 14.2% 840.6893162 16111 336.23s 13.2% 3158.23210000 24151 1616.57s 13.3% 10820.232

� �

��

� � �

�� �

� � � �
	
 ��

� �� � � � � � � � �� � �� � � �� � � � � � � � � �� �� ! � " ! # $ �� � %& ' () *+ ,- . / 01 2 3 4 /- / 05 6 7 81 - 9 4- / 05 6 :
+ ,- . / 01 2 3 4 /- / 05 6 7 ; < =

>

?@ @

A B B

CD D

EF F

GH H H

GI H H

GJ H H

GK H H

GL H H

MN OP QR S QT
UV WX Y Z U

[\]^ _ `a b c d de fg h
i

jk l mn o p qr p s t lu vw xy y

z{ |} ~� {� ~Figure 1: Tests on the Griewangk funtionIt is quite lear that the adaptive mutation operatorworks really well: it drastially redues the number ofevaluations for equal or better �tness values, and as faras total time is onerned, the EA is therefore muh fasterwhen the problem is relatively simple to solve (until di-mension 316). However, when things get tough |i.e.:when the problem gets so diÆult than the smart muta-

tion operator is not eÆient any more| having a om-plex and therefore ostly mutation funtion beomes ahuge handiap. For dimension 10000, adaptive mutationis more than four times slower (f. �gure 1).If we look at the evaluation time perentage, the algo-rithm with the non adaptive mutator stabilises around65% |i.e.: at about the same perentage as the Flyand Mass/Spring model algorithms| while the evalua-tion time perentage of the algorithm with adaptive mu-tation drops to 13% of the total time. This may be whathappened to the PPSN VI example quoted previously.Shwefel with standard mutationDim. Eval. # Total Eval. % Fitness10 24151 3.79s 48.6% 120931 24151 4.45s 39.5% 7315100 24151 6.63s 53.5% 27965316 24151 12.74s 58.2% 1141331000 12151 33.12s 59.8% 3691343162 24151 97.39s 60.3% 124699010000 24151 313.22s 58.8% 4086970Shwefel with adaptive mutationDim. Eval. # Total Eval. % Fitness10 24151 5.11s 33.0% 116231 9871 3.79s 23.2% 7223100 6031 5.17s 14.9% 27499316 3271 7.32s 17.2% 1139951000 3991 26.09s 13.1% 3689143162 4351 87.55s 12.2% 124224010000 8311 543.43s 12.1% 4084840

� �

��

� � �

�� �

� � � �
	
 ��

� �� � � � � � � � �� � �� � � �� � � � � � � � � �� �� ! � " ! # $ �� � %& ' () *+ ,- . / 01 2 3 4 /- / 05 6 7 81 - 9 4- / 05 6 :
+ ,- . / 01 2 3 4 /- / 05 6 7 ; < =

>

?@ @

AB B

CD D

E F F

G H H

IJ J

KL MN OP Q OR
ST UV W X S

YZ [\] ^_ ` a b bc de f
g

hi j kl m n op n q r js tu vw w

xy z{ |} y~ |Figure 2: Tests on the Shwefel funtionThe symptoms look the same on Shwefel's funtion.Although, for a strange reason, it does not seem to han-dle the very simple ases very well (maybe until 31), theShwefel adaptive mutator is most e�etive until and be-yond dimension 3162 when again things get tougher. Thesimple mutation wins again beyond dimension 10000 (f.�gure 2).As far as evaluation time perentage is onerned, wealso see a big drop down to 12% of total time, while thenon-adaptive funtion remains stable at around 59%.

V. ConlusionWhen it is obvious that the �tness funtion ontainsintensive and very long alulations, (above 95% of thetotal time, as for the Inverse IFS problem), trying tominimise the number of evaluations is the right way togo, whatever this involves onerning the evolutionaryoperators. Saving one single evaluation may be worth it.However, if the algorithm takes ages to ompleteand the evaluation funtion does not seem that CPU-onsuming, great are should be taken when \optimis-ing" the evolutionary part of the algorithm. Going forsmart operators may save time, if and only if the added\intelligene" is really e�etive over the problem at hand.Otherwise, if the problem is simply too omplex, stream-lining evolutionary operators might be the right way togo, to get as many evaluations as possible and to letDarwin handle the ase.The latest version of EASEA 0.6 now displays evalu-ation time perentage as a default feature, so that usersan have a rough idea on what part of the ode theyshould optimise. This paper suggests that with an evalu-ation time below 60% of total time, \optimising" the EAby writing more omplex operators may be the wrongthing to do. AknowledgementsWe would like to thank Amine Boumaza and BogdanStaniulesu for the data on the Flies algorithm and theMass/Spring Model.Bibliography[1℄ D. Akley, "A Connexionist Mahine for Geneti Hilllimbing",Kluwer Aademi Publishers, 1987.[2℄ J.T. Alander , \On Optimal Population Size of Geneti Al-gorithms", Pro. of CompEuro'92, pp65-70, IEEE Comp. So.Press., 1992.[3℄ P. Collet, E. Lutton, F. Raynal, M. Shoenauer, Polar IFS +parisian geneti programming = eÆient IFS inverse problemsolving, Geneti Programming and Evolvable Mahines Jour-nal, 1(4):339{361, 2000. Otober.[4℄ P. Collet, E. Lutton, M. Shoenauer, \PPSN VI Reviewer andPapers: an EASEA Math", INRIA Researh Report RR-4177,Marh 2001.[5℄ Y. Davidor, A Naturally Ourring Nihe and Speies Phe-nomenon: The model and �rst results. In L. Booker and R. Belew,eds, Pro of the Fourth ICGA, pp 257-263, Morgan-Kau�man,1991.[6℄ K. A. De Jong, "The Analysis of the behavior of a lass of ge-neti adaptive systems", PhD Dissertation, Univ. Mihigan, AnnArbor. MI, 1975.[7℄ P. Collet, E. Lutton, M. Shoenauer, J. Louhet, \Take itEASEA", PPSN VI, Paris - Frane, Sept. 16-20, 2000. LNCS1917, Springer Verlag.EASEA home page: http://www-roq.inria.fr/EVO-Lab/ .[8℄ M. Keijzer, J. J. Merelo, G. Romero, M. Shoenauer, \EvolvingObjets: a general purpose evolutionary omputation library",EA'01: the 5th nternational onferene on Arti�ial Evolution.Springer Verlag 2001.EO home page: http://www.map.polytehnique.fr/EO .

[9℄ S. Forrest, M. Mithell, "Relative Building-Blok Fitness and theBuilding Blok hypothesis", in L. D. Whitley, ed, FOGA 2, pp109-126, Morgan-Kau�man, 1993.[10℄ O. Franois, C. Lavergne, "Design of Evolutionary Algorithms {A statistial perspetiv", IEEE Trans. on Evolutionary Compu-tation, vol 5, Number 2, pp 129-148, Apr. 2001.[11℄ M. Fuhs, \Large Population are Not Always the Best Choiein Geneti Programming", GECCO'99, Morgan-Kaufmann,pp1033-1038[12℄ GAlib home page:http://www.mit.edu/people/moriken/do/galib .[13℄ B. Goertzel. Fratal image ompression with the geneti algo-rithm. Complexity International, 1, 1994.[14℄ D. Goldberg, K. Deb, "A omparative analysis of seletionshemes used in geneti algorithms" FOGA 1, pp 69-93, 1991.[15℄ J. J. Grefenstette, \Optimisation of Control Parameters for Ge-neti Algorithms", IEEE Trans. on Systems, Man and Cybernet-is, pp122-128, 1986.[16℄ A. Griewangk, "Generalized desent for global optimization".Journal of optimization theory and appliations. vol 34, number1, pp 11-39. 1981.[17℄ J. Louhet, \Using an Individual Evolution Strategy for Stereo-vision", Geneti Programming and Evolvable Mahines, Vol. 2,No2, Marh 2001, Kluwer Aademi Publishers, 101-109.[18℄ J. Louhet, \An Evolutionary Algorithm for Physial MotionAnalysis", British Mahine Vision Conferene, York, BMVAPress, pp.701-710, September 1994[19℄ A. Luiani, S. Jimenez, J.L. Florens, C. Cadoz, O. Raoult, \Com-putational Physis: a Modeller Simulator for Animated PhysialObjets", Pro. Eurographis Conferene, Wien, Sept 1991, El-sevier[20℄ E. Lutton, P. Collet, J. Louhet, \EASEA Comparisons on TestFuntions : GALib Versus EO", EA01: 5th onferene on Arti�alEvolution, 2001, Le Creusot, Frane, September 2001.[21℄ B. Miller, "Noise, Sampling, and EÆient Geneti Algorithms",IlliGAL Report No. 97001, May 1997.[22℄ H. M�uhlenbein, M. Shomish, J. Born. The parallel Geneti Al-gorithm as Funtion Optimizer. In L. Booker and R. Belew, eds,Pro of the Fourth ICGA, pp 271-278, Morgan-Kau�man, 1991.[23℄ D. J. Nettleton and R. Garigliano. Evolutionary algorithms anda fratal inverse problem. Biosystems, 33:221{231, 1994.[24℄ J. Periaux, B. Mantel, M. Sefrioui, B. Stou�et, J.-A. Desideri,S. Lanteri, N. Maro, \Evolutionary Computational Methods foromplex design in aerodynamis", 36th Amerian Institute ofAeronautis and Astronautis Conferene, Reno, 1997.[25℄ C. Reeves, \Using Geneti Algorithms with Small Populations",S. Forrest Editor, Proeedings of the 5th ICGA, San Mateo, Cal-ifornia, Morgan Kaufmann, 1993.[26℄ J. D. Sha�er, D. Whitley, L. J. Eshelman, R. Das, "A studyof Control Parameters A�eting Online Performane of GenetiAlgorithms for Funtion Optimization", in J. D. Sha�er, ed,Pro. of the Third ICGA, pp 51-60, Morgan-Kau�man, 1989.[27℄ H-P. Shwefel, \Numerial Optimization of Computer Models",Wiley, Chihester, 1981.[28℄ M. Sefrioui, J. Periaux, J.G. Ganasia, \Fast ConvergeneThanks to Diversity", L.J. Fogel, P.J. Angeline, T. Baek Eds,Proeedings of the 5th Annual Conferene on Evolutionary Pro-gramming, San Diego, IEEE Comp. So. Press, MIT Press, 1999.[29℄ B. Staniulesu, J. Louhet, \Evolving Physial Models to Under-stand Motion in Image Sequenes", ESIT'2000, September 14-15,Aahen, Germany[30℄ A test funtion set: http://www.geatbx.om/dou/fnindex.html[31℄ A. Torn, A. Zilinska, "Global Optimization". LNCS 350. SpringerVerlag Berlin.[32℄ D. Whitley, S. B. Rana, J. Dzubera, K. E. Mathias, "EvaluatingEvolutionary Algorithms", Arti�ial Intelligene, vol 85, number1-2, pp 245-276, 1996.[33℄ D. H. Wolpert and W. G. Maready, "No free lunh theorems foroptimization", IEEE Trans. on Evolutionary Computation, vol 1,pp 67-83, Apr. 1997.[34℄ B-T. Zhang, J-J KIM, "Comparison of Seletion Meth-ods for Evolutionary Optimization", Evolutionary Op-timization, vol2, number 1, pp 55-70, 2000, ite-seer.nj.ne.om/artiles/zhang00omparison.html

