
Evolutionary signal enhancement based onH�older regularity analysisJacques L�evy V�ehel and Evelyne LuttonProjet Fractales | INRIA, B.P. 105, 78153 Le Chesnay cedex, France,Jacques.Levy Vehel@inria.fr, Evelyne.Lutton@inria.fr,http://www-rocq.inria.fr/fractalesAbstract. We present an approach for signal enhancement based on theanalysis of the local H�older regularity. The method does not make explicitassumptions on the type of noise or on the global smoothness of theoriginal data, but rather supposes that signal enhancement is equivalentto increasing the H�older regularity at each point. The problem of �ndinga signal with prescribed regularity that is as near as possible to theoriginal signal does not admit a closed form solution in general. Attemptshave been done previously on an analytical basis for simpli�ed cases [11].We address here the general problem with the help of an evolutionaryalgorithm. Our method is well adapted to the case where the signalto be recovered is itself very irregular, e.g. nowhere di�erentiable withrapidly varying local regularity. In particular, we show an application toSAR image denoising where this technique yields good results comparedto other algorithms. The implementation of the evolutionary algorithmhas been done using the EASEA (EAsy speci�cation of EvolutionaryAlgorithms) language.1 IntroductionA large number of techniques have been proposed for signal enhancement. Thebasic frame is as follows. One observes a signal Y which is some combinationF (X;B) of the signal of interest X and a \noise" B. Making various assumptionson the noise, the structure of X and the function F , one then tries to derive amethod to obtain an estimate X̂ of the original signal which is optimal in somesense. Most commonly, B is assumed to be independent of X , and, in the sim-plest case, is taken to be white, Gaussian and centered. F usually amounts toconvoluting X with a low pass �lter and adding the noise. Assumptions on Xare almost always related to its regularity, e.g. X is supposed to be piecewise Cnfor some n � 1. Techniques proposed in this setting resort to two domains: func-tional analysis and statistical theory. In particular, wavelet based approaches,developed in the last ten years, may be considered from both points of view [1,5]. Our approach in this work is di�erent from previous ones in several respects.First, we do not make explicit assumptions on the type of noise and the cou-pling between X and B through F . However, if some information of this type



is available, it can readily be used in our method. Second, we do not requirethat X belong to a given global smoothness class but rather concentrate on itslocal regularity. More precisely, we view enhancement as equivalent to increasingthe H�older function �Y (see next section for de�nitions) of the observations.Indeed, it is generally true that the local regularity of the noisy observations issmaller than the one of the original signal, so that in any case, �X̂ should begreater than �Y . We thus de�ne our estimate X̂ to be the signal \closest" to theobservations which has the desired H�older function. Note that since the H�olderexponent is a local notion, this procedure is naturally adapted for signals whichhave sudden changes in regularity, like discontinuities. From a broader perspec-tive, such a scheme is appropriate when one tries to recover signals which arehighly irregular and for which it is important that the restauration procedureyields the right regularity structure (i.e. preserves the evolution of �X alongthe path). An example of this situation is when denoising is to be followed byimage segmentation based on textural information: Suppose we wish to di�er-entiate highly textured zones (appearing for instance in MR or radar imaging)in a noisy image. Applying an enhancement technique which assumes that theoriginal signal is, say, piecewise C2, will induce a loss of the information which isprecisely the one needed for segmentation, since the denoised image will not con-tain much texture. The same di�culty occurs in other situations such as changedetection from noisy sequences of aerial images or automatic monitoring of theevolution of lung diseases from scintigraphic images: in such cases, the criterionfor a change is often based on a variation of the irregularity in certain regions,and one needs to preserve this information.In addition to the examples given above, other situations where such con-ditions occur are turbulence data analysis and characterization of non-voicedparts of voice signals. Since the method is highly non linear and quite complex,an analytic solution is not possible. We thus resort to a stochastic optimisationmethod based on evolutionary altgorithms.The remaining of this paper is organized as follows. Section 2 recalls somebasic facts about H�older regularity analysis, which is the basis of our approach.The denoising method is explained in section 3. The evolutionary implementationbased on EASEA is then detailed in section 4, �nally numerical results on both1D and 2D signals are displayed in section 5.2 H�older Regularity AnalysisA popular way to measure the local irregularity of signals is to consider H�olderspaces. We will focus in this paper on the H�older characterizations of regularity.To simplify notations, we assume that our signals are nowhere di�erentiable.Generalisation to other signals simply requires to introduce polynomials in thede�nitions [7].Let � 2 (0; 1), 
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Let: �l (f; x0; �) = sup f� : f 2 C�l (B (x0; �))g �l (f; x0; �) is non increasing asa function of �.We are now in position to give the de�nition of the local H�older exponent :De�nition 1 Let f be a continuous function. The local H�older exponent of fat x0 is the real number:�l (f; x0) = lim�!0 �l (f; x0; �)Since �l is de�ned at each point, we may associate to f the function x! �l(x)which measures the evolution of its regularity.This regularity characterization is widely used in fractal analysis because ithas direct interpretations both mathematically and in applications. It has beenshown for instance that �l indeed corresponds to the auditive perception ofsmoothness for voice signals. Similarly, simply computing the H�older exponentat each point of an image already gives a good idea of its structure, as forinstance its edges [10]. More generally, in many applications, it is desirable tomodel, synthesize or process signals which are highly irregular, and for whichthe relevant information lies in the singularities more than in the amplitude. Insuch cases, the study of the H�older functions is of obvious interest.In [12], a theoretical approach for signal denoising based on the use of aH�older exponent and the associated multifractal spectrum was investigated. Wedevelop here another enhancement technique that uses the information broughtby the local H�older function, which is simple from an algorithmic point of view,and yields good results on several kind of data.3 Signal EnhancementWe adopt in this paper a functional analysis point of view. This means that we donot make any assumption about the noise structure, nor the way it interacts withthe data. Rather, we seek a regularized version of the observed data that ful�llssome constraints. A statistical approach, classically based on risk minimization,will be presented elsewhere [11].Let X denote the original signal and Y the degraded observations. We seeka regularized version X̂ of Y that meets the following constraints: a) X̂ is closeto Y in the L2 sense, b) the (local) H�older function of X̂ is prescribed.If �X is known, we choose �X̂ = �X . In some situations, �X is not known butcan be estimated from Y . Otherwise, we just set �X̂ = �Y +�, where � is a user-de�ned positive function, so that the regularity of X̂ will be everywhere largerthan the one of the observations. We must solve two problems in order to obtainX̂. First, we need a procedure that estimates the local H�older function of a signalfrom discrete observations. Second, we need to be able to manipulate the dataso as to impose a speci�c regularity. A third di�culty arises from the followinganalysis: Assume the simplest case of an L2 signal corrupted by independentwhite Gaussian noise. It is easy to check that almost surely �Y = � 12 everywhere,because a) � 12 is the regularity of the noise, b) �X � 0 since X 2 L2, c) theregularity of the sum of two signals which have everywhere di�erent H�olderexponents is the min of the two regularities. Thus �Y does not depend on X ,



and one cannot go back from �Y to �X . This fact casts doubts on the e�ciencyon the whole approach, since the information it is based on is degenerate in thiscase.All these problems are solved once one realizes that the mathematical notionof H�older regularity is an abstraction that makes sense only asymptotically. Oneneeds to analyze carefully how it should be adapted to a �nite setting, muchin the same way as what is done for abstract white noise. In particular, we areinterested in a perceptual notion of regularity: If two 2D functions A and B aresuch that �A < �B , but an imaging of A and B at a given resolution yieldsthe contrary visual impression that A is smoother than B, then of course ouralgorithm should go with the perceptual information. In other words, in practicalapplications we are not interested in the asymptotic behavior, but in the scaleswhich are really in the image, and our estimate of � should reect this fact.This means precisely one thing: the estimation procedure should yield results inagreement with what is perceived, and not care for the \true" � , which may ormay not be accessible from the �nite data. To go back to the example above,while it is true that at in�nite resolution the sum \signal + white noise" wouldlook much the same as white noise as far as regularity is concerned, this is notthe case at �nite resolution, where the inuence of the signal is still perceptible.In addition, since our procedure is di�erential, i.e. we wish to impose �X̂ = �Y +�or �X̂ � �X = 0, for estimated �X and �Y , we do not care about constant bias.We will use a wavelet based procedure for estimating and controlling theH�older function. This is made possible by results in [7] and [6] which imply that:Proposition 1 Let f j;kgj;k be an orthonormal wavelet basis, where as usualj denotes scale and k position, and assumes that  is regular enough and hassu�ciently many vanishing moments. Then, X has local H�older exponent � at tif and only if for all (j; k) such that t belongs to the support of  j;k,jcj;kj � C2�j(�+ 12 ) (1)where C is a constant and cj;k is the wavelet coe�cient of X.Although (1) is only an inequality, it suggests that one may estimate �X(t) bylinear regression of log(jcj;kj) w.r.t. to the scale j (log denotes base 2 logarithm)considering those indices (j; k) such that the support of  j;k is centered above t.Of course this will be only approximate, but since (1) is a necessary and su�cientcondition, and if enough wavelet coe�cients are \large", we may hope to obtainresults su�cient for our purpose.Two points are essential in this estimation procedure:{ The estimation is obtained through a regression on a �nite number of scales,de�ned as a subset of the scales available on the discrete data. This avoidsthe pathologies described above concerning the regularity of the sum of twosignals. In particular, it is possible to express the H�older function of thenoisy signal Y = X + Gaussian white noise as a function of �X , and thusto estimate conversely �X from �Y [11].



{ The use of (orthonormal) wavelets allows to perform the reconstruction in asimple way: Starting from the coe�cient (dj;k) of the observations, we shallde�ne a procedure that modi�es them to obtain coe�cients (cj;k) that verify(1) with the desired �, and then reconstruct X̂ form the (cj;k).We may now reformulate our program as follows: For a given set of observationsY = (Y1; : : : ; Y2n) and a target H�older function � , �nd X̂ such that jjX̂ �Y jjL2is minimum and the regression of the logarithm of the wavelet coe�cients ofX̂ above any point i w.r.t. scale is �(�(i) + 12 ). Note that we must adjust thewavelet coe�cients in a global way. Indeed, each coe�cient at scale j subsumesinformation about roughly 2n�j points. Thus we cannot consider each pointi sequentially and modify the wavelet coe�cients above it to obtain the rightregularity, because point i + 1, which shares many coe�cients with i, requiresdi�erent modi�cations. The right way to control the regularity is to write theregression contraints simultaneously for all points. This yields a system which islinear in the logarithm of the coe�cients:�L = Awhere � is a (2n; 2n+1 � 1) matrix of rank 2n, andL = (log jc1;1j; log jc2;1j; log jc2;2j; : : : log jcn;2n j);A = �n(n� 1)(n+ 1)12 ��(1) + 12 ; : : : ; �(2n) + 12�Since we use an orthonormal wavelet basis, the requirements on the (cj;k) may�nally be written as:minimizeXj;k (dj;k � cj;k)2 subject to: 8 i = 1; : : : ; 2n,nXj=1 sj log(jcj;E((i�1)2j+1�n)j) = �Mn(�(i) + 12) (2)where E(x) denotes the integer part of x and the coe�cients sj = j � n+12 ,Mn = n(n�1)(n+1)12 and equation (2) are deduced from the requirement that thelinear regression of the wavelet coe�cients of X̂ above position i should equal�(�(i) + 12 ).Finding the global solution to the above program is a di�cult task ; in parti-cular, it is not possible to �nd a closed form formula for the cj;k. In the following,we show how this problem can be addressed with an evolutionary algorithm.4 Evolutionary signal enhancement with EASEAAn evolutionary technique seems to be appropriate for the optimisation problemdescribed in equation (2): a large number of variables are involved, and thefunction to be optimised as well as the contraint are non linear. We describe inthis section an implementation based on the EASEA [13] language and compiler.



EASEA (EAsy Speci�cation of Evolutionary Algorithms) is a language dedi-cated to evolutionary algorithms. Its aim is to relieve the programmer of the taskof learning how to use evolutionary libraries and object-oriented programmingby using the contents of a .ez source �le written by the user.EASEA source �les only need to contain the "interesting" parts of an evo-lutionary language, namely the �tness function, a speci�cation of the crossover,the mutation, the initialisation of a genome plus a set of parameters describ-ing the run. With this information, the EASEA compiler creates a completeC++ source �le containing function calls to an evolutionary algorithms library(either the GALIB or EO for EASEA v0.6). Therefore, the minimum require-ment necessary to write evolutionary algorithms is the capability of creatingnon-object-oriented functions, speci�c to the problem which needs to be solved.In our case, the evolutionary optimisation involved to enhance a signal (1Dor 2D) was implemented using a simple structure on which genetic operatorswere de�ned. We used GALib [4] as the underlying evolutionary library.We describe below the implementation for 1D signals, an implementation forimage denoising was also produced based on the same principle, and results for1D and 2D data are presented in the next section.The Haar wavelet transform has been used to produce the dj;k associatedto the observed signal Y . We also suppose that we know the desired H�olderexponents �(i) (either �(i) = �Y (i)+� where the �Y (i) are the H�older exponentsof Y and � is a user de�ned regularisation factor, or �(i) is set a priori).The problem is to �nd some multiplication factor uj;k such that cj;k =uj;k � dj;k; j 2 [0::n � 1]; k 2 [0::2j � 1]. As is usual in wavelet denoising, welet unchanged the �rst l levels and seek for the remaining uj;k in [0; 1]. Thegenome is made of the uj;k coe�cients, for j 2 [l::n � 1] and k 2 [0::2j � 1].These coe�cients are encoded as a real numbers vector of size SIZE MAX =2n � 2l, which can be written using EASEA syntax as :GenomeClass { double U[SIZE_MAX]; }The EASEA Standard functions sections contain the speci�c genetic opera-tors, namely:1. The initialisation function: Each uj;k coe�cient is randomly set to avalue in [0; 1]. Two initial solutions are also put in the initial population :uj;k = 1: and uj;k = 2�k�.2. The crossover function: a barycentric crossover has been easily de�ned asfollows : Let parent1 and parent2 be the two genomes out of which child1and child2 must be generated, and let alpha be a random factor:\GenomeClass::crossover:double alpha = (double)random(0.,1.);if (&child1) for (int i=0; i<SIZE_MAX; i++)child1.U[i] = alpha*parent1.U[i] + (1.-alpha)*parent2.U[i];if (&child2) for (int i=0; i<SIZE_MAX; i++)child2.U[i] = alpha*parent2.U[i] + (1.-alpha)*parent1.U[i];\end



3. The mutation function: Mutation is a random perturbation of radiusSIGMA = 0:01, applied with probability PMut on each gene.\GenomeClass::mutator: // Must return the number of mutations as an intint NbMut=0;for (int i=0; i<SIZE_MAX; i++)if (tossCoin(PMut)){ NbMut++;Genome.U[i]+=SIGMA*(double)random(-1.,1.);Genome.U[i] = MIN(1.,Genome.U[i]); Genome.U[i] = MAX(0.,Genome.U[i]);}if (NbMut==0) identicalGenome=true; // saves evaluation timereturn NbMut;\end4. The evaluation function: The �tness function has two aims: minimiseP((1� uj;k) � cj;k)2, making sure constraint (2) is satis�ed, i.e. the H�olderexponents are the ones we want. The constraint is integrated to the �tnessfunction using a high penalisation factor W :Fitness =Xj;k ((1� uj;k) � cj;k)2 +W �Xi j�u(i)� �(i)jWe use the GALib steady state genetic engine with replacement percentageof 60% and a selection by ranking. Crossover and mutation probabilities are�xed respectively to 0.9 and 0.001. Genome size, Population size, and numberof generations are �xed for each experiment, see section 5.5 Numerical ExperimentsWe �rst show results of enhancement on synthetic 1D data. The original sig-nal is a generalised Weierstrass function [2] with �X(t) = t for all t, (i.e.X(t) =P1n=0 2ntsin(2nt); t 2 [0:1]) which has been corrupted by white Gaus-sian noise. Figure 1 shows the original signal, the noisy one, and the result of theenhancement procedure. For comparison, a denoising using a classical waveletshrinkage is also displayed. For both procedures, the parameters were set so asto obtain the best �t to the known original signal. It is seen that, for such irreg-ular signals, the H�older regularity based enhancement yields more satisfactoryresults. The constraint was to �nd H�older exponents that verify �(t) = t for allt. Parameters of the evolutionary algorithm were as follows :Genome Size SIZE MAX = 496Population Size 25Number of generations 50000Computation time 1365.96 seconds for 293506 evaluations
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Generalised Weierstrass funtion (left) + noise (right).
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Denoising using wavelet shrinkage method (left), and using the evolutionary schemewith prescribed �(t) = t (right).
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Left: Estimated H�older exponents of the original function (left), of the function +noise (middle) and of the reconstructed function (right).Fig. 1. Results on a generalised Weierstrass function �(t) = t



Our second example deals with a synthetic aperture radar (SAR) image. A hugeliterature has been devoted to the di�cult problem of enhancing these images,where the noise is non Gaussian, correlated and multiplicative. A �ne analysisof the physics of the speckle suggests that it follows a K distribution [9]. Classi-cal techniques speci�cally designed for SAR image denoising include geometric�ltering and Kuan �ltering. Wavelet shrinkage methods have also been adaptedto this case [3]. Figure 2 show an original SAR image, its denoising with theH�older method and with soft thresholding. Notice how the river, with appearswith a \�" shape in the middle of the image is nicely uncovered by the regu-larity based enhancement. As no a priori knowledge about H�older exponents ofthe signal was available, the constraint was to �nd H�older exponents that verify�denoised(t) = �original(t)+ � for all t. Parameters of the evolutionary algorithmwere as follows :Genome Size SIZE MAX = 21845Population Size 50Number of generations 100Computation time 1702.46 seconds for 3051 evaluationsRegularisation factor � 0.5 and 0.7

Left: Original SAR image. Right: Image denoised using soft thresholding.
Image denoised using the H�older regularity scheme. Left: � = 0:5. Right: � = 0:7Fig. 2. Experiments on a 256x256 area of a SAR image (courtesy IRD)



6 ConclusionWe have shown in this paper how an evolutionary algorithm can be applied toa signal or image enhancement technique based on a \fractal" analysis. Goodresults have been obtained as well as on 1D or 2D signal in comparison to othertechniques in an a�ordable computation time.Quality of the results is also very dependent from the quality of H�older expo-nents estimation. Much better estimate of �X(t) can be obtained by measuringthe oscillations of X in balls centered at t and of radii �k, and then regressingthe logarithm of these oscillations w.r.t. the logarithm of the �k. However, thisprocedure does lead to a more complex inverse problem, i.e. obtaining a sig-nal with prescribed regularity. Future work will be devoted to an evolutionaryformulation of this problem.References1. R.A. Devore, B. Lucier Fast wavelet techniques for near optimal image processing.1992 IEEE Military Communications Conference, 2{12 (1992).2. K. Daoudi, J. L�evy V�ehel, Y. Meyer, Construction of functions with prescribed localregularity, Constructive Approximation, 1989.3. L. Gagnon, F. Drissi Smaili, Speckle noise reduction of airborne SAR images withsymetric Daubechies wavelets, Signal and Data Processing of Small Targerts, Proc.SPIE 2759, 1996.4. M. Wall, GAlib home page: http://lancet.mit.edu/ga/ , MIT.5. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, No. 3,613{627 (1994).6. B. Guiheneuf, J. L�evy V�ehel, 2 micro-local analysis and applications in signal pro-cessing, Int. Conf. on Wavelet, Tangier, 1997.7. S. Ja�ard, Pointwise smoothness, two-microlocalization and wavelet coe�cients.Publ. Mat. 35, No. 1, 155{168 (1991).8. J. J. Merelo, EO home page: http:/geneura.ugr.es/ merelo/EO.html , GranadaUniversity.9. C.J. Oliver, Information from SAR images, J. Phys. D, 24, 1493-15144, 1991.10. J. L�evy V�ehel, Fractal Approaches in Signal Processing, Fractals, 3 (4), pp 755-775,1995.11. J. L�evy V�ehel, Statistical denoising of irregular signals, INRIA internal report.12. J. L�evy V�ehel, B. Guiheneuf \Multifractal Image Denoising," SCIA, 1997.13. Pierre Collet, Evelyne Lutton, Marc Schoenauer, Jean Louchet, "Take it EASEA,"Parallel Problem Solving from Nature VI, vol 1917, Springer Verlag pp 891-901,Paris, septembre 2000. EASEA home page: http://www-rocq.inria.fr/EASEA/


