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Abstract - The aim of this paper is to show that
the common belief, in the evolutionary community,
that evaluation time usually takes over 90% of the
total time, is far from being always true. In fact,
many real-world applications showed a much lower
percentage. This raises several questions, one of them
being the balance between fitness and operators com-
putational complexity: what is the use of elaborating
smart evolutionary operators to reduce the number
of evaluations if as a result, the total computation
time is increased 7

I. Introduction

In a recent research work, we compared two evolu-
tionary libraries with the help of testbench functions[20].
During the extensive tests that were involved, we came
across the fact that the time spent by an evolutionary
algorithm in the evaluation/fitness function was not as
high as expected.

In fact, it appeared that the overhead induced by ge-
netic operators (selection, mutation, recombination, etc.)
was far from being negligible in many cases. Therefore,
it came down to us that people may not always be opti-
mising the right piece of code.

After shortly discussing EA code optimisation, we
will describe four very different evolutionary algorithms
where the evaluation function takes from 98% of the total
time down to 26% only.

We will then use common testbenches to try to show
that in some cases, over-optimising evolutionary opera-
tors may not be a nice idea after all.

II. Optimising the EA code

Many people have been working on the optimisation of
the code of Evolutionary Algorithms, with the result that
many papers are available on the subject. As scientists,
researchers concentrated on the optimisation of the algo-
rithm itself using the widespread knowledge on this field.
As an example, many research works were conducted on
optimising the size of the population [15], [2]: Fuchs[11]
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uses testbenches to find the optimal population size to re-
duce the number of evaluations, Colin Reeves|[25] tries to
find the minimum population size with no performance
loss.

However, with a smaller population size, convergence
to local optima tends to appear rapidly. One is therefore
tempted to improve (read complexify) genetic operators
to fight against premature convergence [28].

All in all, most people try to minimise the number of
evaluations by all possible means [24], on the fair ground
that the evaluation function of their problem is extremely
demanding in CPU time.

Moreover, one often refers to a received theory that
the CPU time spent in the evaluation function usually
accounts for more than 90% of the total time.

In fact, empirical and experimental comparisons prove
just as difficult as theoretical demonstrations [33], [32].
Many factors need to be taken into account to evaluate
the efficiency of a given algorithm for a given problem
and many test sets have been introduced over the years
[6], [1], [26], [5], [22], [9], [16], [31]. Some studies were fo-
cussed on the fitness value as an efficiency measure, other
ones consider scalability [32], computational efficiency (in
term of number of function evaluations), parameters set-
ting [10], [21], quality achievable within a given time [34].
Few tests were really considering computational complex-
ity issues, directly related to CPU time.

A recent study comparing two evolutionary libraries
(GALib and EO) on testbench functions using the
EASEA compiler? [7], [20] showed that the two libraries
were giving very similar results although EO[8], a mod-
ern library making extensive use of C++ templates, was
using more CPU time to handle genomes. While this was
not at first a great concern, closer examination revealed
that in many cases, the figure of 90% was not reached,
even with relatively complex evaluation functions.

2EASEA (EAsy Specification of Evolutionary Algorithms) is a
language dedicated to evolutionary libraries now developed within
the DREAM European Project. Its aim is to relieve the program-
mer of the task of learning how to use evolutionary libraries and
object-oriented programming by only specifying the algorithm in a
.ez source file.



III. Experimental results

As testbenches may not reflect reality, we looked back
at real applications rather than benchmark functions. Al-
though in some cases, evaluation took well over 90% of
the total time, we discovered that in many implementa-
tions, the percentage was much smaller indeed.

In all cases, the programmers of these experiments
have been trying to minimise evaluation time, some-
times by adding more information than necessary in the
genome, or by using elaborate recombination or mutation
operators.

The extra time spent in the evolutionary algorithm
improved the exploration of the search space. However,
the induced extra CPU-cost could have been used to get
more evaluations done. The following experiments show
that a balance must be found.

A. Tnverse problem for affine IFS

Iterated functions system (IFS) theory is an important
topic in the domain of fractals, mainly for image com-
pression applications.

A major challenge of both theoretical and practical
interest is the resolution of the so-called inverse problem.
Except for some particular cases, no exact solution is
known. Some solutions exist based on deterministic or
stochastic optimization methods, but as the function to
be optimised is extremely complex, most of them make
some a priori restrictive hypotheses. Solutions based on
GA or ES have been presented for affine IFS [13], [23],
and more recently on a GP for non affine IFS [3].

The following test case is a simple implementation in
EASEA of an EA for the resolution of the inverse problem
for affine IFS, with a variable number of functions. The
attractor simulation stage is however still very expensive,
meaning that the fitness function takes most of the total
time.

The standard EASEA output reads:
Score = 2130.927620 image size: 256x256
Elapsed time: 118.77s for 14516 evaluationms.
Time spent in evaluation function:

116.3s = 97.9204% of total time.
POP_SIZE=100, NB_GEN=500

With 97.92% of the total time spent in the evaluation
function, this example behaves as expected.

B. The Fly Algorithm

This example [17], taken from Image Processing (stereo-
vision) uses the “Parisian Evolution” paradigm, in which
each individual in the population represents a part of
the solution rather than the solution itself in a way sim-
ilar to some artificial life simulations. It processes im-

age data from two digital cameras in order to build a
three-dimensional representation of the scene. Here, the
algorithm evolves a population of “flies” which are 3-D
points in space, using an Evolution Strategy.

A fly’s fitness value is a measurement of the consistency
of the projections of the fly on the two images so that
the flies’ fitness values are statistically biased in favour
of those lying on the surfaces of visible objects.

Once evolved, the population of flies spreads onto the
surfaces of the objects and the model of the scene is the
fly population taken as a whole.

As is often the case with Parisian Evolution, popula-
tion size is large, typically 5000 flies. Faster processing
may be achieved using down to 1000 flies, at the ex-
pense of much less accurate results. Genetic operators
are standard: ranking, gaussian mutation and barycen-
tric crossover. On the other hand, each fitness calcu-
lation requires local image processing to correlate the
neighbourhoods of the fly’s projections on each image,
including some projective geometry to calculate the local
gradient norm and 25 pixel grey value square differences
per fly.

The genome only consists of 3 integers corresponding
to the three x,y, z coordinates of the fly. Our tests gave
the following average values on 200 generation runs for
two population sizes:
population = 1000
elapsed time: 1560 milliseconds

evaluation (including gradient) 78.4

genetic operators (incl. selection) 21.6
population = 5000

elapsed time: 4690 milliseconds

evaluation (including gradient) 66.0 %
genetic operators (incl. selection) 34.0 /%

On this example, even though the chromosome is very
small, the contribution of genetic operators to the to-
tal time is far from negligible, probably due to the con-
jugation of the selection function (ranking) and a large
population.

C. Mass and Generalised Spring Physical Model Identi-
fication

Mechanical models, using point masses and generalised
springs, are used in several applications such as synthetic
music, man-machine gestural communication and image
animation, in order to model dynamically deformable ob-
jects. They essentially use two-extremities (“binary”)
bonds as in Cordis-Anima [19], but may also use three-
extremities (“ternary”) bonds [18]. The inverse prob-
lem consisting of finding mechanical parameters (spring
stiffness, lengths at rest, non-linearities, damping coef-



ficient values) in order to reproduce a given kinematic
trajectory, has been first solved using a custom-designed
adaptive Evolution Strategy using multiple cost func-
tions and hybridised with a gradient descent function
[18]. Recent extensions [29] allow to enrich the viscoelas-
tic model through the addition of “muscle” bonds, i.e.:
active neural-controlled bonds able to add external en-
ergy to the system.

The complexity of the task strongly depends on the
number of bonds, the genome length (i.e.: the number
of bond parameters to be identified), and the number of
kinematic frames used in the reference sequence. Each
evaluation needs a complete mechanical simulation of the
sequence, involving physical forces calculations and mo-
tion integration.

Here are the results of three representative experi-
ments:

Test sequence: horsel. This is a real-world sequence
of a real horse walking at a trot. The horse is repre-
sented with 35 masses, 53 binary bonds (39 springs
with 4 parameters and 14 dampers with 2 parame-
ters) plus 3 ternary bonds (2 params each), giving a
total chromosome length of 3840 bytes:

Sequence length: 53 frames.
generations: 1010
population: 1000.
184 parameters
73.4
genetic operators

evaluation
26.6 %

Test sequence: horse2. This example is based on the
same real-world horse sequence, with 35 masses, only
using binary bonds (39 springs with 4 parameters
and 14 dampers with 5 params) for a chromosome
length of 4464 bytes:

Sequence length: 53 frames.

generations: 1010
population: 500

226 parameters
evaluation 69.17
genetic operators  30.83

In spite of the complexity of the fitness calculation, the

share of genetic operators is still high, again around 30%.

Test sequence: muscle. This final test uses a synthe-
sised reference sequence generated by 3 masses on
10 images, including three “muscle” bonds (4 con-
nection weights + 4 mechanical parameters = 8 pa-
rameters each). Unlike the two previous examples,
this test sequence was devised in the framework of
the development of the muscle model, but does not
represent any realistic object due to its low number
of masses and bonds.

Sequence length: 10 frames
generations: 1010
population: 2000

24 parameters

11.03 %
genetic operators

evaluation
88.97%

With a small size problem and a short fitness function,
evaluation percentage drops down to 11 %.

D. PPSN VI

This real-world example comes from the PPSN VI con-
ference organisation. The conference received 156 papers
to be reviewed by 178 reviewers. As such a massive as-
signment represents several days’ work for a conference
organiser, it was decided that an evolutionary algorithm
should be given the task to automatically assign papers
to reviewers [4].

As each paper needed to be reviewed by four reviewers,
each reviewer needed to read an average of 155 x4/178 =
3.48 papers. It was decided that the EASEA program
would assign 3 reviewers per paper, and that a fourth
one would be added manually.

Such an assignment is quite difficult to construct be-
cause it is not possible to give any reviewer any paper to
review. A strong constraint must not be violated (a re-
viewer must not review a paper of which he is an author)
and many soft constraints need to be satisfied, that can
be included as penalties within a fitness function:

o It is preferable that all reviewers should have 3 to 5

papers to review (rather than 0 or 12).

o It is preferable that reviewers should not know au-
thors personally. This is of course very difficult for
a computer to tell. However, e-mail addresses fields
can be compared,

o The assignment should take reviewers’ preferences
into account (titles and abstracts were provided to
the reviewers before the assignment so that they
could express their preferences).

¢ The program should try to match papers and review-
ers with a maximum of keywords in common.

All in all, four databases contained the necessary in-

formation:

1. A reviewers database, containing the name, the e-
mail address, and a list of keywords corresponding
to the fields in which they are competent.

2. A papers database, containing the identification
number, the title, the list of authors, a list of e-mail
addresses and a list of keywords.

3. A file containing the reviewer ID, along with a list
of paper IDs he would rather review.

As much information was needed to attribute the

penalties, the genome of each individual was quite huge:



Match { int KeywContribution;
int Will_Unwill_Contribution;
int KwMatch([4];
int ReviewerId[4];
int Id;
int Nb;
int reviewer[4];

}

Genome { Match paper[156];
int NbPapersPerReviewer[178];
int Distribution[10];
int NbPapersPerReviewerContribution;
int Will_Unwill_Contribution;
int TotalKeywContribution;

}

On a Pentium architecture, one instance of the Match
class takes 64 bytes, giving a total size of 10 748 bytes
for the genome.

The best result was obtained with 5 million genera-
tions of 40 individuals, for a total of around 200 million
evaluations.

In this case, evaluations were very simple (adding
penalties depending on the violated constraints), and the
time spent in the evaluation function only amounted to
26.4% of the total time.

As the total time was 41 hours and 40 minutes on a
PENTIUM II 300 Mhz, more than 32 hours were spent on
genome handling routines, mutation and recombination
included.

IV. Testbenches with EASEA

The previous examples showed that it is possible to
find real world problems with completely different pro-
portions of evaluation time over total time. We there-
fore reverted to standard benchmarks implemented in
EASEA to minutely explore this area. Many such func-
tions are available (Sphere, Ackley Path, Griewangk,
Rastrigin, Rosenbrock, Schwefel, Weierstrass, etc. [30])
and their EASEA implementation can be found on the
EASEA web page (http://www-rocq.inria.fr/EASEA/).

A. Choosing test functions

Some functions are extremely simple (Sphere) and only
take micro-seconds to evaluate, when more elaborate
ones (Weierstrass) include a loop allowing to tune the
precision of the result (and at the same time the evalu-
ation time). Moreover, these functions can be run with
different dimensions, meaning that the size of the genome
can be changed while still having meaningful results.
We therefore discarded very fast test functions (like
Sphere, where the evaluation time never goes beyond 10-
15% of the total time) and very long functions (Weier-
strass with a long loop) where evaluation time never

comes under 97% of the total time.

Some functions showed the very interesting property
of keeping a nearly constant evaluation percentage what-
ever the dimension. What happens is that as the dimen-
sion increases, the evolutionary algorithm needs to deal
with larger genomes to clone, mutate, recombine, which
would lead to a smaller evaluation percentage. However,
as dimension increases, evaluation also takes more time,
tending to counterbalance the previous effect.

Some test functions (Schwefel and Griewangk) were
doubly interesting in that their nearly constant evalua-
tion percentage was around 60-70%, which happened to
be the value for the Fly and Mass/Spring model algo-
rithms, and which in our experience seems to be a not so
infrequent value.

If some odd behaviour were to appear on EAs showing
this relatively high evaluation percentage, it would also
appear on algorithms like PPSN, where only 26% of the
total time was devoted to evaluation.

As we wanted to explore the balance between operator
complexity and evaluation time, we decided to compare
EAs with and without “optimised” EA operators. We
therefore decided to test a very powerful tool described
by Schwefel in [27]: the log-normal self-adaptive gaus-
sian mutation operator. This smart operator —originally
created for Evolution Strategies— was designed in order
to explore locally, as well as globally, a bounded search
space.

Log-normal mutation allows to make variable sized
random jumps. It may become self-adaptive in the sense
that a sigma mutation parameter is also evolved by the
EA, thus adapting the exploration range of this muta-
tion accordingly to the evolution state of each individ-
ual. This operator makes the algorithm more efficient in
escaping from local maxima.

Its implementation is simple: sigma mutation param-
eters are added to each component of the genome, (thus
doubling the genome size if each gene was a floating point
value). The sigma parameters are evolved exactly in the
same way as the original genome: they are recombined
and mutated (gaussian mutation of fixed radius). The
mutation of the original genome components is a log-
normal mutation, with the corresponding variable sigma
encoded in the genome.

B. Explaining the tests and the results

Schwefel’s smart mutation operator drastically cuts down
the number of evaluations by improving the exploration
of the search space thanks to its self-adapting capabili-
ties. The achieved effect is spectacular when very costly
evaluation functions are involved: the little added time



to compute the sigma mutation parameters is counterbal-
anced with drastic savings in CPU evaluation time. The
trade-off is however not so beneficial with our selected
functions.

We conducted the following experiment to show the

trade-off:

1. We ran the benchmarks on a wide range of dimen-
sions (note the log scale) with a standard mutation
operator with a fized number of evaluations (24,151),
and stored the results.

2. We ran the same benchmarks over the same set of
dimensions with Schwefel’s mutation operator until
we got a smaller or equal fitness value (these func-
tions must be minimised).

Griewangk with standard mutation

Dim Eval. # Total Eval. % Fitness
10 24151 3.84s 39.1% 0.515
31 24151 4.56s 45.2% 4.187
100 24151 6.76s 54.8% 42.010
316 24151 14.10s 59.4% 252.430
1000 24151 37.13s 65.3% 843.642
3162 24151 111.24s 65.3% 3169.142
10000 24151 356.98s 64.7%  10845.621
Griewangk with adaptive mutation
Dim Eval. # Total Eval. % Fitness
10 4351 1.21s 38.1% 0.479
31 4471 2.03s 30.0% 4.053
100 6151 5.28s 18.7% 41.120
316 8311 18.70s 14.5% 247.330
1000 12151 81.62s 14.2% 840.689
3162 16111 336.23s 13.2% 3158.232
10000 24151 1616.57s 13.3% 10820.232
1800-
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Figure 1: Tests on the Griewangk function

It is quite clear that the adaptive mutation operator
works really well: it drastically reduces the number of
evaluations for equal or better fitness values, and as far
as total timeis concerned, the EA is therefore much faster
when the problem is relatively simple to solve (until di-
mension 316). However, when things get tough —i.e.:
when the problem gets so difficult than the smart muta-

tion operator is not efficient any more— having a com-
plex and therefore costly mutation function becomes a
huge handicap. For dimension 10000, adaptive mutation
is more than four times slower (cf. figure 1).

If we look at the evaluation time percentage, the algo-
rithm with the non adaptive mutator stabilises around
65% —i.e.: at about the same percentage as the Fly
and Mass/Spring model algorithms— while the evalua-
tion time percentage of the algorithm with adaptive mu-
tation drops to 13% of the total time. This may be what
happened to the PPSN VI example quoted previously.

Schwefel with standard mutation

Dim Eval. # Total Eval. % Fitness
10 24151 3.79s 48.6% 1209
31 24151 4.45s 39.5% 7315
100 24151 6.63s 53.5% 27965

316 24151 12.74s 58.2% 114133

1000 12151 33.12s 59.8% 369134

3162 24151 97.39s 60.3% 1246990

10000 24151 313.22s 58.8% 4086970

Schwefel with adaptive mutation

Dim. Eval. # Total Eval. % Fitness
10 24151 5.11s 33.0% 1162
31 9871 3.79s 23.2% 7223
100 6031 5.17s 14.9% 27499
316 3271 7.32s 17.2% 113995

1000 3991 26.09s 13.1% 368914

3162 4351 87.55s 12.2% 1242240

10000 8311 543.43s 12.1% 4084840
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Figure 2: Tests on the Schwefel function

The symptoms look the same on Schwefel’s function.
Although, for a strange reason, it does not seem to han-
dle the very simple cases very well (maybe until 31), the
Schwefel adaptive mutator is most effective until and be-
yond dimension 3162 when again things get tougher. The
simple mutation wins again beyond dimension 10000 (cf.
figure 2).

As far as evaluation time percentage is concerned, we
also see a big drop down to 12% of total time, while the
non-adaptive function remains stable at around 59%.



V. Conclusion

When it is obvious that the fitness function contains
intensive and very long calculations, (above 95% of the
total time, as for the Inverse IFS problem), trying to
minimise the number of evaluations is the right way to
go, whatever this involves concerning the evolutionary
operators. Saving one single evaluation may be worth it.

However, if the algorithm takes ages to complete
and the evaluation function does not seem that CPU-
consuming, great care should be taken when “optimis-
ing” the evolutionary part of the algorithm. Going for
smart operators may save time, if and only if the added
“intelligence” is really effective over the problem at hand.
Otherwise, if the problem is simply too complex, stream-
lining evolutionary operators might be the right way to
go, to get as many evaluations as possible and to let
Darwin handle the case.

The latest version of EASEA 0.6¢ now displays evalu-
ation time percentage as a default feature, so that users
can have a rough idea on what part of the code they
should optimise. This paper suggests that with an evalu-
ation time below 60% of total time, “optimising” the EA
by writing more complex operators may be the wrong
thing to do.
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