
IS
S

N
 0

24
9-

63
99

appor t

de recherche

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EASEA : un langage de spécification pour les
algorithmes évolutionnaires

Pierre COLLET — Marc SCHOENAUER — Evelyne LUTTON — Jean LOUCHET

N° 4218

June 2001

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

EASEA : un langage de spé
i�
ation pour lesalgorithmes évolutionnairesPierre COLLET � , Mar
 SCHOENAUER y , Evelyne LUTTON z , JeanLOUCHET xThème 4 � Simulation et optimisationde systèmes
omplexesProjet Fra
talesRapport de re
her
he n° 4218 � June 2001 � 14 pagesRésumé : Contrairement aux apparen
es, il n'est pas simple d'é
rire un programme infor-matique réalisant un algorithme évolutionnaire, d'autant que le manque de langage spé
ialiséoblige l'utilisateur à utiliser C, C++ ou JAVA. La plupart des algorithmes évolutionnaires,
ependant, possèdent une stru
ture
ommune, et la part réellement spé
i�que est
onstituéepar une faible portion du
ode. Ainsi, il semble que rien ne s'oppose en théorie à
e qu'unutilisateur puisse
onstruire, puis faire tourner son algorithme évolutionnaire à partir d'uneinterfa
e graphique, a�n de limiter son e�ort de programmation à la fon
tion à optimiser.L'é
riture d'une telle interfa
e graphique pose tout d'abord le problème de sauver et de re-
harger l'algorithme évolutionnaire sur lequel l'utilisateur travaille, puis
elui de transformer
es informations en
ode
ompilable. Cela ressemble fort à un language de spé
i�
ation etson
ompilateur. Le logi
iel EASEA a été
réé dans
e but, et à notre
onnaissan
e, il esta
tuellement le seul et unique
ompilateur de langage spé
i�que aux algorithmes évolution-naires. Ce rapport dé
rit
omment EASEA a été
onstruit et quels sont les problèmes quirestent à résoudre pour a
hever son implantation informatique.Mots-
lés : algorithmes évolutionnaires, algorithmes génétiques, language de spé
i�
ation
� CMAPX, É
ole Polyte
hnique, 91128 Palaiseau
edex, Fran
e, Pierre.Collet�polyte
hnique.fry CMAPX, É
ole Polyte
hnique, 91128 Palaiseau
edex, Fran
e, Mar
.S
hoenauer�polyte
hnique.frz Projet FRACTALES, INRIA, B.P. 105, 78153 Le Chesnay
edex, Fran
e, Evelyne.Lutton�inria.frx ENSTA, 35 Boulevard Vi
tor, 75011 PARIS, Fran
e, Lou
het�ensta.fr

Spe
ifying Evolutionary Algorithms with EASEAAbstra
t: Evolutionary algorithms are not straightforward to implement and the la
k ofany spe
ialised language for
es users to write their algorithms in C, C++ or JAVA. However,most evolutionary algorithms follow a similar design, and the only really spe
i�
 part is the
ode representing the problem to be solved. Therefore, it seems that nothing, in theory,
ould prevent a user from being able to design and run his evolutionary algorithm froma Graphi
 User Interfa
e, without any other programming e�ort than the fun
tion to beoptimised. Writing su
h a GUI rapidly poses the problem of saving and reloading theevolutionary algorithm on whi
h the user is working, and translating the information into
ompilable
ode. This very mu
h sounds like a spe
ifying language and its
ompiler. TheEASEA software was
reated on this purpose, and to our knowledge, it is the �rst and onlyusable
ompiler of a language spe
i�
 to evolutionary algorithms. This reprot des
ribeshow EASEA has been designed and the problems whi
h needed to be solved to a
hieve itsimplementation.Key-words: evolutionary algorithms, geneti
 algorithms, spe
i�
ation language

Spe
ifying Evolutionary Algorithms with EASEA 31 Introdu
tionNot so long ago, evolutionary algorithms were
onsidered as mere
uriosities. Things have
hanged over the years and many end-users (
hemists, physi
ists, applied mathemati
ians,air
raft designers, ele
tri
al engineers,. . .) have ended up selling their s
ienti�
 souls toDarwin. Unfortunately, taking this de
ision is not the hardest part of their ordeal: theevolutionary algorithm they have been dreaming of remains to be written and their spe
ialtyis not always
omputer s
ien
e.One way to speed up the pro
ess is to use one of the many existing evolutionary librarieswhi
h o�er very powerful tools provided . . . one is �uent enough with
onstru
tors,
opy-
onstru
tors, destru
tors and su
h ni
eties involved by relatively low-level obje
t languages.The next hurdle is then to learn how to use the library, to understand the intri
ate datastru
tures and to memorise the ne
essary several hundred obje
t types, fun
tions and va-riables and the way they are inter-related. This
an be quite time
onsuming when all majorevolutionary libraries are written in C++ or JAVA and make full use of obje
t programming.All in all, many physi
ists,
hemists, mathemati
ians and other s
ientists who otherwisewould be
apable of writing extremely
omplex Fortran fun
tions are denied experimen-tation of evolutionary algorithms due to the sheer
omplexity of their implementation.The aim of EASEA (EAsy Spe
i�
ation of Evolutionary Algorithms) is to hide this
omplexity behind a relatively simple high-level language, allowing s
ientists to
on
entrateon evolutionary algorithms, rather than on their implementation.Some resear
h teams have already felt the need for a spe
i�
 evolutionary language. Theyhave however
hosen a theoreti
al viewpoint, trying to enri
h the evolutionary paradigmwith new
on
epts or features not yet implemented [7, 9, 11, 12℄. We have
hosen a radi
allydi�erent approa
h, trying to be as pragmati
 as possible. Our goal was to start with therealisation of a minimal working prototype, able to implement almost any optimizationproblem.2 Presentation of evolutionary algorithmsBasi
 prin
iples of Evolutionary Algorithms (EAs) 1 model some biologi
al phenomena,and more pre
isely the ability of populations of living organisms to adapt to their envi-ronment, via geneti
 inheritan
e and Darwinian strife for survival. Resolution methods andsto
hasti
 optimisation methods have been designed a

ording to these �of
ourse, extre-mely simpli�ed� biologi
ally-inspired prin
iples. The main
hara
teristi
 of EAs is that theymanipulate populations of points of the sear
h spa
e, and involve a set of operations applied(sto
hasti
ally) to ea
h individual of the population, organised in generations of the arti�
ialevolution pro
ess. Operations involved are of two types : sele
tion, based on the individuals'performan
e w.r.t. the problem being solved and variation operators, usually
rossover and1. The best known evolutionary algorithms are geneti
 algorithms; very often the terms evolutionary
om-putation methods and GA-based methods are used inter
hangeably. Whether it is be
ause of their fashionablename and
on
epts, the question is beyond the s
ope of this paper.
RR n° 4218

4 Collet, S
hoenauer, Lutton & Lou
hetmutation, that produ
e new individuals. If
orre
tly designed, a dynami
 sto
hasti
 sear
hpro
ess is started on the sear
h spa
e that
onverges to the global optimum of the fun
tionto be optimised. 2>From the point of view of optimisation, EAs are powerful sto
hasti
 zeroth order me-thods (i.e., requiring only values of the fun
tion to optimise) that
an �nd the global optimumof very rough fun
tions. This allows EAs to ta
kle optimisation problems for whi
h stan-dard methods (e.g., gradient-based algorithms requiring the existen
e and
omputation ofderivatives) are not appli
able.Despite the apparent simpli
ity of an EA pro
ess �whi
h has driven many programmersto �rst write their own EA adapted to their spe
i�
 problem� building an e�
ient EA for anappli
ation is a rather tri
ky task. In fa
t, EAs are very sensitive to parameter settings anddesign
hoi
es. The
urrent trend in EA appli
ations is to use available toolboxes,
ontaininga variety of operators and strategies, in order to easily test di�erent
ombinations.In the following paragraph, we su

in
tly des
ribe the basi
 ingredients of a �
anoni
al�evolutionary algorithm. This stru
ture is only a framework, and an e�
ient EA appli
ationto a spe
i�
 problem may be more
omplex.Solving an optimization problem with Evolutionary Algorithms starts by
hoosing a re-presentation for the problem at hand. This representation will be
oded into a data stru
ture
alled genome.The EA will then evolve a population of individuals, i.e. a set of points of the sear
hspa
e.The �rst step is the initialization of that populations, using a random generator ofindividuals. That initial population is then undergoes evaluation: the value of the �tnessof ea
h individual, i.e. the fun
tion to be optimized, is
omputed. The algorithm then entersthe generation loop, the
urrent population usually being
alled the parents:1. Sele
tion: This step sele
ts whi
h parents are going to reprodu
e. This operationimplements arti�
ial Darwinism, as it is based on the �tness of all individual, favoringthe ones with better �tness values (with respe
t to the problem at hand).2. Variation: Copies of the sele
ted parents then undergo variation operators, that is aresto
hati
ally moved within the sear
h spa
e. In the simplest
ase, a
rossover operatoris �rst applied to pairs of individuals, with a given probability. A mutation operatoris then applied to all result of
rossover (or to the
opies of the initial sele
ted parentsthat have es
aped
rossover), giving a population of o�spring.3. Evaluation: The o�spring population is evaluated by the �tness fun
tion.4. Repla
ement: This step is used to
reate the population of parents for the futuregeneration by sele
ting from the pool of o�spring + parents whi
h of them will survive(the others are dis
arded and disappear). The
hoi
e is another implementation ofarti�
ial Darwinism, in that it is biased toward hte individuals with better �tness.2. A large part of EA theoreti
al resear
h addresses this
onvergen
e problem, as well as understandingof the notion of EA-di�
ulty. INRIA

Spe
ifying Evolutionary Algorithms with EASEA 55. Stopping
riterion: At some point, the algorithm stops, depending on user-de�ned
riteria (total number of generations, �tness threshold on the best individual,. . .)3 Design of the Graphi
 User Interfa
eIdeally, users should be able to use the Graphi
 User Interfa
e to des
ribe the stru
tureof the genome they need, build some variation operators instan
iating generi
 operators totheir genome,
hoose the Darwinian operators (sele
tion, repla
ement, . . .) they would liketo use on their population. Next, they need to somehow write the
ode for their spe
i�
�tness fun
tion. Finally, they should be able to set di�erent parameters of the evolutionaryalgorithm (population size, o�spring population size,
rossover probability, mutation pro-bability, ...), after whi
h pressing the RUN button should magi
ally run the evolutionaryalgorithm, and graphi
ally display temporary results on their workstation.There are three main issues in the above skeleton of an EA:� the evolution engine, whi
h
ontains all operations related to arti�
ial Darwinism(i.e. the sele
tion and the repla
ement steps). The evolution engine is
on
eptuallyindependent of the genome.� the representation-dependent part, namely the type of genome that represent po-tential solutions to the problem at hand, together with an initializer fun
tion, and
orresponding variation operators.� the problem-dependent part, that is the �tness fun
tion itself.Ideally, users should be able to use the Graphi
 User Interfa
e to des
ribe both therepresentation-dependent part of their appli
ation, and the evolution engine they wish touse. The �tness fun
tion somehow has to be programmed.3.1 The evolution engineIts des
ription is rather straightforward: it involves the
hoi
e of some high level para-meters (e.g. the type of sele
tion and repla
ement pro
edures together with their possibleparameters, the number of o�spring that will be
reated, how many of the best parent shouldbe
arried over to the next generation and so forth.3.2 Genome and operatorsThe genome-related part of the algorithm is more di�
ult to des
ribe in general. However,it is possible to o�er to the user a number of
onstru
ts that
over most of the usual
ases,leaving the text-window for the remaining
ases.The EASEA approa
h
onsiders that a genome is built from a set of basi
 data types, na-mely boolean, symboli
 values, integers and real numbers, and a set of
onstru
tors, namelyaggregates (�xed length ordered lists of heterogeneous data), arrays (lists of homogeneous,RR n° 4218

6 Collet, S
hoenauer, Lutton & Lou
hetordered or not, of �xed or variable length) , trees, graphs, These
onstru
ts
an beiterated, using user-de�ned data types to build higher level genomes.But su
h
onstru
ts would be almost useless if there was not the possibility to use generi
operators without any programmation burden. Generi
 operators are based on well-knownvariation operators for the basi
 data types (e.g. arithmeti

rossover and Gaussian mutationfor real numbers) and hierar
hi
al
onstru
tion of operators for the higher level types.For instan
e, when
rossing over two �xed-length ordered arrays, one
an either ex
hangesome of the variables between both parents, or
all a spe
i�

rossover for ea
h
orrespondingpair of variables from both parents. Or a mutation of an aggregate
an
all in turn somespe
i�
 mutation for ea
h one of its
omponents. Su
h de�nitions
an be entered from theGUI, while still allowing the user to dire
tly enter some
ode in a text window.4 Presentation of EASEA4.1 Introdu
tionIn order to avoid
reating an unusable superb pie
e of software, we instead de
ided tostart with
reating the spe
i�
ation language and its
ompiler and only
reate the GUI asa se
ond step.Several important spe
i�
ations lie behind the EASEA language and
ompiler :1. EASEA must be general/generi
 enough to be able to write virtually any evolutionaryalgorithm.2. It is not the aim of EASEA to
reate yet another evolutionary library. Many alreadyexist and work quite well. It was therefore de
ided that EASEA should use existinglibraries, to avoid reinventing the wheel.3. A generi
 language su
h as EASEA should not be tied to a spe
i�
 evolutionary librarybut should be able to operate di�erent evolutionary libraries.4. EASEA should try to hide away all programming me
hanisms not expli
itly neededto des
ribe the evolutionary algorithm and the problem to solve, and espe
ially the
omplexity of obje
t-oriented design.5. EASEA sour
e �les must be simple enough to be written automati
ally using a graphi
user interfa
e.4.2 Mode of operationSpe
i�
ation 3 says that the EASEA
ompiler should be able to produ
e sour
e
ode usingdi�erent evolutionary libraries. This spe
i�
ation somewhat guarantees that the resultinglanguage will
omply with spe
i�
ation 1, that is: the aim of the EASEA language is tospe
ify evolutionary algorithms in general, and not to drive a spe
i�
 library.
INRIA

Spe
ifying Evolutionary Algorithms with EASEA 7Therefore, two independent libraries were
hosen to start with: GAlib �a widely usedC++ geneti
 library [5℄� and EO (Evolving Obje
ts [3℄ 3).In parallel, EASEA will be used in the DREAM European proje
t (Distributed Resour
eEvolutionary Algorithm Ma
hine) [6℄, whi
h works in a JAVA environment.When the EASEA proje
t started, EO was not stable enough to reasonably use it as aprimary library, so GALib was sele
ted. The �rst EASEA operational prototype (v0.1) wasreleased in September 1999.In January 2001 was released EASEA Millennium Edition (v0.6) driving for the �rsttime both GALib and EO.The EASEA�DREAM
ompiler is still under development, along with the DREAM Eu-ropean proje
t.

Fig. 1 � EASEA mode of operation.Until the GUI is available, the EASEA
ompiler uses as input an as
ii �le with a .ezsu�x. Its output is either a C++ sour
e �le driving the GAlib obje
t-oriented library or aC++ sour
e �le driving the EO obje
t-oriented library. The resulting C++ �le must thenbe
ompiled by a C++
ompiler and linked with the
orresponding library (
f. �gure 1).The produ
ed exe
utable implements the evolutionary algorithm des
ribed in the originalEASEA sour
e �le.4.3 Graphi
 User Interfa
eThe GUI (under development) allows the user to graphi
ally spe
ify his evolutionaryalgorithm. On
e this is done, the GUI temporarily saves the information input by the end-user into an EASEA sour
e �le, whi
h is in turn automati
ally
ompiled into an obje
t sour
e�le using the spe
i�ed library. The obje
t sour
e �le (in whi
h an interfa
e with the GUI hasbeen inserted) is
ompiled to produ
e an exe
utable �le whi
h is laun
hed by the GUI. The3. An open sour
e proje
t, originally developed at the University of Granada (Spain), and now
ontinuedat Sour
eForge.RR n° 4218

8 Collet, S
hoenauer, Lutton & Lou
hetGUI
an then be used to
ontrol the running evolutionary algorithm and to display partialand �nal results thanks to the interfa
e module that was embedded in the user appli
ation.5 EASEA
ompiler5.1 Des
riptionEASEA is written in C++, using Lex and Ya

 (in fa
t their ex
ellent Windows C++equivalent : ALex and AYa

 [4℄). The EASEA
ompiler is somewhat unusual in the sensethat it produ
es sour
e
ode in another language rather than mi
ropro
essor instru
tions.As EASEA
ounts on the user to write the
ode of his evaluation fun
tion, a simple
utand paste strategy
ould have worked, taking pie
es of
ode here and there and puttingthem together for
ompilation.However, it was de
ided (spe
i�
ation 4) that EASEA would allow non state-of-the-artprogrammers to nevertheless spe
ify their evolutionary algorithms. A
ut and paste strategywould have required the user to know about obje
t programming (as the underlying librariesare obje
t-oriented) and would have required the user to know how to use the library. Tohim, the only advantage would have been the help of the Graphi
 User Interfa
e,
omparedto his already existing C++ programming environment.It was therefore de
ided to keep a pure C++ syntax for user-written fun
tions, but hidingaway all obje
t-oriented
on
epts, whi
h
an be automati
ally inserted, provided that thesoftware has a deep enough understanding of the
ode written by the user.A real
ompiler was then needed, to
reate fully-�edged
lasses out of the data stru
turesdes
ribed by the user.5.2 Sour
e
ode analysisApart from se
tions
ontaining pure C++, the syntax of the EASEA language must besimple enough to be generated and interpreted by the Graphi
 User Interfa
e.An EASEA sour
e �le is therefore
omposed of di�erent areas, delimited by se
tions su
has: \User de
larations:#define SIZE 10inline void swap(bool& a,bool& b) {bool
=a;a=b;b=
;}\endwhi
h
an
ontain either pure C++
ode (as in the above example), or pure EASEA
ode,su
h as:\User
lasses :Elt { int Value; Elt *pNext; }GenomeClass { Elt *pList; int Size; }\end
INRIA

Spe
ifying Evolutionary Algorithms with EASEA 9although the syntax is very mu
h C/C++ like.Pure C++ areas are inserted nearly verbatim in the .
pp target �le, while EASEA areasare interpreted and
ompiled into symbol tables and data stru
tures
ontaining valuableinformation whi
h is ne
essary to
ode generation.As an example, let us take the (very simpli�ed) grammar analysing the above \User
lasses: se
tion:ClassDe
larations: ClassDe
laration| ClassDe
larations ClassDe
laration ;ClassDe
laration: Symbol {Add to symbol table w/typeUserClass}'{' VariablesDe
larations '}' ;VariablesDe
larations: VariablesDe
laration| VariablesDe
larations VariablesDe
laration ;VariablesDe
laration: BaseType {store CurrentType}BaseObje
ts| UserType {store CurrentType} UserObje
ts ;BaseType: BOOL | INT | DOUBLE | CHAR | POINTER ;UserType: Symbol {Find the symbol in the symbol table andreturn a pointer to the symbol};Obje
ts: Obje
t | Obje
ts ',' Obje
t ;Obje
t: Symbol {Add to the symbol table with size, type,}| '*' Symbol {This is a pointer. Add to thesymbol table with size:(sizeof(
har *)),obje
t type: pointer, pointing toCurrentType (defined above)}| Symbol '[' Expr '℄' {This is an array. Add tosymbol tbl w/size:Expr*(sizeof(CurrentType))obje
t type : array of type CurrentType} ;Su
h a minute analysis allows to automati
ally
reate full C++
lasses out of the simplestru
ture de
laration of the user genome.Here, for instan
e, are the re
ursive
opy methods (
alled by the
opy-
onstru
tor, andoperator= methods) automati
ally
reated for the Elt and GenomeClass stru
tures des
ri-bed above:
RR n° 4218

10 Collet, S
hoenauer, Lutton & Lou
hetvoid Elt::
opy(
onst Elt &EZ_Var) {pNext=(EZ_Var.pNext ? new Elt(*(EZ_Var.pNext)):NULL);Value=EZ_Var.Value;}void GenomeClass::
opy(
onst GAGenome& g) {if(&g != this){if (pList) delete pList; // Destru
ting pointerspList=NULL;GAGenome::
opy(g); //
opy the base
lass partGenomeClass & genome = (GenomeClass &)g;Size=genome.Size; // Memberwise
opypList=(genome.pList?new Elt(*(genome.pList)):NULL);}} And for ea
h
lass, EASEA
reates a
onstru
tor, a
opy
onstru
tor, a destru
tor (whi
hdestru
ts thoroughly the pList linked list, for instan
e), an operator=, an operator==, anoperator!=, an operator<< and an operator>>.End-users (physi
ists used to Fortran) �nd it very interesting to produ
e automati
allysu
h pie
es of
ode, as:� they are not interested in spending a lot of time in learning obje
t-oriented program-ming,� EASEA introdu
es subtleties beyond the programming
apa
ities of many end-users,� it would take them a very long time to write su
h
ode properly for ea
h new pro-blem with a genome
ontaining a di�erent data stru
ture, as is the
ase in real-worldappli
ations,� the produ
ed
ode is guaranteed to be bug-free (a quality that even experien
ed pro-grammers may appre
iate).5.3 Code generationOn
e
ompiled, the generated .
pp sour
e �le
annot 4 be totally hidden from the enduser, as it may
ontain C++ errors. As the EASEA syntax is rather simple to follow, andas the
ode produ
ed by EASEA is (generally) free of bugs, most real errors
ome in fa
tfrom C++ fun
tions written by the user. The ni
e
onsequen
es are that:� su
h errors are trapped by the very elaborate C++
ompiler syntax analyser,� whatever semanti
 errors (bugs) that
an be dete
ted are as elaborately dealt with bythe host
ompiler symboli
 debugger.4. unfortunately :-) INRIA

Spe
ifying Evolutionary Algorithms with EASEA 11The not so ni
e
onsequen
e is that the human end-user must somehow debug the C++
ode produ
ed by EASEA, whi
h requires that the produ
ed sour
e
ode be highly readable.The main di�
ulty resides in the fa
t that humans usually �nd
ompiler-produ
ed sour
e
ode quite di�
ult to read.EASEA
an also be used as a primer: EASEA
reates a C++ sour
e �le whi
h
an be astarting point for more experien
ed programmers to re�ne afterwards.Our main
on
ern is then to improve presentation and to have EASEA-generated C++
ode look as human as possible.This is mainly a
hieved thanks to :1. man-made template �les (GALib.tpl and EO.tpl),2. very
areful typesetting, whenever purely EASEA-generated
ode appears: indentationis respe
ted, meaningful variable names are used and
omments are generated froms
rat
h to explain what the
reated
ode is supposed to do.5.3.1 Using template �lesAs one
an infer by their name, template �les
ontain the framework of an instan
eof a generi
 evolutionary algorithm (in GALib or in EO), ready to be �lled up with user-spe
i�
 information found either dire
tly in se
tions
ontaining pure C++
ode or in theEASEA-spe
i�
 se
tions, su
h as the genome stru
ture de�nition.The mode of operation is very simple. The template �le is read and
opied verbatim inthe target .
pp �le until an EASEA token (pre
eded with \) is found. This token asks theEASEA
ompiler to repla
e it with signi�
ant
ode found in the .ez �le. Let us take anexample:void EASEAGenome::
opy(
onst EASEAGenome& genome) {if(&genome != this){\GENOME_DTOR\COPY_CTOR }}istream& operator>>(istream &is,stru
t EASEAGenome &genome){\READreturn is; }This ex
erpt of EO.tpl shows the automati

reation of methods. The framework ispresent and EASEA is periodi
ally asked to input the ne
essary pie
es of
ode found in the.ez �le.The result is very readable, and looks very mu
h like what a human user would havewritten.5.3.2 Performan
eThe
on
ern about performan
e surfa
es whenever a pie
e of
ode is generated by a
ompiler. First of all, as far as syntax is
on
erned, EASEA-produ
ed C++ �les are not
RR n° 4218

12 Collet, S
hoenauer, Lutton & Lou
hetthat di�erent from what human-produ
ed
ode would have looked like . . . after debugging.Semanti
ally speaking, it is true that when writing minor
lasses, a human programmer willnot take the pain of writing
ode for operators that he knows will never be
alled. Althoughsu
h re�nement
ould be in
luded with mu
h pain in EASEA (a �rst pass
ould determinewhi
h operators of whi
h
lasses will be needed), the only drawba
k is that the evolutionaryengine will deal with slightly larger obje
ts than ne
essary.However, this
ost is negligible, mainly owing to two fa
ts:1. EASEA-generated
ode only
on
erns the manipulation of genome obje
ts, whi
husually represents only a few per
ents of the total exe
ution time of an evolutionaryalgorithm (usually dominated by the user-written evaluation fun
tion).2. EASEA generates sour
e
ode, whi
h is then
ompiled by an extremely evolved C++
ompiler. The
ode optimisation taking pla
e in the C++
ompiler will minimise thela
k of optimisation of the EASEA output.6 Real-world and a
ademi
 appli
ationsSeveral real-world appli
ations have been written with EASEA. Papers assignment toreviewers of the Parallel Problem Solving from Nature sixth international
onferen
e weredone with EASEA.EASEA has been used to optimise airfoil shapes (with a Fortran evaluation fun
tion)over a network of
omputers in the INGENET european RTD Proje
t. A small adaptationof the GALib template �le allows to
reate very basi
 parallel
ode using the MPI library.EASEA is used as the basi
 algorithm development language in student training at theFren
h É
ole Polyte
hnique, at the Laboratoire d'Informatique du Littoral where the Graphi
User Interfa
e is
urrently being developed, at the É
ole Nationale Superieure de Te
hniquesAvan
ées, where two students taking their �rst
ourse on Geneti
 Programming had a papera

epted at the EuroGP'01 international
onferen
e, based on the results of their two-monthsproje
t in EASEA. It has also re
ently been tested at General Ele
tri
 Medi
al Systems asa prototyping tool in a Medi
al Imaging appli
ation.7 Con
lusion and future workMany important �elds in
omputer s
ien
e have their spe
i�
 languages (Fortran,C/C++, Lisp, Prolog, Smalltalk, . . .). Even
omplex appli
ations su
h as databases orspread-sheets have developed their own languages! EA programmers remain however withC++, an inadapted and di�
ult to use low-level obje
t-oriented language. As a result, manys
ientists have no other
hoi
e than spending a lot of time be
oming
omputer programmersand rewriting their own evolutionary algorithms. Due to thoroughly di�erent programmingte
hniques and languages, their programs are barely
omparable, whi
h is a great obsta
leto s
ienti�

ooperation and emulation.
INRIA

Spe
ifying Evolutionary Algorithms with EASEA 13Therefore, feedba
k from s
ienti�
 users is quite positive although v1.0 is still far downthe road. However, EASEAv0.6 is de
isive in that it is the �rst version able to
reate indi�e-rently .
pp �les for EO or GALib out of the same EASEA sour
e �le, showing that EASEAhas the
apa
ity of being the generi
 spe
i�
ation language for evolutionary algorithms itaims to be.The Graphi
 User Interfa
e will be the next great step, as users will not need a texteditor any more to write their evolutionary algorithms.We hope that EASEA will be able to o�er the s
ienti�

ommunity the means to try outevolutionary algorithms with a minimal time investment as far as programming is
on
erned.The EASEA v0.6
ompiler and its manual are available on the net [1℄.Référen
es[1℄ EASEA mailing list:http://groups.yahoo.
om/group/easea .EASEA home page:http://www-ro
q.inria.fr/EVO-Lab/ .[2℄ EVONET home page:http://www.evonet.polyte
hnique.fr .[3℄ EO software:http://eodev.sour
eforge.net/ .EO tutorial:http://www.eeaax.polyte
hnique.fr/EO .[4℄ P. Stearns, ALex & AYa

 home page (Bumblebee Software Ltd.):http://www.bumblebeesoftware.
om .[5℄ M. Wall, GAlib home page:http://lan
et.mit.edu/ga/ .[6℄ B. Pae
hter, T. Bae
k, M. S
hoenauer, A.E. Eiben, J.J. Merelo, and T. C. Fogarty, �ADistributed Resour
e Evolutionary Algorithm Ma
hine,� Pro
. of CEC 2000.[7℄ I. Landrieu, B. Naudts, �An Obje
t Model for Sear
h Spa
es and their Transformations,�Arti�
ial Evolution
onferen
e, EA'99 Fran
e, 1999.[8℄ Z. Mi
halewi
z, �Geneti
 Algorithms + Data Stru
tures = Evolution Programs�, Sprin-ger Verlag, 1992.[9℄ N. J. Rad
li�e, �Forma Analysis and Random Respe
tful Re
ombination,� ICGA'91,pro
eedings pp222-229, 1991.[10℄ N. J. Rad
li�e and P. D. Surry, �Fitness varian
e of formae and performan
e predi
tion,�FOGA'95, pp51-72, Morgan Kaufmann publ., 1995.RR n° 4218

14 Collet, S
hoenauer, Lutton & Lou
het[11℄ P. D. Surry and N. J. Rad
li�e, �Formal Algorithms + Formal Representation = Sear
hStrategies,� PPSN'96, pro
eedings 1141 pp366-375, 1996.[12℄ P. D. Surry, �A Pres
riptive Formalism for Constru
ting Domain-Spe
i�
 EvolutionaryAlgorithms,� PhD thesis, University of Edinburgh, 1998.

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

