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Summary. This work is a first step toward the design of a cooperative-coevolution
GP for symbolic regression, which first output is a selective mutation operator for
classical GP. Cooperative co-evolution techniques rely on the imitation of coopera-
tive capabilities of natural populations and have been successfully applied in various
domains to solve very complex optimization problems. It has been proved on several
applications that the use of two fitness measures (local and global) within an evolv-
ing population allow to design more efficient optimization schemes. We currently
investigate the use of a two-level fitness measurement for the design of operators,
and present in this paper a selective mutation operator. Experimental analysis on
a symbolic regression problem give evidence of the efficiency of this operator in
comparison to classical subtree mutation.

1 Introduction

Within the core of bioinspired co-evolution techniques, various extensions of
evolutionary algorithms have been used to efficiently tackle complex problems.
Among them mono-population cooperative algorithms have been developed,
based on problems decomposition. They can be considered as a link between
pure cooperative agent-based approaches (like Ant Colony Optimizations [5])
and artificial Darwinism.

When it is possible to consider a problem as a collective learning task,
the searched solution can be built from the whole set of individuals of an
evolved population, and not only from its single best individual. The most
famous techniques of this type are classifier systems [7], Parisian approach
[3], and cooperative coevolution [19]. The Parisian approach has for example
produced applications in text-retrieval[15, 16], in art and design[2], or even
real-time applications (stereo-vision using the “flies algorithm” [17]).

The idea defended in this paper is that the design of new operators
in variable length structure evolution like GP may stem from cooperative-
coevolution schemes. Advanced GP operators may for example benefit from



2 Malek Aichour and Evelyne Lutton

the idea of using two fitness functions within an evolutionary scheme. Consid-
ering locally optimized operators, attempts have been made on crossover, in
order to decide the best crossing point based on local measurements [9, 18].
Local measurements can actually be considered as a “local fitness function”
in the Parisian approach spirit. Here we consider locally optimized mutations
in this way.

This work is a first step for the development of a Parisian approach to
symbolic regression. The long term idea is to develop a set of simple test-
function benchmarks for cooperative-coevolution optimization algorithms, to
complete a first set of functions designed in [14].

The paper is organized as follows. Section 2 recalls the principles of
Parisian evolution, then the use of a two level fitness evaluation for genetic
operators design is considered (section 3). The selective mutation operator is
presented in section 4, and tested on three instances of symbolic regression 5.
Conclusions and future work are sketched in section 6.

2 The Parisian evolution cooperative co-evolution

scheme

Fig. 1. Outline of a standard implementation of a Parisian EA. Fitness evaluation
step is modified in order to consider local and global fitness.

This approach, originally proposed in [3], is based on a two-level represen-
tation of an optimization problem, in the sense that an individual of a Parisian
population represents only a part of the problem solution. An aggregation of
multiple individuals must be built in order to obtain a solution at hand. In
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this way, this is the whole population (or a major part of it) evolution that
is favoured instead of the emergence of a single best individual, as in classi-
cal evolutionary schemes. The motivation is to make a more efficient use of
the genetic search process, and reduce the computational expense. Successful
applications of such a scheme usually rely on a lower cost evaluation of the
partial solutions (i.e. the individuals of the population), while computing the
full evaluation only once at each generation.

Figure 1 outlines the structure of a Parisian EA, for which many of the
canonical aspects of EAs are retained. Additional characteristics are described
below and aim at building a society of individuals that implicitly collaborate
via the aggregation and global evaluation steps.

• Encoding: each individual of the population encodes a part of the solu-
tion.

• Individuals aggregation: at each generation a set of “best” local solu-
tions is aggregated from the current best global solution.

• Local fitness: this fitness is calculated for each individual, and is an
estimation of its potential contribution to the whole searched solution.
Constraints on the problem can be introduced here, in order to prune
useless computations for example.

• Global fitness: it is computed at each generation, and only on a poten-
tially good aggregation of partial solutions. Longer computations can be
performed here.

• Evolutionary engine: the complete population is evolved, and the se-
lective pressure is intended to promote the emergence of better aggregate
solutions. A scheme to aggregate local and global fitness values is usually
required. Additionally a diversity preservation mechanism is necessary in
order to maintain a complementary set of partial solutions in the current
population.

The applicability of this approach is restricted to problems that can be split
into homogeneous components, whose individual contribution to the solution
can be evaluated. Each implementation is thus strongly application dependent.
This approach actually relies on the following assumptions [6]:

1. A complete problem solution X ∈ S can be decomposed into n compo-
nents xi ∈ S′, and there exists a mapping T : S′

× S′
× ... × S′

→ S.
2. There exists a merit function floc to evaluate each component.
3. The fitness landscape defined by floc and S′ has sufficient structure to

guide the search process toward the global optimum of the global fitness
function fglob in S.

A usual way to address item 3 is to implement a bonus distribution al-
gorithm that distribute the value of fglob computed at each generation on
the partial solutions which participate to the global one. This mechanism has
been designed to ensure a positive pressure on partial solutions that have been
identified as good by the aggregation process.
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3 Using a two-level evaluation process at the level of

genetic operators

The previous Parisian cooperative co-evolution model is based on the use of
two fitness functions, that in some way “collaborate.” The design of such
couple of partial/global fitness functions is of course extremely problem de-
pendent. The challenge on this topic is certainly to produce a set of benchmark
couples of functions on which various evolutionary engines may be compared.
A first attempt has been made in [14]. We intend to continue in this direc-
tion by testing variable-length structures strategies and test-problems. GP
representations seems actually well adapted to the philosophy of Parisian ap-
proaches which tend to gather simple structures into a global variable-size
structure. Symbolic regression test-problems are currently tested.

In doing this, we first focused on the way the couple of local/global fitness
functions can be used: as can be noticed the Parisian-style cooperation is
implemented at the level of the selection/aggregation mechanism. This remark
lead us to investigate if there are no additional ways to implement a two-level
fitness cooperation within a GP engine.

The simplest way to do this is certainly within genetic operators, and
indeed there already exist crossover operators that correspond to this idea.

The standard way crossover is implemented is by exchanging genetic mate-
rial via the choice of a node in each parent tree and exchange of subtrees [13],
without taking into account the content of each subtree. This may prevent
the emergence of structured solutions[4]. It is therefore argued that crossover
behaves more like a macro-mutation operator [11] and may be not better than
a mutation-only system [1].

Some content-aware crossover techniques have been proposed in the liter-
ature (selective crossover [9, 18]). The way the content of subtrees is taken
into account can actually be related to a local fitness function. This raises the
idea of extending this idea to mutation.

4 Selective Mutation

Standard GP mutation selects a mutation node randomly in the parent tree,
and the corresponding sub-tree is replaced with a random one[12]. There are
more sophisticated versions of GP mutation, like for example the headless

chicken crossover[20] (i.e. a crossover with a temporary random tree), but
to our knowledge none of them really takes into account the content of the
subtrees.

The idea developed here is to identify the “worst” subtree of a candidate
for mutation, and to replace it by a new random one. The “worst” subtree
identification is made with the help of a “local” fitness function. In this way,
a mutation point will allow to focus the search onto unused, useless or even
deleterious areas of genomes, while (hopefully) minimizing the loss of “good”
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LocalF itness =

Fitness(3x + (x + x)) − Fitness(3x)

LocalF itness =

Fitness(3x +(x + x))−Fitness(x +(x + x))

Fig. 2. Selective mutation operator : local fitness evaluation

material at the individual level. We use the term selective mutation to refer to
the selective crossover proposed in [9, 18], and to refer to an identified natural
phenomenon in genetics3.

The local evaluation is a measurement of the weakness of the sub-tree. In
the present work it represents the contribution of the sub-tree in the context
of its container-tree, but obviously, additional constraints on the genome can
be embedded in the “local” fitness, in the same way as the classical Parisian
approach.

The local fitness measurement, i.e. the contribution of a sub-tree is cur-
rently implemented the way Hammad and Ryan evaluate GP schemes [8]: the
sub-tree to be evaluated is replaced by a neutral element (i.e. 1 for the multi-
plication, 0 for the addition, etc ...) and the resulting individual is evaluated.
The difference between the fitness of the initial complete tree and of a tree
in which a sub-tree has been replaced by a neutral element correspond to
the evaluation of this sub-tree weakness, see figure 2. Iba and Garis [10] also
suggested to measure the impact of sub-tree by treating each sub-tree as an
independent program. However this evaluation does not necessarily indicates
the real contribution of a sub-tree towards the main tree.

Once the local fitness can be evaluated on each subtree, the most simple
strategy, which is tested below, i.e. an exhaustive search on all subtrees, yield
the best candidate subtree to mutation. Of course other strategies can be
imagined in order to spare computation time. A tournament selection based
on a small sample of the possible subtrees may for example be programmed,
to reduce the computational costs and preserve some randomness in the choice
of the mutation node.

3 A selective mutation is a change in a gene that is specifically selected, see
http://www.everythingbio.com/glos/definition.php?word=selective%20mutation
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5 The Experiments and Results

5.1 Symbolic Regression Problem

Symbolic regression problems involve generating functions which approximate
a target function, f , given a set of data pairs, (xi, yi), such that yi = f(xi). In
real world applications, the target function is of course unknown, and the data
pairs are obtained from empirical observations. We are therefore interested in
inducing functions that provide an approximate fit of the data. For the purpose
of testing algorithms on these tasks, it is common to derive fitness pairs from a
known function and to evaluate each candidate solution according to how well
it approximates the target. Since it is possible to derive many semantically
equivalent functions to the target, the fitness function evaluates the error
observed between the candidate and target values over a number of fitness
points. There are many ways of doing this, for example summing the absolute
differences between the observed and target values, taking the mean squared
error, or taking the root of the sum of the squared differences. We should not
expect a candidate solution to fit the target data perfectly so we should also
specify a small tolerance margin of error, within which a fitness case is said to
been correctly classified. The success criterion is therefore not a total error of
zero, but an acceptable classification of all the fitness points. Since the aim of
symbolic regression is the induction of a symbolic function, implementations
include mathematical operators in the function set. The terminal set should
include instances of each input variable. As an example, consider the target
function x4

− x3 + x2
− x. The function set for this function might be the

four arithmetic operators +,−, ∗, / whilst the terminal may consist of the
single input variable x. The tree or individual (in postfix notation) : xx ∗ x−

xxx ∗ xx ∗ x ∗ − ∗− is an example solution to the fourth polynomial function
x4

− x3 + x2
− x .

Table 1. GP Parameters for Symbolic Regression Problems

Objectives Find a program that produces the given value of the fourth
quintic and sextic polynomial (respectively F1,F2 and F3)
as its output when given the value of the one independent
variable, x, as input.

Stop criterion Max generation or total error = 0.01.
Function set {+,−, ∗, %} (protected division).
Terminal set {x}
Fitness case random values of x from the range − 1 . . .+ 1.
Fitness The mean, over the number of fitness cases, of the absolute

value of the difference between the value returned by the
program and the target function.

Initial pop Created using ramped half-and-half.
Population size 100
Selection Tournament selection.
Crossover 0.80
Mutation 0.20
Maximum depth 17 for F1, 20 for F2 and 25 for F3

Maximum generation 200



Cooperative co-evolution inspired operators. 7

5.2 Experiments

This section presents some results obtained with the proposed selective mu-
tation operator, the GP which was coded in Visual C++ 6.0.

The three benchmark problems are symbolic regression of the fourth
polynomial (F1 : x4

− x3 + x2
− x) [21], symbolic of the quintic polyno-

mial (F2 : x5
− 2x4 + x2) [13] and symbolic regression of sextic polynomial

(F3 : x6
− 2x3 + x) [13].

The performance of our selective mutation GP SMGP is compared with
a standard genetic program SGP with the traditional mutation operator. In
both programs we used the crossover described in [12]. The default parameters
for all runs are described in table 1.

For each target function, we use 50 independent runs with different seeds
and we measure minimum and maximum, mean and median of fitness, num-
ber of generations and run time. As for these small instances both algorithms
usually converge to a solution (fitness near 0), number of generations to con-
vergence (error lower that a fixed threshold) and corresponding run time are
more discriminant quantities.

The run time is measured in seconds and obtained on an Intel Pentium

Core Duo 2 Ghz - PC. Table 2,3 and 4 shows the results.
After a series of tests we noticed that SMGP requires less CPU time than

SGP, even if each mutation involves an exhaustive search on each subtree of a
candidate. After calculating the statistical means of the number of generations
to convergence, table 2, 3 and 4 show that SGP required significantly more
generations than SMGP. Table 2 shows that in function F1 SMGP has no
failure run (line of fitness, all values are zero ). The results show that with SGP

the number of generations needed for convergence is highly unpredictable: for
the function F2, it managed to find the optimal solution in 30 generations at
its best, and at its worst, 190 generations. And for the function F1 it finds
the optimal solution in 15 generations at its best, and in 90 generations at its
worst.

Table 2. Results of function F1

Min Max Mean Median Std-Dev

Fitness 0 9.71445e
−17 9.12000e

−03 5.40000e
−04

SGP #Generations 15 90 63.68000 50 21.8
Run Time 7.41000e

−01 2.98300e
00 1.71040e

00 1.89020e
00 0.61

Fitness 0 0 0 0
SMGP #Generations 9 80 28.34000 25 15.85

Run Time 2.16000e
−01 1.23000e

00 1.3820e
00 8.12100e

−01 0.28

The test related in table 2, i.e. find the polynomial F1 from 9 pairs (xi, yi)
uniformly distributed in [− 1,+ 1], is the same as in [21], the result is however
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Table 3. Results of function F2

Min Max Mean Median Std-Dev

Fitness 4.61000e
−03 2.63640e

00 1.13500e
−01 1.62400e

−01

SGP #Generations 30 190 70.54000 60 33.2
Run Time 1.17102e

00 5.14982e
00 2.41758e

00 2.89300e
00 1.05

Fitness 0 8.71000−03 9.40000−04 0
SMGP #Generations 30 160 50.40000 50 20.35

Run Time 8.84100e
−01 4.60600e

00 2.18000e
00 2.36540e

00 0.33

Table 4. Results of function F3

Min Max Mean Median Std-Dev

Fitness 4.60000e
−03 2.63640e

00 1.13500e
−01 0.16240e

00

SGP #Generation 40 200 80.24000 90 26.89
Run Time 2.39300e

00 7.66450e
00 4.18610e

00 4.36201e
00 1.16

Fitness 0 0.00960e
00 0.00013e

00 0
SMGP #Generation 35 180 70.88000 70 30.04

Run Time 1.88200e
00 5.64300e

00 3.68440e
00 2.88600e

00 0.85

different. On average, for nearly 95% of runs SMGP gave the correct solution
after up to 80 generations (most of the solutions were found before 25th gener-
ation). For this target function F1, the maximum number of nodes in the tree
was set to 17, a population of 100 individuals reached the exact solution in
the generation 9 after 0.2160 seconds of execution. The mutation probability
was set to 0.20. The best individual found is xxxxxx ∗ − ∗ − ∗ x− (in postfix
notation) which is equivalent to the reference polynomial x4

− x3 + x2
− x.

In the second example (table 3) we try to perform the symbolic regression
of the data generated by the function F2 in the interval [− 1,+ 1] . The
maximum number of nodes in the tree was set to 20, the population size
was 100 and after 30 generations the exact solution was found by SMGP:
xx ∗ xxx ∗ xx ∗ ∗ ∗ +xxx ∗ ∗x ∗ xxxx ∗ ∗ ∗ +− which is x5

− 2x4 + x2.
In the third example (table 4), the function F3 was used to generate 20

pairs (xi, yi) uniformly distributed in [− 1,+ 1] . The maximum number of
nodes in the tree was set to 25. After 35 generations with SMGP, a population
of 100 individuals evolved to the exact solution xxxx∗∗xx∗∗xx∗xx∗+−∗x+
equivalent to x6

− 2x3 + x.

6 Conclusion and Future Work

This work is a preliminary work, which allows to set the design of context-
aware operators in a more general framework. A very simple scheme of se-
lective mutation has been successfully tested on three symbolic regression
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Fig. 3. Fitness curves of SGP and SMGP in functions F1, F2 and F2.

benchmark problems. The powerful idea is to focus the action of mutation
to areas of the genome that are not correctly (or sufficiently) evolved, in or-
der to favour the emergence of highly fit parts of solutions and maintain it
in the population. For this purpose, the design and the use of an additional
fitness function has been necessary. This local fitness function has character-
istics similar with local fitness functions of Parisian approaches, in the way it
favours the emergence of good partial solutions (=subtrees for GP).

Further work will consider the development of pure Parisian GP ap-
proaches on symbolic regression problems, as well as context-aware GP op-
erators based on local fitness measurement. In the present work, the local
fitness measurement is strongly correlated to the global fitness, we will con-
sider other less correlated (but application-dependent) couples of local/global
fitness functions, in order to induce more complex population dynamics.
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