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Abstract-
We present a new approach to perform molecular sim-

ulations using evolutionary algorithms. The main ap-
plication of this work is the simulation of dense amor-
phous polymers and the goal is to improve the efficiency
of sampling, in other words to obtain valid samples from
the phase state more rapidly. Our approach is based on
parallel Markovian Monte Carlo simulations of the same
physico-chemical system, where we optimise some Monte
Carlo parameters by means of a real coded genetic algo-
rithm.

1 Introduction

Molecular simulations of dense amorphous polymers is fac-
ing the major challenge of sampling efficiency with the in-
crease in the size and complexity of molecules : the potential
energy surface of such systems are characterized by numer-
ous local minima separated by very high barriers, hence dif-
ficult to sample either along the trajectories obtained from
direct Molecular Dynamics (MD, see [1] [3]) or through con-
ventional Markovian Monte Carlo simulations. Similar diffi-
culties are encountered with protein folding simulations,that
is translating the 1D genomic information into 3D bioactive
edifice. Therefore, a major challenge for molecular simula-
tion is to develop more efficient elementary moves ([7], [5])
in order to achieve more efficient exploration and sampling
of configurational space for long chain molecules. Here, we
are prototyping an approach using evolutionary algorithms
(EA) in order to improve the statistical efficiency of Marko-
vian Monte Carlo systems employing several types of such
elementary moves. We show the basics of Markovian Monte
Carlo simulations in section 2; section 3 presents the EA ap-
proach: encoding, fitness, algorithm, operators; section 4de-
tails the Monte Carlo moves and the molecular model used;
section 5 presents results on the case of polyethylene confi-
gurations, and is followed by a short conclusion.

2 The problem of sampling efficiency

The main purpose of molecular simulation is to simulate mat-
ter at the atomic level in order to compute some thermody-

namic properties through integrals of the form :< A >= Rx2
A(x)exp(��U(x))dxRy2
 exp(��U(y))dy (1)

WhereA is some observable property that one can compute
from a given state, and
 is the phase space, which is in the
case of Markovian Monte Carlo simulation the space of geo-
metrical coordinates of each component of the simulated sys-
tem under prescribed conditions. The distribution associated
to that space is the Boltzmann distribution�B :8x 2 
; �B(x) = exp(��U(x))Ry2
 exp(��U(y))dy (2)

with � = 1kBT , kB the Boltzmann constant, T the temperature
of the system, andU(x) its energy. The Monte Carlo scheme
is a way to estimate this integral by the following average :Â = NXi=1 A(xi) ; (xi)i=1:::N 2 
 (3)

with the (xi)i=1:::N some random trials according to�B .
The problem arises from the fact that one cannot take “di-
rect” samples according to�B , as its normalizing term would
require to compute an integral over the whole phase space,
which is infeasible for non trivial cases.

The key point is then to design a Markov Chain, whose
state space is our phase state, in such a way that it is ergodic
and admits the desired limit distribution�B (see [4]). This is
done by applying the Metropolis ([6]) algorithm that defines
a random walk according to the following rules:

1 Choose any starting pointx from
 as the initial state.

2 Generate a new pointy by operating a move step
from x.

3 Accept or rejecty as the new state with a probabilitya(x; y) and go back to 2 :a(x; y) = min (1; exp(���U)) (4)

where�U is the difference of energy of the two states.

The resulting sequence of states (which may include multiple
instances of the same state in case of multiple consecutive



rejections) defines a correct sample according to�B as long
as enough states are visited. Of course the minimum time
of simulation depends on the considered distribution, and in
the field of molecular simulation an autocorrelation criterion
is often used to decide when to stop the random walk. The
problem of efficiency is then to keep thismixing timeas small
as possible.

3 Evolutionary Approach to improving Marko-
vian Monte Carlo simulations

In this section we show the chosen EA approach to improve
Monte Carlo molecular simulations. The basic principle is to
evolve sets of parameters describing distribution frequencies
of allowed Monte Carlo movements.

3.1 Optimising parameter sets

We deal with molecular simulations of amorphous polymers
for which generating valid configuration samples is long and
difficult. We consider parallel simulations of the same sys-
tem. The goal is to produce a correct sampling of the search
space, with all parallel simulations contributing to the same
sampling. In traditional Monte Carlo approaches, users em-
pirically adjust the parameters of a simulation, e.g. in case
of several allowed Monte Carlo movements, the relative fre-
quencies of those movements along the simulation. These
frequencies have no consequence on the limit distribution
of valid configurations, since they only impact the way the
search space is sampled during the simulation. However find-
ing good sets of such frequencies for a specific problem can
significantly improve the performance of the whole process.

The chosen reference algorithm (RA) that will be used
here for the comparison of other approaches consists inns
simulations of polymer systems with different initial states
in the same physico-chemical conditions (i.e. different
points from the same phase space), each simulation using an
equiprobable distribution of allowed movements.

3.2 Real-valued encoding, multicriteria fitness function

The relative frequencies of movements are real numbers tak-
ing values in the interval[0; 1℄ and are used as such in our
algorithm. The sum ofm frequencies for them types of
movements is equal to 1. Other real-valued parameters of
movements are added to the chromosome.

The fitness function uses two complementary criteria: the
first one, autocorrelation, is well known by practitioners of
molecular simulation (see [5] for example). We compute the
decreasing rate of autocorrelation of end-to-end chain vec-
tors, previously normalised. The end-to-end chain vector is
the vector linking both ends of a chain. For one simulation,
autocorrelation of those vectors can be calculated periodically
after a sufficient numbers of elementary moves, and is equal
to the means of all single chain’s autocorrelation over the set

of chains in the simulation box:a = 1nsamples nsamplesXi=1 < vi; v0 > (5)

Where(vi)i2f0:::nsamplesg are the normalized end-to-end vec-
tors. The second criterion is the mass center displacement,
that is, the distance between the current position of the mass
center of a chain, and of its initial position. The greater the
displacement, the more sampling has taken place in the sim-
ulation.

3.3 Cycles and generations

We can summarize the algorithm as follows:� we simulate ns systems with identical physico-
chemical parameters;� each system has a chromosome composed of the real-
valued parameters of the simulation, in particular the
frequencies distributions; the initial population is gen-
erated randomly;� one simulation of one system consists inn cycles;� thosen cycles are further segmented inng generations
(see figure 1) inside which individuals of the popula-
tions are evaluated along with the fitness criteria pre-
sented above (Note: since an individual is a set of
parameters, its evaluation requires many Monte Carlo
movements in cycles).� Our EA uses a range of standard strategies and pa-
rameter settings: Stochastic universal sampling ([2])
with full population replacement, uniform crossover
and gaussian mutation operators.

A cycle consists in several elementary Monte-Carlo moves
(trials to generate new conformations), totalling a pre-defined
CPU time. This way, fitnesses represent the true efficiency of
a parameter set over a specified period of time. This makes
our algorithm dependent on the hardware, OS and software
used, but supportive of cheap and efficient mixing moves.

The fitness of an individual is computed overn=ng cy-
cles, and is defined as:f(x; !) = [1� aavg(x; !)℄� d2avg(x; !) (6)

where! denotes the random part of the simulation,aavg
the average autocorrelation, andd2avg the average square dis-
placement. Strictly speaking, improving efficiency is a mul-
tiobjective problem (i.e. optimisinga andd2). We choose to
formulate this problem via a single fitness because these two
components are closely related, as we shall see in the numer-
ical experiments. Moreover a desirable behaviour is a good
“global” performance, i.e. all numerical simulations mustbe
efficient. The goal of our evolutionary algorithm is thus to
find rapidly many good solutions instead of locating a parti-
cular optimum.
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Figure 1: Schematic representation of our EA-based parallel
MC simulation: bars stand for simulated systems. Each sys-
tem is given MC move frequencies corresponding to an indi-
vidual of the population, performance is measured onn=ng
MC cycles and returned as the fitness score. At each new
generation, new individuals are created and each simulation
continues with corresponding (hopefully better) frequencies.
In comparison, for the reference algorithm (RA), a unique
set of frequencies is used for all the systems during all the
simulation time.

4 Molecular model, Monte Carlo moves

Molecular simulation specialists usually compare their re-
sults with experimental measurements. There is now a solid
background of such comparisons that allows to conclude that
molecular simulation correctly predicts physical properties of
matter. Instead, we compare our results with those obtained
by other authors on the same polymers systems. In this pa-
per, we adopt the polyethylene model described in [5], with
the same constants:� unified atom model considering each CH2, CH3 group

as a single active site;� fixed monomer-to-monomer link length of 1.54Å, cor-
responding to C-C bond length;� Lennard-Jones pair interaction potential. The charac-
teristic radius is�LJ = 3:94 Å, and the potential well’s
depth�LJ = 0:098 kal=mol. For two sitesi; j whose
distance between isrij , then we have:#LJ(rij) = 4�LJ � "��LJrij �12 ���LJrij �6# (7)

In practice, in order to compute the total interaction
potential of a particular site, we only consider neigh-
bouring sites that are located within a cutoff radius�ut
(here�ut = 8:67 Å). A term taking into account long

range interactions, depending on the density and on this
radius, is finally added.� Van der Ploeg and Berendsen tension potential, func-
tion of a bond angle� (given by 3 following monomers
of the same chain) allowed to fluctuate around the mean
value�0 = 112o. Givenk� = 57950K:rad�1:#V PB(�)kB = 12 � k� � (� � �0)2 (8)� Ryckaert and Bellmans torsional potential, function of
dihedral angle� (given by 4 following monomers of
the same chain). Given0 = 1116 K, 1 = 1462 K,2 = �1578 K, 3 = �368 K, 4 = 3156 K, 5 =�3788K: #torkB = 5Xk=0 kosk(�) (9)� Cubic simulation model box with periodic boundary
conditions;� Splitting the simulation box in cubix cells so as to ac-
celerate interaction potentials computation. The length
of a cell has to be larger than�ut, hence the search
for neighbours can be restricted to the cell of the site
and the 26 neighbouring cells. This implies that this
method is useful only if the simulation box is at least
4 times larger than�ut, corresponding to at least 64
cells.

4.1 Monte-Carlo Moves

Our Monte Carlo moves are commonly used in molecular
simulation literature:� Translation: the whole molecule is translated along a

random path. The translation distance is randomly cho-
sen in the interval[0; dmax℄. The parameterdmax is
usually dynamically adjusted in order to reach a pre-
scribed acceptance rate. In our casedmax is an element
of the genome. This translation move can generate ex-
pensive calculations of Lennard-Jones potential if there
are too many interaction sites and is therefore costly for
long molecules, as we will see later;� Rotation: an ending monomer is rotated within a sphere
centered on its preceding site; energy variation must
be calculated for the three potentials; this simple move
only concerns one monomer and is therefore very fast
to execute;� Reptation (or ”snaking”): an ending monomer is re-
moved, added at the other end of the chain, and rotated.
The calculation requirements are the same as with ro-
tation;



Figure 2: Translation

Figure 3: Rotation

Figure 4: Reptation

Figure 5: Flip� Flip: a monomer inside a chain is rotated along the
axis of its two neighbouring sites. The site is moved,
two tension angles change, four torsion angles change.
The rotation angle is randomly chosen in the interval[0; �max℄.The parameter�max is usually dynamically
adjusted in order to reach a prescribed acceptance rate,
and is an element of the genome in our case.

5 Numerical results.

We now present some numerical experiments in order to com-
pare efficiency of our EA algorithm to reference algorithm
(RA). We recall that the latter consists in the parallel and in-
depent MC simulations ofns polymer systems, with the same
MC parameters and in the same physico-chemical conditions.

The simulations are performed in theNnV T ensemble :� N : constant number of chains.N = 20.� n : constant number of monomers.n = 1200 (which
means polymers of size 60).� V : constant volume. This condition is imposed by a
constant simulation box lengthlB = 35:64Å.� T : constant temperature.T = 394:4K

The simulations were performed on a bi-processor PC (In-
tel Pentium II 350 MHz), and the simulation cycle was de-
fined as 1 second of process time. On average, about 500
elementary moves are performed within a cycle. The test
consisted in 16 instances of this system, which means that
the quantities plotted in the following figures are averageson
these 16 parrall runs. The total simulation time consisted inn = 5000 cycles (divided inng = 100 generations of 50
cycles in the case of the EA). To summarize EA parameters :� Population size : 16� Number of generations : 100� Full population replacement with Stochastic Universal

Sampling



� Crossover probability :p = 0:5� Mutation probability :pm = 0:1
5.1 Set A

This first set of tests use the four MC moves presented before,
with the following frequency distribution for the RA :

Rotation Reptation Flip Translation
60/181 60/181 60/181 1/181

As the translation simultaneously moves60 monomers at
a time, its frequency is divided by this amount.
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Figure 6: Set A : averaged end-to-end vector autocorrelation
plotted against cycles of simulation
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Figure 7: Set A : averaged mass center displacement (in re-
duced units,1unit = �2LJ = 15:52 Å2) plotted against cycles
of simulation.
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Figure 8: Set A : histogram of MC moves frequencies. For
each move, values of all individuals of all generations are
counted.

We see on figures 6 and 7 that the RA starts to perform
better than the EA, but both finish at approximately the same
performance, with a little advantage for the EA. This can be
explained by the fact that in the initial population each move
have on average the same frequency1=4 (in comparison to1=181 for the RA), including the translation, which reveals to
be bad moves for this system. And as the evolution discards
it, performances improve. We can check this if we look at the
histogram (figure 8) of the moves where translation frequen-
cies are located near 0 for most, and only a few values a little
greater (corresponding to first generations).

5.2 Set B : without translation move

We now drop the translation move. The three remaining
moves have now an equal frequency of1=3 in the RA.

Figures 9 and 10 show that our EA is clearly able to find
good parameters and at the same time leads to good perfor-
mances in comparison to the RA. The histogram of moves
(figures 11) shows that the reptation has a major role for this
system, which was also the case for the previous set, but this
cannot be a general rule. In fact each move may perform
differently depending of the type of simulated molecules and
also depending on the conditions (temperature, density, pres-
sure, etc...), and this motivates the adoption of a strategythat
finds “on the fly” some good parameter settings.

6 Conclusion and future exciting work

We have shown how to evolve sets of parameters of Marko-
vian Monte Carlo molecular simulations using a real-valued
genetic algorithm. Using this approach, a better sampling of
the configurational space is obtained at almost no cost, com-
pared to similar reference simulation based on fixed sets of
parameters. The practicality of our approach has been shown
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Figure 9: Set B (without translation move) : averaged end-
to-end vector autocorrelation plotted against cycles of simu-
lation.
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Figure 10: Set B (without translation move) : av-
eraged mass center displacement (in reduced units,1 unit = �2LJ = 15:52 Å2) plotted against cycles
of simulation.
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Figure 11: Set B (without translation move) : histogram of
MC moves frequencies. For each move, values of all individ-
uals of all generations are counted.

on a well-known reference problem in simulation of amor-
phous polymers. It can and will be extended to more com-
plex material for which obtaining a correct sampling is even
longer and more difficult. For this purpose, we plan to im-
plement our algorithm on a ”PC farm” of several hundreds of
PCs.

Our approach is not a direct optimisation task. Instead,
our only goal is to generate a better sampling of a very large
search space using evolution as a means to increasing diver-
sity while keeping a high acceptance rate. It is particularly
important in molecular simulation where sampling is the key
factor. On the contrary to pure optimisation EA implemen-
tations, the important output of our algorithm is not the best
individual of the final population but rather the quality of all
individuals generated along the evolution of the EA. As such
it can be considered as an evolutionary adaptive system acting
in a noisy environment.
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