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Abstract. When considering noisy fitness functions for some CPU-time
consuming applications, a trade-off problem arise: how to reduce the
influence of the noise while not increasing too much computation time.
In this paper, we propose and experiment some new strategies based on
an exploitation of historical information on the algorithm evolution, and
a non-generational evolutionary algorithm.

1 Introduction.

Handling noise in Evolution Algorithms has already been studied for the reason
that most real-world problems present some noisy behavior, with many possible
origins. This difficulty has often been successfully overcome by raising the popu-
lation size [3] or by making multiple evaluations of the same individual ([5], [9]),
using an average as fitness score.

We address here problems where fitness is noisy and in the same time com-
putationally expensive, reducing the applicability of the previous solutions. Con-
sidering that each fitness evaluation bears important information that we do not
want to lose, an exploitation of the history of evaluations is a solution to reduce
the misleading noise.

Such a technique has already been experimented by Sano and Kita in [10]
for noisy functions, by Corn and al [2] and Zitzler and al [11] for multiobjective
optimisation. In Section 2, we propose a similar system of history-based fitness
scoring, relying on a genetic database. Then in Section 3, it is shown that this
genetic database may also be used to produce offspring. A sharing technique
complements this scheme, it is described in Section 4. Finally experiments on
two multimodal test functions are presented.

2 Historical information.

2.1 Motivation.

Inspired by the principles of Darwinian evolution, evolutionary algorithms (EA)
are based on the concept of evolving population. The important size of popula-
tion guarantees the redundancy of information (genes and their expression) and



its diversity, so the “death” of old individuals is not a problem, but is rather
seen as an important evolution mechanism.

Here we deal with the class of problems where the total number of individuals
created during the evolution is limited. This constraint arises for example when
the fitness evaluation takes a long time. Moreover if the evaluation is subject
to noise, the problem of accuracy of information becomes crucial. As stated
before, we cannot afford raising too much the population size or the number of
evaluations for the same individual.

To reduce the effect of noise, we therefore propose to use similarities between
individuals (many instances of a single individual frequently coexists inside a
population). Going further in this direction, we may also consider the whole
information produced along the evolution: it often happens that an individual
is a copy — or a slightly disturbed copy — of a ”dead” ancestor. As we will see
below, keeping track of all evaluations performed along the evolution provide
another way to reduce the noise of the fitness function.

Moreover, if we can use a metric on the search space that makes sense (i.e.
on which we can define a regularity property such as: two individuals that are
similar with respect to this metric have similar fitness values), the previous
idea may be extended. This implies that we assume some regularity properties
of the underlying signal. This is a common hypothesis for many ”denoising”
techniques in signal analysis [6]. Fitness evaluations may be then averaged for
individuals that lie in a given neighbourhood (with appropriate weights, related
to the fitness regularity assumption). The resulting computation time overload
for the EA remains negligible in the case of time consuming fitness.

2.2 An implementation for real-coded genomes.

Sano and Kita [10] proposed to use the history of search to refine the estimated
fitness values of an individual, using the fitness evaluations of individuals similar
to it. Their approach is based on a stochastic model of the fitness function
that allows to use a maximum likelihood technique for the estimation of the
underlying fitness function.

Here we make the assumption that the underlying fitness function is regular
with respect to the search space metric. Let us first define:

— The search domain:
S = [[lai,bi], with Vi€ {1,...,m} (a;,b;) € R* and a; <b; (1)
i=1

— A max distance on S:

Ti —Yi
Va,y € S; doo(way) = MaZTic{1,.m} (%) (2)

The divider (b; — a;) ensures that each component of a vector has the same
weight in the distance regardless of the extent of its domain.



— An euclidian distance on S:

V;U;y € S; dz(ﬂ?,y) =

— The neighbourhood of a point is defined using the max distance:
Vo € S; Ox € ]Rj-a Ba'oo(x) = {y € Sg; doo(X7Y) < Uoo} (4)

We now define the regularity of a fitness as the fact that the fitness values of
individuals belonging to the neighbourhood of an individual z (being in B,__ (z)),
are also close to the fitness value f(z). Holder regularity is a well-fitted tool for
this purpose:

Definition 1 (Holder function of exponent h).

Let (X,d;) and (Y,dy) two metric spaces. A function F : X — Y is called
a Holder function of exponent h > 0 and constant k, if for each z,y € X such
that dx (z,y) < 1, we have:

dy (F(z),F(y)) <k x dx (z,y)" (5)

Although a Holder function is always continuous, it needs not be differentiable.
Intuitively, a Holder function with a low value of h looks much more irregular
than a Holder function with a high value of h (in fact this statement only make
sense if we consider the highest value of h for which (5) holds). The majority of
fitness function on real search space is Holder.

We now want to keep track of the points of S (y;) that have been evaluated
at least one time. Of course the same point may have been evaluated more than
one time, so we have to consider the number of evaluation (inst(y;)) and the

average of these evaluations (f(y;)). We can then define the following set:

I, = {(yz,mst(yz),f(yz)) i€ {1, nﬁ}}

The index t denotes the number of fitness evaluations that have been taken into
account for the construction of IT;. It just emphasises that II; can be considered
as a genetic database, that is continuously updated along the evolution, i.e. when
pairs (individual, fitness evaluation) are computed. However, for clarity we will
later drop the t subscript.

Using IT we can now define a weighted fitness function:

> oyelinB, _ (z) W(@;y) X inst(y)

X
Vz €S, gp(z) =
zesS, gp(z) > yeling, . («) W(@,Yy) X inst(y

fly)
)

Where the weight w(z,y) is defined according to the euclidian distance:

dy(z,y) )

w(z,y) = (1— VAT



We have w(z,z) =1, and as :

maz(ds(z,y), y € By (x)) = Vm X 0o and dso(.,.) > da(.,.)

w(z,y) is always non negative: Vo € S, Yy € B,__(z), w(z,y) >0

IT can now be used in the following way. Each time that an individual = has
been evaluated, its “raw” (not yet averaged) fitness score is used to update the
database. The weighted fitness score can be returned with the computation of
gi7(x). The accuracy of the weighted fitness g7 depends greatly on the regularity
assumption on the fitness function. The parameter o, is directly related to the
regularity of the underlying fitness function (i.e. to k and h), and in the case of
an extremely irregular function (i.e. having discontinuities or h near 0), we have
to set o, = 0.

3 Classical fixed size population versus growing
population ?

The idea of using historical information has also been developed for multiob-
jective optimisation by Corn and al [2] and Zitzler and al [11]. Their approach
consists in building an “archive” of non-dominated individuals to maintain di-
versity, that is updated at each generation.

We propose to build a genetic database, as a simple cumulation of all pro-
duced individuals. It can be used directly in a real-coded GA, for example, with
the following procedure:

1 : Evaluate each individual of the current population.

2 : Add each individual with its raw fitness score to the database.

3 : Compute weighted fitness scores of all individuals with the help of the
database.

4 : Apply your favorites selection schemes, genetic operators, replacement
schemes, and loop on step 1 until termination.

Moreover this structure may be used to modify the classical birth and death
cycle of an EA. More precisely the individuals to be reproduced can be directly
selected in this genetic database. This can be seen as a growing population of im-
mortal individuals. To maintain diversity, a simple tournament selection seems
then appropriate: choose randomly n; (if n; is the size of the tournament) indi-
viduals in IT and keep the one having the best weighted fitness. Any individual
of the genetic database may thus have offspring at any time. Thereby the infor-
mation of the whole evolution is not only used to produce more accurate fitness
evaluations but offers a simple way to maintain diversity. We should also em-
phasize the asynchronous aspect of this algorithm, i.e. we do not have to wait
the whole current population to be evaluated in order to perform selection, but
at any time we are able to choose from all already evaluated individuals. It is
adapted to distributed implementation, for example with a client-server model:
a genetic server deserves clients that perform the fitness evaluations. The server
can manage the database with the following principles:



A pool of random offsprings is initially created.

— For any client request, the server supplies an offspring from its pool until
this one is empty.

— As soon as a client has finished the evaluation of its current individual, it is
returned to the server that adds the information to the database.

— When the offspring pool is empty the server creates new individuals to fill
it again. This creation is made by selecting parents from the database (with
a tournament for example) and applying genetic operators.

— In order to have a minimum initial diversity, we impose that when the server

creates new individuals a minimum number of individuals (call it mingq,)

has to be present in the database before selection can be applied. If this con-

dition is not fullfilled, offsprings are generated randomly until the database

is sufficiently large.

4 Sharing

In order to maintain diversity it also seems convenient to use a sharing proce-
dure [4]. We propose the following one, linked to the weighted averaging proce-
dure in a simple way: each time we compute g;(z) the following quantity can
be computed with few extra computation:

VeeS, W)= Y w(z,y) xinst(y) (6)
yEMNB,, (z)

This can be seen as a neighbour count which is used in the shared fitness function:

Vz € S, such as W (x) #0, hg(z) = gg(z) x <1 + #> (7)
Wi (z)

As for each evaluated point, we have Wiz () > 1, a tournament based on h(x)
can be used. The effect of this sharing will be that for an individual without
neighbours and evaluated once, we will have Wi (z) = 1 and therefore h(z) =
gir(x) x 2. On the contrary for an individual having many neighbours we will
have hg(r) ~ gp(z). As a consequence, isolated individuals will be given a
higher probability to be selected than surrounded ones.

5 Experimental procedure.

5.1 Algorithms an genetic operators.
The following EA are compared:

— a GA without use of the fitness weighted averaging.

a GA with fitness weighted averaging (further denoted GAW).
— our immortal evolutionary algorithm (IEA), with tournament.
IEA + sharing.



Individuals are encoded as real vectors, the search is represented with equa-
tion (1). The euclidian distance is used as a metric on this space.

The classical generational GA will use the stochastic universal selection (SUS,
see [1]) with a full replacement of population.

The classical gaussian mutation will be used for each component with a
fixed variance o; = 0.1 x (b; — a;). We did not experiment here the adaptive o
method, which is commonly used in Evolutionary Strategies.

Regarding crossover, we will test 3 configurations:

1 : Classical arithmetic crossover. If we denote (z,y) the parents, (z',y’) the
offspring, and + a random uniform number from [0, 1]:

' =yr+(1-7)y
{y’z(l—v)w+7y ®

2 : Arithmetic crossover with mating restriction (that will be further called
mating crossover). Only parents that are close enough are allowed to mate.
Practically, if m denotes the dimension of the search space, an euclidian
distance of (0.1 x v/m) will be the threshold.

3 : No crossover.

5.2 Common characteristics of experiments.

— All measurements are averaged on 25 runs, for a given configuration.

— A limited number of 3200 fitness evaluations is fixed, i.e. for GA, runs are
a 100 generations with population of size 32.

— The unperturbed fitness scores are also kept off-line in order to evaluate the
accuracy of the algorithms.

— IEA parameters:

e tournament size n; =4
e number of initial random individual minp,, = 32.

— Each time that measures are computed on the population of a GA (average
fitness scores for example), similar measures are taken for the IEA by group-
ing new individuals in sets of the same size as the population size. Note that
this is done only for measurement purpose.

— When crossover is used, the following probabilities are tested:

e crossover probability p. = {0.2,0.5,0.8}.
e mutation probability p,, = {0,0.01,0.1}.
e In the case of mutation alone we set p,, = {0.02,0.05,0.1,0.2}.

We must outline that all measures of all run are not reported in this paper, as it
would require a large amount of figures. We therefore tried to choose the most
significant ones to be discussed here, a complete report of these tests is available
in [8].



6 fi: A multimodal function

6.1 Definition
We consider the following function:
F:0,1P: — Rt
(w0, 21,05) = (Sh,ta)
A gaussian noise is added to obtain the noisy fitness function:
fi=F x(1+ Nopos) (10)
With ¢ (see figure 1, left):

[0,1]: - [0,1]

(4 xx) if  €10,0.25]

(2—4xz) if =€ [0.25,0.5] (11)
(dxz—2) if z€0.5,0.75]
( [

T —
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Fig. 1. Left: Function ¢. Right: average noise on f1 (on 25 runs).

As t has two optima (at i and %) of the same height, F; will have 8 op-
tima of the same height. In order to measure the ability of algorithms to locate
many optima, we will count the number of individuals that fall in their vicinity.
Precisely, for each optimum (0; ;ego,...,7}), We count the number of individuals
that verify d(0;,2) < 0.1, obtaining the list of optimum neighbouring counts
(n0s,ieqo0,...,7y)- If we now sort them in decreasing order, it becomes possible to
compute averages over different runs.

Finally, as its clear that Fj is regular (h = 1) we set 0o, = 0.05.



6.2 Results on F;

Figure 1(right) shows the average noise of fitness evaluations. For the GA without
fitness weighted averaging, the quantity plotted is simply erpopulation |f1(z) —
Fi(z)], and for the other algorithms >° . 1ation [97(2) — Fi(2)]. We remind
that in the case of the IEA, the term population denotes only the grouping of the
last new individuals for comparison purpose. We clearly see that, in absence of
weighted averaging the noise increases as the average fitness increases because of
the multiplicative nature of noise. When using the weighted averaging procedure
noise decreases significantly.

Figures 2 to 4 show the performance in terms of Average Denoised Fit-
ness (further called ADF), corresponding to Fj. The ability to locate optima
is measured by the optimum neighbouring counts (noi,z‘e{o,...ﬁ})l , for the three
configurations (arithmetic crossover, mating crossover and mutation alone).

Note that in the case of arithmetic crossover, the classical GA with a low
crossover probability (p. = 0.2) leads to the highest ADF scores, but concentrate
rather on a single optimum. The effect of weighted averaging does not change
much the results. The IEA obtains lower performances in terms of ADF, but
obtains a better diversity of optima when used with sharing.

In the case of mating crossover, the GA and the GAW performs better when
pe is set to 0.8. It must be outlined that the effective crossover ratio is lower,
due to the mating restriction rule. But we see on the IEA runs that it provides
good results in terms of ADF and in the same time in terms of optima diversity
(especially when sharing is used).

The application of mutation alone reveals to be quite efficient at high rate
(pm = 0.2) when using a GA, but less interesting for the IEA.

In conclusion for this test function, we can see that a simple GA can effi-
ciently provide a good average fitness, but that the IEA + crossover with mating
restriction covers more efficiently the different optima.

7 F3: An epistatic version of F}

7.1 Definition
Consider the following function:

F:0,1: — Rt

12
(xo,z1,23) —  ta(xo, 1) + ta2(21,22) + t2 (22, T0) (12)
with ¢, being defined with the help of function ¢ (see section 6):
[ t(z) if (z—-0.5)x(y—0.5)>0
ba(w,y) = {0.5 x t(z) if (z—05)x (y—05)<0 (13)

1 As all graphs do not have exactly the same ordinate scale, we have drawn a line at
(y = 10) for visual comparisons.
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Fig. 2. F: Arithmetic crossover. Left: average denoised fitness values. Right: optimum
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Fig. 3. F1: Mating crossover. Left: average denoised fitness values. Right: optimum
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Fig. 4. F1: mutation alone. Left: average denoised fitness values. Right: optimum neigh-
bouring counts.



The noisy fitness is:
fo=F> x (1+ Noo.5)) (14)

As F> is also a regular function (h = 1), we set oo, = 0.05.

In comparison to Fi, F, also has 8 optima. The difference comes from the
epistatic form of ;. In fact there are two main optima at (%, %, %) and (%, %, %)
with a value of 3, and 6 secondary optima with a value of 2 with all other com-
binations of % and %. It is clear that the two main optima are in some sense
opposite and are separated by secondary misleading optima. The goal of the
algorithms will then be to explore at least one main optimum without being too
much puzzled by secondary optima, and eventually cover both main optima. The
optimum neighbouring counts are therefore slightly modified the following way:
(n0s,ieq0,1}) represents neighbouring counts of the main optima (also sorted in
order to compute an average over runs) and (n0; ;c{2,..,7}) Will be neighbouring
counts of the secondary optima.

7.2 Results on Fj.

Figures 5 to 7 show once again that a simple GA is able to find a main optimum
and exploit it but often fails to find the other one, and is rather puzzled by
secondary optima. Weighted fitness brings a first improvement, but IEA seems
to performs better, again in combination with mating crossover.

8 Other tests.

Other tests were performed, they are reported in [8]:

— prescribed regularity functions (Weierstrass-Mandelbrot functions).
— a molecular simulation application (see [7] for first results).

9 Conclusion.

We propose in this paper a new use of history in evolutionary computation,
adapted to computationally heavy and noisy fitness functions. An increased
complexity for the EA allows to reduce the number of CPU-time consuming
fitness evaluations.

Moreover we experimentally show that, when the function is sufficiently reg-
ular in respect to a metric on the search space, it is possible to use similarity
of individuals to reduce noise successfully without additional fitness evaluations.
We propose a new algorithm using the whole history of evolution to generate
new offspring. Experiments with a limited number of fitness evaluations on real-
coded test functions show that, if GA can overcome the effect of noise in finding
good regions, our immortal evolutionary algorithm (IEA) maintains a better
diversity. Of course, we cannot draw firm conclusions on the basis of two test-
functions, but these experiments show in which way we can tune the balance
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between exploration (discovery of many optima) and exploitation (good average
fitness of the population), by balancing crossover, mutation and sharing meth-
ods. The problem of an automatic adaptation of o, along the evolution will
be considered as future work. For that purpose an on-the-fly estimation of the
regularity of the fitness function could be used.
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