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t. When 
onsidering noisy �tness fun
tions for some CPU-time
onsuming appli
ations, a trade-o� problem arise: how to redu
e thein
uen
e of the noise while not in
reasing too mu
h 
omputation time.In this paper, we propose and experiment some new strategies based onan exploitation of histori
al information on the algorithm evolution, anda non-generational evolutionary algorithm.1 Introdu
tion.Handling noise in Evolution Algorithms has already been studied for the reasonthat most real-world problems present some noisy behavior, with many possibleorigins. This diÆ
ulty has often been su

essfully over
ome by raising the popu-lation size [3℄ or by making multiple evaluations of the same individual ([5℄, [9℄),using an average as �tness s
ore.We address here problems where �tness is noisy and in the same time 
om-putationally expensive, redu
ing the appli
ability of the previous solutions. Con-sidering that ea
h �tness evaluation bears important information that we do notwant to lose, an exploitation of the history of evaluations is a solution to redu
ethe misleading noise.Su
h a te
hnique has already been experimented by Sano and Kita in [10℄for noisy fun
tions, by Corn and al [2℄ and Zitzler and al [11℄ for multiobje
tiveoptimisation. In Se
tion 2, we propose a similar system of history-based �tnesss
oring, relying on a geneti
 database. Then in Se
tion 3, it is shown that thisgeneti
 database may also be used to produ
e o�spring. A sharing te
hnique
omplements this s
heme, it is des
ribed in Se
tion 4. Finally experiments ontwo multimodal test fun
tions are presented.2 Histori
al information.2.1 Motivation.Inspired by the prin
iples of Darwinian evolution, evolutionary algorithms (EA)are based on the 
on
ept of evolving population. The important size of popula-tion guarantees the redundan
y of information (genes and their expression) and



its diversity, so the \death" of old individuals is not a problem, but is ratherseen as an important evolution me
hanism.Here we deal with the 
lass of problems where the total number of individuals
reated during the evolution is limited. This 
onstraint arises for example whenthe �tness evaluation takes a long time. Moreover if the evaluation is subje
tto noise, the problem of a

ura
y of information be
omes 
ru
ial. As statedbefore, we 
annot a�ord raising too mu
h the population size or the number ofevaluations for the same individual.To redu
e the e�e
t of noise, we therefore propose to use similarities betweenindividuals (many instan
es of a single individual frequently 
oexists inside apopulation). Going further in this dire
tion, we may also 
onsider the wholeinformation produ
ed along the evolution: it often happens that an individualis a 
opy { or a slightly disturbed 
opy { of a "dead" an
estor. As we will seebelow, keeping tra
k of all evaluations performed along the evolution provideanother way to redu
e the noise of the �tness fun
tion.Moreover, if we 
an use a metri
 on the sear
h spa
e that makes sense (i.e.on whi
h we 
an de�ne a regularity property su
h as: two individuals that aresimilar with respe
t to this metri
 have similar �tness values), the previousidea may be extended. This implies that we assume some regularity propertiesof the underlying signal. This is a 
ommon hypothesis for many "denoising"te
hniques in signal analysis [6℄. Fitness evaluations may be then averaged forindividuals that lie in a given neighbourhood (with appropriate weights, relatedto the �tness regularity assumption). The resulting 
omputation time overloadfor the EA remains negligible in the 
ase of time 
onsuming �tness.2.2 An implementation for real-
oded genomes.Sano and Kita [10℄ proposed to use the history of sear
h to re�ne the estimated�tness values of an individual, using the �tness evaluations of individuals similarto it. Their approa
h is based on a sto
hasti
 model of the �tness fun
tionthat allows to use a maximum likelihood te
hnique for the estimation of theunderlying �tness fun
tion.Here we make the assumption that the underlying �tness fun
tion is regularwith respe
t to the sear
h spa
e metri
. Let us �rst de�ne:{ The sear
h domain:S = mYi=1[ai; bi℄; with 8i 2 f1; :::;mg (ai; bi) 2 IR2 and ai < bi (1){ A max distan
e on S:8x; y 2 S; d1(x; y) = maxi2f1;::;mg� jxi � yijbi � ai � (2)The divider (bi � ai) ensures that ea
h 
omponent of a ve
tor has the sameweight in the distan
e regardless of the extent of its domain.



{ An eu
lidian distan
e on S:8x; y 2 S; d2(x; y) =vuut mXi=1 �xi � yibi � ai�2 (3){ The neighbourhood of a point is de�ned using the max distan
e:8x 2 S; �1 2 IR�+; B�1(x) = fy 2 Sg; d1(x; y) � �1g (4)We now de�ne the regularity of a �tness as the fa
t that the �tness values ofindividuals belonging to the neighbourhood of an individual x (being in B�1(x)),are also 
lose to the �tness value f(x). H�older regularity is a well-�tted tool forthis purpose:De�nition 1 (H�older fun
tion of exponent h).Let (X; dx) and (Y; dY ) two metri
 spa
es. A fun
tion F : X ! Y is 
alleda H�older fun
tion of exponent h > 0 and 
onstant k, if for ea
h x; y 2 X su
hthat dX(x; y) < 1, we have:dY (F (x); F (y)) � k � dX(x; y)h (5)Although a H�older fun
tion is always 
ontinuous, it needs not be di�erentiable.Intuitively, a H�older fun
tion with a low value of h looks mu
h more irregularthan a H�older fun
tion with a high value of h (in fa
t this statement only makesense if we 
onsider the highest value of h for whi
h (5) holds). The majority of�tness fun
tion on real sear
h spa
e is H�older.We now want to keep tra
k of the points of S (yi) that have been evaluatedat least one time. Of 
ourse the same point may have been evaluated more thanone time, so we have to 
onsider the number of evaluation (inst(yi)) and theaverage of these evaluations ( ~f(yi)). We 
an then de�ne the following set:��t = n�yi; inst(yi); ~f(yi)� ; i 2 f1; :::n ��goThe index t denotes the number of �tness evaluations that have been taken intoa

ount for the 
onstru
tion of ��t. It just emphasises that ��t 
an be 
onsideredas a geneti
 database, that is 
ontinuously updated along the evolution, i.e. whenpairs (individual, �tness evaluation) are 
omputed. However, for 
larity we willlater drop the t subs
ript.Using �� we 
an now de�ne a weighted �tness fun
tion:8x 2 S; g ��(x) = Py2 ��\B�1 (x) w(x; y)� inst(y)� ~f(y)Py2 ��\B�1 (x)w(x; y) � inst(y)Where the weight w(x; y) is de�ned a

ording to the eu
lidian distan
e:w(x; y) = �1� d2(x; y)pm� �1�



We have w(x; x) = 1, and as :max(d2(x; y); y 2 B�1(x)) = pm� �1 and d1(:; :) � d2(:; :)w(x; y) is always non negative: 8x 2 S; 8y 2 B�1(x); w(x; y) � 0�� 
an now be used in the following way. Ea
h time that an individual x hasbeen evaluated, its \raw" (not yet averaged) �tness s
ore is used to update thedatabase. The weighted �tness s
ore 
an be returned with the 
omputation ofg ��(x). The a

ura
y of the weighted �tness g �� depends greatly on the regularityassumption on the �tness fun
tion. The parameter �1 is dire
tly related to theregularity of the underlying �tness fun
tion (i.e. to k and h), and in the 
ase ofan extremely irregular fun
tion (i.e. having dis
ontinuities or h near 0), we haveto set �1 = 0.3 Classi
al �xed size population versus growingpopulation ?The idea of using histori
al information has also been developed for multiob-je
tive optimisation by Corn and al [2℄ and Zitzler and al [11℄. Their approa
h
onsists in building an \ar
hive" of non-dominated individuals to maintain di-versity, that is updated at ea
h generation.We propose to build a geneti
 database, as a simple 
umulation of all pro-du
ed individuals. It 
an be used dire
tly in a real-
oded GA, for example, withthe following pro
edure:1 : Evaluate ea
h individual of the 
urrent population.2 : Add ea
h individual with its raw �tness s
ore to the database.3 : Compute weighted �tness s
ores of all individuals with the help of thedatabase.4 : Apply your favorites sele
tion s
hemes, geneti
 operators, repla
ements
hemes, and loop on step 1 until termination.Moreover this stru
ture may be used to modify the 
lassi
al birth and death
y
le of an EA. More pre
isely the individuals to be reprodu
ed 
an be dire
tlysele
ted in this geneti
 database. This 
an be seen as a growing population of im-mortal individuals. To maintain diversity, a simple tournament sele
tion seemsthen appropriate: 
hoose randomly nt (if nt is the size of the tournament) indi-viduals in �� and keep the one having the best weighted �tness. Any individualof the geneti
 database may thus have o�spring at any time. Thereby the infor-mation of the whole evolution is not only used to produ
e more a

urate �tnessevaluations but o�ers a simple way to maintain diversity. We should also em-phasize the asyn
hronous aspe
t of this algorithm, i.e. we do not have to waitthe whole 
urrent population to be evaluated in order to perform sele
tion, butat any time we are able to 
hoose from all already evaluated individuals. It isadapted to distributed implementation, for example with a 
lient-server model:a geneti
 server deserves 
lients that perform the �tness evaluations. The server
an manage the database with the following prin
iples:



{ A pool of random o�springs is initially 
reated.{ For any 
lient request, the server supplies an o�spring from its pool untilthis one is empty.{ As soon as a 
lient has �nished the evaluation of its 
urrent individual, it isreturned to the server that adds the information to the database.{ When the o�spring pool is empty the server 
reates new individuals to �llit again. This 
reation is made by sele
ting parents from the database (witha tournament for example) and applying geneti
 operators.{ In order to have a minimum initial diversity, we impose that when the server
reates new individuals a minimum number of individuals (
all it minpar)has to be present in the database before sele
tion 
an be applied. If this 
on-dition is not full�lled, o�springs are generated randomly until the databaseis suÆ
iently large.4 SharingIn order to maintain diversity it also seems 
onvenient to use a sharing pro
e-dure [4℄. We propose the following one, linked to the weighted averaging pro
e-dure in a simple way: ea
h time we 
ompute g ��(x) the following quantity 
anbe 
omputed with few extra 
omputation:8x 2 S; W �� (x) = Xy2 ��\B�1(x)w(x; y)� inst(y) (6)This 
an be seen as a neighbour 
ount whi
h is used in the shared �tness fun
tion:8x 2 S; su
h as W ��(x) 6= 0; h ��(x) = g ��(x)��1 + 1W �� (x)� (7)As for ea
h evaluated point, we have W �� (x) � 1, a tournament based on h ��(x)
an be used. The e�e
t of this sharing will be that for an individual withoutneighbours and evaluated on
e, we will have W �� (x) = 1 and therefore h ��(x) =g ��(x) � 2. On the 
ontrary for an individual having many neighbours we willhave h ��(x) ' g ��(x). As a 
onsequen
e, isolated individuals will be given ahigher probability to be sele
ted than surrounded ones.5 Experimental pro
edure.5.1 Algorithms an geneti
 operators.The following EA are 
ompared:{ a GA without use of the �tness weighted averaging.{ a GA with �tness weighted averaging (further denoted GAW).{ our immortal evolutionary algorithm (IEA), with tournament.{ IEA + sharing.



Individuals are en
oded as real ve
tors, the sear
h is represented with equa-tion (1). The eu
lidian distan
e is used as a metri
 on this spa
e.The 
lassi
al generational GA will use the sto
hasti
 universal sele
tion (SUS,see [1℄) with a full repla
ement of population.The 
lassi
al gaussian mutation will be used for ea
h 
omponent with a�xed varian
e �i = 0:1� (bi � ai). We did not experiment here the adaptive �method, whi
h is 
ommonly used in Evolutionary Strategies.Regarding 
rossover, we will test 3 
on�gurations:1 : Classi
al arithmeti
 
rossover. If we denote (x; y) the parents, (x0; y0) theo�spring, and 
 a random uniform number from [0; 1℄:�x0 = 
x+ (1� 
)yy0 = (1� 
)x+ 
y (8)2 : Arithmeti
 
rossover with mating restri
tion (that will be further 
alledmating 
rossover). Only parents that are 
lose enough are allowed to mate.Pra
ti
ally, if m denotes the dimension of the sear
h spa
e, an eu
lidiandistan
e of (0:1�pm) will be the threshold.3 : No 
rossover.5.2 Common 
hara
teristi
s of experiments.{ All measurements are averaged on 25 runs, for a given 
on�guration.{ A limited number of 3200 �tness evaluations is �xed, i.e. for GA, runs area 100 generations with population of size 32.{ The unperturbed �tness s
ores are also kept o�-line in order to evaluate thea

ura
y of the algorithms.{ IEA parameters:� tournament size nt = 4� number of initial random individual minpar = 32.{ Ea
h time that measures are 
omputed on the population of a GA (average�tness s
ores for example), similar measures are taken for the IEA by group-ing new individuals in sets of the same size as the population size. Note thatthis is done only for measurement purpose.{ When 
rossover is used, the following probabilities are tested:� 
rossover probability p
 = f0:2; 0:5; 0:8g.� mutation probability pm = f0; 0:01; 0:1g.� In the 
ase of mutation alone we set pm = f0:02; 0:05; 0:1; 0:2g.We must outline that all measures of all run are not reported in this paper, as itwould require a large amount of �gures. We therefore tried to 
hoose the mostsigni�
ant ones to be dis
ussed here, a 
omplete report of these tests is availablein [8℄.



6 f1: A multimodal fun
tion6.1 De�nitionWe 
onsider the following fun
tion:F1 : [0; 1℄3 : ! IR+(x0; x1; x3) ! �P2i=0 t(xi)� (9)A gaussian noise is added to obtain the noisy �tness fun
tion:f1 = F1 � (1 +N(0;0:5)) (10)With t (see �gure 1, left):[0; 1℄ : ! [0; 1℄x ! 8>><>>: (4 � x) if x 2 [0; 0:25[(2� 4 � x) if x 2 [0:25; 0:5[(4 � x� 2) if x 2 [0:5; 0:75[(4� 4 � x) if x 2 [0:75; 1℄ (11)
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Fig. 1. Left: Fun
tion t. Right: average noise on f1 (on 25 runs).As t has two optima (at 14 and 34 ) of the same height, F1 will have 8 op-tima of the same height. In order to measure the ability of algorithms to lo
atemany optima, we will 
ount the number of individuals that fall in their vi
inity.Pre
isely, for ea
h optimum (oi;i2f0;:::;7g), we 
ount the number of individualsthat verify d1(oi; x) < 0:1, obtaining the list of optimum neighbouring 
ounts(noi;i2f0;:::;7g). If we now sort them in de
reasing order, it be
omes possible to
ompute averages over di�erent runs.Finally, as its 
lear that F1 is regular (h = 1) we set �1 = 0:05.



6.2 Results on F1Figure 1(right) shows the average noise of �tness evaluations. For the GA without�tness weighted averaging, the quantity plotted is simplyPx2population jf1(x)�F1(x)j, and for the other algorithms Px2population jg ��(x) � F1(x)j. We remindthat in the 
ase of the IEA, the term population denotes only the grouping of thelast new individuals for 
omparison purpose. We 
learly see that, in absen
e ofweighted averaging the noise in
reases as the average �tness in
reases be
ause ofthe multipli
ative nature of noise. When using the weighted averaging pro
edurenoise de
reases signi�
antly.Figures 2 to 4 show the performan
e in terms of Average Denoised Fit-ness (further 
alled ADF), 
orresponding to F1. The ability to lo
ate optimais measured by the optimum neighbouring 
ounts (noi;i2f0;:::;7g)1 , for the three
on�gurations (arithmeti
 
rossover, mating 
rossover and mutation alone).Note that in the 
ase of arithmeti
 
rossover, the 
lassi
al GA with a low
rossover probability (p
 = 0:2) leads to the highest ADF s
ores, but 
on
entraterather on a single optimum. The e�e
t of weighted averaging does not 
hangemu
h the results. The IEA obtains lower performan
es in terms of ADF, butobtains a better diversity of optima when used with sharing.In the 
ase of mating 
rossover, the GA and the GAW performs better whenp
 is set to 0.8. It must be outlined that the e�e
tive 
rossover ratio is lower,due to the mating restri
tion rule. But we see on the IEA runs that it providesgood results in terms of ADF and in the same time in terms of optima diversity(espe
ially when sharing is used).The appli
ation of mutation alone reveals to be quite eÆ
ient at high rate(pm = 0:2) when using a GA, but less interesting for the IEA.In 
on
lusion for this test fun
tion, we 
an see that a simple GA 
an eÆ-
iently provide a good average �tness, but that the IEA + 
rossover with matingrestri
tion 
overs more eÆ
iently the di�erent optima.7 F2: An epistati
 version of F17.1 De�nitionConsider the following fun
tion:F2 : [0; 1℄3 : ! IR+(x0; x1; x3) ! t2(x0; x1) + t2(x1; x2) + t2(x2; x0) (12)with t2 being de�ned with the help of fun
tion t (see se
tion 6):t2(x; y) = � t(x) if (x � 0:5)� (y � 0:5) > 00:5� t(x) if (x � 0:5)� (y � 0:5) < 0 (13)1 As all graphs do not have exa
tly the same ordinate s
ale, we have drawn a line at(y = 10) for visual 
omparisons.
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The noisy �tness is: f2 = F2 � (1 +N(0;0:5)) (14)As F2 is also a regular fun
tion (h = 1), we set �1 = 0:05.In 
omparison to F1, F2 also has 8 optima. The di�eren
e 
omes from theepistati
 form of t2. In fa
t there are two main optima at ( 14 ; 14 ; 14 ) and ( 34 ; 34 ; 34 )with a value of 3, and 6 se
ondary optima with a value of 2 with all other 
om-binations of 14 and 34 . It is 
lear that the two main optima are in some senseopposite and are separated by se
ondary misleading optima. The goal of thealgorithms will then be to explore at least one main optimum without being toomu
h puzzled by se
ondary optima, and eventually 
over both main optima. Theoptimum neighbouring 
ounts are therefore slightly modi�ed the following way:(noi;i2f0;1g) represents neighbouring 
ounts of the main optima (also sorted inorder to 
ompute an average over runs) and (noi;i2f2;::;7g) will be neighbouring
ounts of the se
ondary optima.7.2 Results on F2.Figures 5 to 7 show on
e again that a simple GA is able to �nd a main optimumand exploit it but often fails to �nd the other one, and is rather puzzled byse
ondary optima. Weighted �tness brings a �rst improvement, but IEA seemsto performs better, again in 
ombination with mating 
rossover.8 Other tests.Other tests were performed, they are reported in [8℄:{ pres
ribed regularity fun
tions (Weierstrass-Mandelbrot fun
tions).{ a mole
ular simulation appli
ation (see [7℄ for �rst results).9 Con
lusion.We propose in this paper a new use of history in evolutionary 
omputation,adapted to 
omputationally heavy and noisy �tness fun
tions. An in
reased
omplexity for the EA allows to redu
e the number of CPU-time 
onsuming�tness evaluations.Moreover we experimentally show that, when the fun
tion is suÆ
iently reg-ular in respe
t to a metri
 on the sear
h spa
e, it is possible to use similarityof individuals to redu
e noise su

essfully without additional �tness evaluations.We propose a new algorithm using the whole history of evolution to generatenew o�spring. Experiments with a limited number of �tness evaluations on real-
oded test fun
tions show that, if GA 
an over
ome the e�e
t of noise in �ndinggood regions, our immortal evolutionary algorithm (IEA) maintains a betterdiversity. Of 
ourse, we 
annot draw �rm 
on
lusions on the basis of two test-fun
tions, but these experiments show in whi
h way we 
an tune the balan
e
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between exploration (dis
overy of many optima) and exploitation (good average�tness of the population), by balan
ing 
rossover, mutation and sharing meth-ods. The problem of an automati
 adaptation of �1 along the evolution willbe 
onsidered as future work. For that purpose an on-the-
y estimation of theregularity of the �tness fun
tion 
ould be used.Referen
es1. Baker, J.E.: \Redu
ing bias and ineÆ
ien
y in the sele
tion algorithm" inGeneti
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