
IS
S

N
 0

24
9-

63
99

appor t
de recherche

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EASEA : un langage de spécification pour les
algorithmes évolutionnaires

Pierre COLLET — Marc SCHOENAUER — Evelyne LUTTON — Jean LOUCHET

N° 4218

June 2001

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

EASEA : un langage de spéi�ation pour lesalgorithmes évolutionnairesPierre COLLET � , Mar SCHOENAUER y , Evelyne LUTTON z , JeanLOUCHET xThème 4 � Simulation et optimisationde systèmes omplexesProjet FratalesRapport de reherhe n° 4218 � June 2001 � 14 pagesRésumé : Contrairement aux apparenes, il n'est pas simple d'érire un programme infor-matique réalisant un algorithme évolutionnaire, d'autant que le manque de langage spéialiséoblige l'utilisateur à utiliser C, C++ ou JAVA. La plupart des algorithmes évolutionnaires,ependant, possèdent une struture ommune, et la part réellement spéi�que est onstituéepar une faible portion du ode. Ainsi, il semble que rien ne s'oppose en théorie à e qu'unutilisateur puisse onstruire, puis faire tourner son algorithme évolutionnaire à partir d'uneinterfae graphique, a�n de limiter son e�ort de programmation à la fontion à optimiser.L'ériture d'une telle interfae graphique pose tout d'abord le problème de sauver et de re-harger l'algorithme évolutionnaire sur lequel l'utilisateur travaille, puis elui de transformeres informations en ode ompilable. Cela ressemble fort à un language de spéi�ation etson ompilateur. Le logiiel EASEA a été réé dans e but, et à notre onnaissane, il estatuellement le seul et unique ompilateur de langage spéi�que aux algorithmes évolution-naires. Ce rapport dérit omment EASEA a été onstruit et quels sont les problèmes quirestent à résoudre pour ahever son implantation informatique.Mots-lés : algorithmes évolutionnaires, algorithmes génétiques, language de spéi�ation
� CMAPX, Éole Polytehnique, 91128 Palaiseau edex, Frane, Pierre.Collet�polytehnique.fry CMAPX, Éole Polytehnique, 91128 Palaiseau edex, Frane, Mar.Shoenauer�polytehnique.frz Projet FRACTALES, INRIA, B.P. 105, 78153 Le Chesnay edex, Frane, Evelyne.Lutton�inria.frx ENSTA, 35 Boulevard Vitor, 75011 PARIS, Frane, Louhet�ensta.fr

Speifying Evolutionary Algorithms with EASEAAbstrat: Evolutionary algorithms are not straightforward to implement and the lak ofany speialised language fores users to write their algorithms in C, C++ or JAVA. However,most evolutionary algorithms follow a similar design, and the only really spei� part is theode representing the problem to be solved. Therefore, it seems that nothing, in theory,ould prevent a user from being able to design and run his evolutionary algorithm froma Graphi User Interfae, without any other programming e�ort than the funtion to beoptimised. Writing suh a GUI rapidly poses the problem of saving and reloading theevolutionary algorithm on whih the user is working, and translating the information intoompilable ode. This very muh sounds like a speifying language and its ompiler. TheEASEA software was reated on this purpose, and to our knowledge, it is the �rst and onlyusable ompiler of a language spei� to evolutionary algorithms. This reprot desribeshow EASEA has been designed and the problems whih needed to be solved to ahieve itsimplementation.Key-words: evolutionary algorithms, geneti algorithms, spei�ation language

Speifying Evolutionary Algorithms with EASEA 31 IntrodutionNot so long ago, evolutionary algorithms were onsidered as mere uriosities. Things havehanged over the years and many end-users (hemists, physiists, applied mathematiians,airraft designers, eletrial engineers,. . .) have ended up selling their sienti� souls toDarwin. Unfortunately, taking this deision is not the hardest part of their ordeal: theevolutionary algorithm they have been dreaming of remains to be written and their speialtyis not always omputer siene.One way to speed up the proess is to use one of the many existing evolutionary librarieswhih o�er very powerful tools provided . . . one is �uent enough with onstrutors, opy-onstrutors, destrutors and suh nieties involved by relatively low-level objet languages.The next hurdle is then to learn how to use the library, to understand the intriate datastrutures and to memorise the neessary several hundred objet types, funtions and va-riables and the way they are inter-related. This an be quite time onsuming when all majorevolutionary libraries are written in C++ or JAVA and make full use of objet programming.All in all, many physiists, hemists, mathematiians and other sientists who otherwisewould be apable of writing extremely omplex Fortran funtions are denied experimen-tation of evolutionary algorithms due to the sheer omplexity of their implementation.The aim of EASEA (EAsy Spei�ation of Evolutionary Algorithms) is to hide thisomplexity behind a relatively simple high-level language, allowing sientists to onentrateon evolutionary algorithms, rather than on their implementation.Some researh teams have already felt the need for a spei� evolutionary language. Theyhave however hosen a theoretial viewpoint, trying to enrih the evolutionary paradigmwith new onepts or features not yet implemented [7, 9, 11, 12℄. We have hosen a radiallydi�erent approah, trying to be as pragmati as possible. Our goal was to start with therealisation of a minimal working prototype, able to implement almost any optimizationproblem.2 Presentation of evolutionary algorithmsBasi priniples of Evolutionary Algorithms (EAs) 1 model some biologial phenomena,and more preisely the ability of populations of living organisms to adapt to their envi-ronment, via geneti inheritane and Darwinian strife for survival. Resolution methods andstohasti optimisation methods have been designed aording to these �of ourse, extre-mely simpli�ed� biologially-inspired priniples. The main harateristi of EAs is that theymanipulate populations of points of the searh spae, and involve a set of operations applied(stohastially) to eah individual of the population, organised in generations of the arti�ialevolution proess. Operations involved are of two types : seletion, based on the individuals'performane w.r.t. the problem being solved and variation operators, usually rossover and1. The best known evolutionary algorithms are geneti algorithms; very often the terms evolutionary om-putation methods and GA-based methods are used interhangeably. Whether it is beause of their fashionablename and onepts, the question is beyond the sope of this paper.
RR n° 4218

4 Collet, Shoenauer, Lutton & Louhetmutation, that produe new individuals. If orretly designed, a dynami stohasti searhproess is started on the searh spae that onverges to the global optimum of the funtionto be optimised. 2>From the point of view of optimisation, EAs are powerful stohasti zeroth order me-thods (i.e., requiring only values of the funtion to optimise) that an �nd the global optimumof very rough funtions. This allows EAs to takle optimisation problems for whih stan-dard methods (e.g., gradient-based algorithms requiring the existene and omputation ofderivatives) are not appliable.Despite the apparent simpliity of an EA proess �whih has driven many programmersto �rst write their own EA adapted to their spei� problem� building an e�ient EA for anappliation is a rather triky task. In fat, EAs are very sensitive to parameter settings anddesign hoies. The urrent trend in EA appliations is to use available toolboxes, ontaininga variety of operators and strategies, in order to easily test di�erent ombinations.In the following paragraph, we suintly desribe the basi ingredients of a �anonial�evolutionary algorithm. This struture is only a framework, and an e�ient EA appliationto a spei� problem may be more omplex.Solving an optimization problem with Evolutionary Algorithms starts by hoosing a re-presentation for the problem at hand. This representation will be oded into a data struturealled genome.The EA will then evolve a population of individuals, i.e. a set of points of the searhspae.The �rst step is the initialization of that populations, using a random generator ofindividuals. That initial population is then undergoes evaluation: the value of the �tnessof eah individual, i.e. the funtion to be optimized, is omputed. The algorithm then entersthe generation loop, the urrent population usually being alled the parents:1. Seletion: This step selets whih parents are going to reprodue. This operationimplements arti�ial Darwinism, as it is based on the �tness of all individual, favoringthe ones with better �tness values (with respet to the problem at hand).2. Variation: Copies of the seleted parents then undergo variation operators, that is arestohatially moved within the searh spae. In the simplest ase, a rossover operatoris �rst applied to pairs of individuals, with a given probability. A mutation operatoris then applied to all result of rossover (or to the opies of the initial seleted parentsthat have esaped rossover), giving a population of o�spring.3. Evaluation: The o�spring population is evaluated by the �tness funtion.4. Replaement: This step is used to reate the population of parents for the futuregeneration by seleting from the pool of o�spring + parents whih of them will survive(the others are disarded and disappear). The hoie is another implementation ofarti�ial Darwinism, in that it is biased toward hte individuals with better �tness.2. A large part of EA theoretial researh addresses this onvergene problem, as well as understandingof the notion of EA-di�ulty. INRIA

Speifying Evolutionary Algorithms with EASEA 55. Stopping riterion: At some point, the algorithm stops, depending on user-de�nedriteria (total number of generations, �tness threshold on the best individual,. . .)3 Design of the Graphi User InterfaeIdeally, users should be able to use the Graphi User Interfae to desribe the strutureof the genome they need, build some variation operators instaniating generi operators totheir genome, hoose the Darwinian operators (seletion, replaement, . . .) they would liketo use on their population. Next, they need to somehow write the ode for their spei��tness funtion. Finally, they should be able to set di�erent parameters of the evolutionaryalgorithm (population size, o�spring population size, rossover probability, mutation pro-bability, ...), after whih pressing the RUN button should magially run the evolutionaryalgorithm, and graphially display temporary results on their workstation.There are three main issues in the above skeleton of an EA:� the evolution engine, whih ontains all operations related to arti�ial Darwinism(i.e. the seletion and the replaement steps). The evolution engine is oneptuallyindependent of the genome.� the representation-dependent part, namely the type of genome that represent po-tential solutions to the problem at hand, together with an initializer funtion, andorresponding variation operators.� the problem-dependent part, that is the �tness funtion itself.Ideally, users should be able to use the Graphi User Interfae to desribe both therepresentation-dependent part of their appliation, and the evolution engine they wish touse. The �tness funtion somehow has to be programmed.3.1 The evolution engineIts desription is rather straightforward: it involves the hoie of some high level para-meters (e.g. the type of seletion and replaement proedures together with their possibleparameters, the number of o�spring that will be reated, how many of the best parent shouldbe arried over to the next generation and so forth.3.2 Genome and operatorsThe genome-related part of the algorithm is more di�ult to desribe in general. However,it is possible to o�er to the user a number of onstruts that over most of the usual ases,leaving the text-window for the remaining ases.The EASEA approah onsiders that a genome is built from a set of basi data types, na-mely boolean, symboli values, integers and real numbers, and a set of onstrutors, namelyaggregates (�xed length ordered lists of heterogeneous data), arrays (lists of homogeneous,RR n° 4218

6 Collet, Shoenauer, Lutton & Louhetordered or not, of �xed or variable length) , trees, graphs, These onstruts an beiterated, using user-de�ned data types to build higher level genomes.But suh onstruts would be almost useless if there was not the possibility to use generioperators without any programmation burden. Generi operators are based on well-knownvariation operators for the basi data types (e.g. arithmeti rossover and Gaussian mutationfor real numbers) and hierarhial onstrution of operators for the higher level types.For instane, when rossing over two �xed-length ordered arrays, one an either exhangesome of the variables between both parents, or all a spei� rossover for eah orrespondingpair of variables from both parents. Or a mutation of an aggregate an all in turn somespei� mutation for eah one of its omponents. Suh de�nitions an be entered from theGUI, while still allowing the user to diretly enter some ode in a text window.4 Presentation of EASEA4.1 IntrodutionIn order to avoid reating an unusable superb piee of software, we instead deided tostart with reating the spei�ation language and its ompiler and only reate the GUI asa seond step.Several important spei�ations lie behind the EASEA language and ompiler :1. EASEA must be general/generi enough to be able to write virtually any evolutionaryalgorithm.2. It is not the aim of EASEA to reate yet another evolutionary library. Many alreadyexist and work quite well. It was therefore deided that EASEA should use existinglibraries, to avoid reinventing the wheel.3. A generi language suh as EASEA should not be tied to a spei� evolutionary librarybut should be able to operate di�erent evolutionary libraries.4. EASEA should try to hide away all programming mehanisms not expliitly neededto desribe the evolutionary algorithm and the problem to solve, and espeially theomplexity of objet-oriented design.5. EASEA soure �les must be simple enough to be written automatially using a graphiuser interfae.4.2 Mode of operationSpei�ation 3 says that the EASEA ompiler should be able to produe soure ode usingdi�erent evolutionary libraries. This spei�ation somewhat guarantees that the resultinglanguage will omply with spei�ation 1, that is: the aim of the EASEA language is tospeify evolutionary algorithms in general, and not to drive a spei� library.
INRIA

Speifying Evolutionary Algorithms with EASEA 7Therefore, two independent libraries were hosen to start with: GAlib �a widely usedC++ geneti library [5℄� and EO (Evolving Objets [3℄ 3).In parallel, EASEA will be used in the DREAM European projet (Distributed ResoureEvolutionary Algorithm Mahine) [6℄, whih works in a JAVA environment.When the EASEA projet started, EO was not stable enough to reasonably use it as aprimary library, so GALib was seleted. The �rst EASEA operational prototype (v0.1) wasreleased in September 1999.In January 2001 was released EASEA Millennium Edition (v0.6) driving for the �rsttime both GALib and EO.The EASEA�DREAM ompiler is still under development, along with the DREAM Eu-ropean projet.

Fig. 1 � EASEA mode of operation.Until the GUI is available, the EASEA ompiler uses as input an asii �le with a .ezsu�x. Its output is either a C++ soure �le driving the GAlib objet-oriented library or aC++ soure �le driving the EO objet-oriented library. The resulting C++ �le must thenbe ompiled by a C++ ompiler and linked with the orresponding library (f. �gure 1).The produed exeutable implements the evolutionary algorithm desribed in the originalEASEA soure �le.4.3 Graphi User InterfaeThe GUI (under development) allows the user to graphially speify his evolutionaryalgorithm. One this is done, the GUI temporarily saves the information input by the end-user into an EASEA soure �le, whih is in turn automatially ompiled into an objet soure�le using the spei�ed library. The objet soure �le (in whih an interfae with the GUI hasbeen inserted) is ompiled to produe an exeutable �le whih is launhed by the GUI. The3. An open soure projet, originally developed at the University of Granada (Spain), and now ontinuedat SoureForge.RR n° 4218

8 Collet, Shoenauer, Lutton & LouhetGUI an then be used to ontrol the running evolutionary algorithm and to display partialand �nal results thanks to the interfae module that was embedded in the user appliation.5 EASEA ompiler5.1 DesriptionEASEA is written in C++, using Lex and Ya (in fat their exellent Windows C++equivalent : ALex and AYa [4℄). The EASEA ompiler is somewhat unusual in the sensethat it produes soure ode in another language rather than miroproessor instrutions.As EASEA ounts on the user to write the ode of his evaluation funtion, a simple utand paste strategy ould have worked, taking piees of ode here and there and puttingthem together for ompilation.However, it was deided (spei�ation 4) that EASEA would allow non state-of-the-artprogrammers to nevertheless speify their evolutionary algorithms. A ut and paste strategywould have required the user to know about objet programming (as the underlying librariesare objet-oriented) and would have required the user to know how to use the library. Tohim, the only advantage would have been the help of the Graphi User Interfae, omparedto his already existing C++ programming environment.It was therefore deided to keep a pure C++ syntax for user-written funtions, but hidingaway all objet-oriented onepts, whih an be automatially inserted, provided that thesoftware has a deep enough understanding of the ode written by the user.A real ompiler was then needed, to reate fully-�edged lasses out of the data struturesdesribed by the user.5.2 Soure ode analysisApart from setions ontaining pure C++, the syntax of the EASEA language must besimple enough to be generated and interpreted by the Graphi User Interfae.An EASEA soure �le is therefore omposed of di�erent areas, delimited by setions suhas: \User delarations:#define SIZE 10inline void swap(bool& a,bool& b) {bool =a;a=b;b=;}\endwhih an ontain either pure C++ ode (as in the above example), or pure EASEA ode,suh as:\User lasses :Elt { int Value; Elt *pNext; }GenomeClass { Elt *pList; int Size; }\end
INRIA

Speifying Evolutionary Algorithms with EASEA 9although the syntax is very muh C/C++ like.Pure C++ areas are inserted nearly verbatim in the .pp target �le, while EASEA areasare interpreted and ompiled into symbol tables and data strutures ontaining valuableinformation whih is neessary to ode generation.As an example, let us take the (very simpli�ed) grammar analysing the above \Userlasses: setion:ClassDelarations: ClassDelaration| ClassDelarations ClassDelaration ;ClassDelaration: Symbol {Add to symbol table w/typeUserClass}'{' VariablesDelarations '}' ;VariablesDelarations: VariablesDelaration| VariablesDelarations VariablesDelaration ;VariablesDelaration: BaseType {store CurrentType}BaseObjets| UserType {store CurrentType} UserObjets ;BaseType: BOOL | INT | DOUBLE | CHAR | POINTER ;UserType: Symbol {Find the symbol in the symbol table andreturn a pointer to the symbol};Objets: Objet | Objets ',' Objet ;Objet: Symbol {Add to the symbol table with size, type,}| '*' Symbol {This is a pointer. Add to thesymbol table with size:(sizeof(har *)),objet type: pointer, pointing toCurrentType (defined above)}| Symbol '[' Expr '℄' {This is an array. Add tosymbol tbl w/size:Expr*(sizeof(CurrentType))objet type : array of type CurrentType} ;Suh a minute analysis allows to automatially reate full C++ lasses out of the simplestruture delaration of the user genome.Here, for instane, are the reursive opy methods (alled by the opy-onstrutor, andoperator= methods) automatially reated for the Elt and GenomeClass strutures desri-bed above:
RR n° 4218

10 Collet, Shoenauer, Lutton & Louhetvoid Elt::opy(onst Elt &EZ_Var) {pNext=(EZ_Var.pNext ? new Elt(*(EZ_Var.pNext)):NULL);Value=EZ_Var.Value;}void GenomeClass::opy(onst GAGenome& g) {if(&g != this){if (pList) delete pList; // Destruting pointerspList=NULL;GAGenome::opy(g); // opy the base lass partGenomeClass & genome = (GenomeClass &)g;Size=genome.Size; // Memberwise opypList=(genome.pList?new Elt(*(genome.pList)):NULL);}} And for eah lass, EASEA reates a onstrutor, a opy onstrutor, a destrutor (whihdestruts thoroughly the pList linked list, for instane), an operator=, an operator==, anoperator!=, an operator<< and an operator>>.End-users (physiists used to Fortran) �nd it very interesting to produe automatiallysuh piees of ode, as:� they are not interested in spending a lot of time in learning objet-oriented program-ming,� EASEA introdues subtleties beyond the programming apaities of many end-users,� it would take them a very long time to write suh ode properly for eah new pro-blem with a genome ontaining a di�erent data struture, as is the ase in real-worldappliations,� the produed ode is guaranteed to be bug-free (a quality that even experiened pro-grammers may appreiate).5.3 Code generationOne ompiled, the generated .pp soure �le annot 4 be totally hidden from the enduser, as it may ontain C++ errors. As the EASEA syntax is rather simple to follow, andas the ode produed by EASEA is (generally) free of bugs, most real errors ome in fatfrom C++ funtions written by the user. The nie onsequenes are that:� suh errors are trapped by the very elaborate C++ ompiler syntax analyser,� whatever semanti errors (bugs) that an be deteted are as elaborately dealt with bythe host ompiler symboli debugger.4. unfortunately :-) INRIA

Speifying Evolutionary Algorithms with EASEA 11The not so nie onsequene is that the human end-user must somehow debug the C++ode produed by EASEA, whih requires that the produed soure ode be highly readable.The main di�ulty resides in the fat that humans usually �nd ompiler-produed soureode quite di�ult to read.EASEA an also be used as a primer: EASEA reates a C++ soure �le whih an be astarting point for more experiened programmers to re�ne afterwards.Our main onern is then to improve presentation and to have EASEA-generated C++ode look as human as possible.This is mainly ahieved thanks to :1. man-made template �les (GALib.tpl and EO.tpl),2. very areful typesetting, whenever purely EASEA-generated ode appears: indentationis respeted, meaningful variable names are used and omments are generated fromsrath to explain what the reated ode is supposed to do.5.3.1 Using template �lesAs one an infer by their name, template �les ontain the framework of an instaneof a generi evolutionary algorithm (in GALib or in EO), ready to be �lled up with user-spei� information found either diretly in setions ontaining pure C++ ode or in theEASEA-spei� setions, suh as the genome struture de�nition.The mode of operation is very simple. The template �le is read and opied verbatim inthe target .pp �le until an EASEA token (preeded with \) is found. This token asks theEASEA ompiler to replae it with signi�ant ode found in the .ez �le. Let us take anexample:void EASEAGenome::opy(onst EASEAGenome& genome) {if(&genome != this){\GENOME_DTOR\COPY_CTOR }}istream& operator>>(istream &is,strut EASEAGenome &genome){\READreturn is; }This exerpt of EO.tpl shows the automati reation of methods. The framework ispresent and EASEA is periodially asked to input the neessary piees of ode found in the.ez �le.The result is very readable, and looks very muh like what a human user would havewritten.5.3.2 PerformaneThe onern about performane surfaes whenever a piee of ode is generated by aompiler. First of all, as far as syntax is onerned, EASEA-produed C++ �les are not
RR n° 4218

12 Collet, Shoenauer, Lutton & Louhetthat di�erent from what human-produed ode would have looked like . . . after debugging.Semantially speaking, it is true that when writing minor lasses, a human programmer willnot take the pain of writing ode for operators that he knows will never be alled. Althoughsuh re�nement ould be inluded with muh pain in EASEA (a �rst pass ould determinewhih operators of whih lasses will be needed), the only drawbak is that the evolutionaryengine will deal with slightly larger objets than neessary.However, this ost is negligible, mainly owing to two fats:1. EASEA-generated ode only onerns the manipulation of genome objets, whihusually represents only a few perents of the total exeution time of an evolutionaryalgorithm (usually dominated by the user-written evaluation funtion).2. EASEA generates soure ode, whih is then ompiled by an extremely evolved C++ompiler. The ode optimisation taking plae in the C++ ompiler will minimise thelak of optimisation of the EASEA output.6 Real-world and aademi appliationsSeveral real-world appliations have been written with EASEA. Papers assignment toreviewers of the Parallel Problem Solving from Nature sixth international onferene weredone with EASEA.EASEA has been used to optimise airfoil shapes (with a Fortran evaluation funtion)over a network of omputers in the INGENET european RTD Projet. A small adaptationof the GALib template �le allows to reate very basi parallel ode using the MPI library.EASEA is used as the basi algorithm development language in student training at theFrenh Éole Polytehnique, at the Laboratoire d'Informatique du Littoral where the GraphiUser Interfae is urrently being developed, at the Éole Nationale Superieure de TehniquesAvanées, where two students taking their �rst ourse on Geneti Programming had a paperaepted at the EuroGP'01 international onferene, based on the results of their two-monthsprojet in EASEA. It has also reently been tested at General Eletri Medial Systems asa prototyping tool in a Medial Imaging appliation.7 Conlusion and future workMany important �elds in omputer siene have their spei� languages (Fortran,C/C++, Lisp, Prolog, Smalltalk, . . .). Even omplex appliations suh as databases orspread-sheets have developed their own languages! EA programmers remain however withC++, an inadapted and di�ult to use low-level objet-oriented language. As a result, manysientists have no other hoie than spending a lot of time beoming omputer programmersand rewriting their own evolutionary algorithms. Due to thoroughly di�erent programmingtehniques and languages, their programs are barely omparable, whih is a great obstaleto sienti� ooperation and emulation.
INRIA

Speifying Evolutionary Algorithms with EASEA 13Therefore, feedbak from sienti� users is quite positive although v1.0 is still far downthe road. However, EASEAv0.6 is deisive in that it is the �rst version able to reate indi�e-rently .pp �les for EO or GALib out of the same EASEA soure �le, showing that EASEAhas the apaity of being the generi spei�ation language for evolutionary algorithms itaims to be.The Graphi User Interfae will be the next great step, as users will not need a texteditor any more to write their evolutionary algorithms.We hope that EASEA will be able to o�er the sienti� ommunity the means to try outevolutionary algorithms with a minimal time investment as far as programming is onerned.The EASEA v0.6 ompiler and its manual are available on the net [1℄.Référenes[1℄ EASEA mailing list:http://groups.yahoo.om/group/easea .EASEA home page:http://www-roq.inria.fr/EVO-Lab/ .[2℄ EVONET home page:http://www.evonet.polytehnique.fr .[3℄ EO software:http://eodev.soureforge.net/ .EO tutorial:http://www.eeaax.polytehnique.fr/EO .[4℄ P. Stearns, ALex & AYa home page (Bumblebee Software Ltd.):http://www.bumblebeesoftware.om .[5℄ M. Wall, GAlib home page:http://lanet.mit.edu/ga/ .[6℄ B. Paehter, T. Baek, M. Shoenauer, A.E. Eiben, J.J. Merelo, and T. C. Fogarty, �ADistributed Resoure Evolutionary Algorithm Mahine,� Pro. of CEC 2000.[7℄ I. Landrieu, B. Naudts, �An Objet Model for Searh Spaes and their Transformations,�Arti�ial Evolution onferene, EA'99 Frane, 1999.[8℄ Z. Mihalewiz, �Geneti Algorithms + Data Strutures = Evolution Programs�, Sprin-ger Verlag, 1992.[9℄ N. J. Radli�e, �Forma Analysis and Random Respetful Reombination,� ICGA'91,proeedings pp222-229, 1991.[10℄ N. J. Radli�e and P. D. Surry, �Fitness variane of formae and performane predition,�FOGA'95, pp51-72, Morgan Kaufmann publ., 1995.RR n° 4218

14 Collet, Shoenauer, Lutton & Louhet[11℄ P. D. Surry and N. J. Radli�e, �Formal Algorithms + Formal Representation = SearhStrategies,� PPSN'96, proeedings 1141 pp366-375, 1996.[12℄ P. D. Surry, �A Presriptive Formalism for Construting Domain-Spei� EvolutionaryAlgorithms,� PhD thesis, University of Edinburgh, 1998.

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

