
History and Immortalityin Evolutionary ComputationBenoit Leblan1, Evelyne Lutton1, Bertrand Braunshweig2, Herv�e Toulhoat21 INRIA, projet FRACTALES 78150 Le Chesnay - FranefBenoit.Leblan, Evelyne.Luttong�inria.fr2 Institut Fran�ais du P�etrole 1 et 4, avenue de Bois-Pr�eauBP 311 - 92852 Rueil-Malmaison Cedex - FranefBertrand.Braunshweig, Herve.Toulhoatg�ifp.frAbstrat. When onsidering noisy �tness funtions for some CPU-timeonsuming appliations, a trade-o� problem arise: how to redue theinuene of the noise while not inreasing too muh omputation time.In this paper, we propose and experiment some new strategies based onan exploitation of historial information on the algorithm evolution, anda non-generational evolutionary algorithm.1 Introdution.Handling noise in Evolution Algorithms has already been studied for the reasonthat most real-world problems present some noisy behavior, with many possibleorigins. This diÆulty has often been suessfully overome by raising the popu-lation size [3℄ or by making multiple evaluations of the same individual ([5℄, [9℄),using an average as �tness sore.We address here problems where �tness is noisy and in the same time om-putationally expensive, reduing the appliability of the previous solutions. Con-sidering that eah �tness evaluation bears important information that we do notwant to lose, an exploitation of the history of evaluations is a solution to reduethe misleading noise.Suh a tehnique has already been experimented by Sano and Kita in [10℄for noisy funtions, by Corn and al [2℄ and Zitzler and al [11℄ for multiobjetiveoptimisation. In Setion 2, we propose a similar system of history-based �tnesssoring, relying on a geneti database. Then in Setion 3, it is shown that thisgeneti database may also be used to produe o�spring. A sharing tehniqueomplements this sheme, it is desribed in Setion 4. Finally experiments ontwo multimodal test funtions are presented.2 Historial information.2.1 Motivation.Inspired by the priniples of Darwinian evolution, evolutionary algorithms (EA)are based on the onept of evolving population. The important size of popula-tion guarantees the redundany of information (genes and their expression) and



its diversity, so the \death" of old individuals is not a problem, but is ratherseen as an important evolution mehanism.Here we deal with the lass of problems where the total number of individualsreated during the evolution is limited. This onstraint arises for example whenthe �tness evaluation takes a long time. Moreover if the evaluation is subjetto noise, the problem of auray of information beomes ruial. As statedbefore, we annot a�ord raising too muh the population size or the number ofevaluations for the same individual.To redue the e�et of noise, we therefore propose to use similarities betweenindividuals (many instanes of a single individual frequently oexists inside apopulation). Going further in this diretion, we may also onsider the wholeinformation produed along the evolution: it often happens that an individualis a opy { or a slightly disturbed opy { of a "dead" anestor. As we will seebelow, keeping trak of all evaluations performed along the evolution provideanother way to redue the noise of the �tness funtion.Moreover, if we an use a metri on the searh spae that makes sense (i.e.on whih we an de�ne a regularity property suh as: two individuals that aresimilar with respet to this metri have similar �tness values), the previousidea may be extended. This implies that we assume some regularity propertiesof the underlying signal. This is a ommon hypothesis for many "denoising"tehniques in signal analysis [6℄. Fitness evaluations may be then averaged forindividuals that lie in a given neighbourhood (with appropriate weights, relatedto the �tness regularity assumption). The resulting omputation time overloadfor the EA remains negligible in the ase of time onsuming �tness.2.2 An implementation for real-oded genomes.Sano and Kita [10℄ proposed to use the history of searh to re�ne the estimated�tness values of an individual, using the �tness evaluations of individuals similarto it. Their approah is based on a stohasti model of the �tness funtionthat allows to use a maximum likelihood tehnique for the estimation of theunderlying �tness funtion.Here we make the assumption that the underlying �tness funtion is regularwith respet to the searh spae metri. Let us �rst de�ne:{ The searh domain:S = mYi=1[ai; bi℄; with 8i 2 f1; :::;mg (ai; bi) 2 IR2 and ai < bi (1){ A max distane on S:8x; y 2 S; d1(x; y) = maxi2f1;::;mg� jxi � yijbi � ai � (2)The divider (bi � ai) ensures that eah omponent of a vetor has the sameweight in the distane regardless of the extent of its domain.



{ An eulidian distane on S:8x; y 2 S; d2(x; y) =vuut mXi=1 �xi � yibi � ai�2 (3){ The neighbourhood of a point is de�ned using the max distane:8x 2 S; �1 2 IR�+; B�1(x) = fy 2 Sg; d1(x; y) � �1g (4)We now de�ne the regularity of a �tness as the fat that the �tness values ofindividuals belonging to the neighbourhood of an individual x (being in B�1(x)),are also lose to the �tness value f(x). H�older regularity is a well-�tted tool forthis purpose:De�nition 1 (H�older funtion of exponent h).Let (X; dx) and (Y; dY ) two metri spaes. A funtion F : X ! Y is alleda H�older funtion of exponent h > 0 and onstant k, if for eah x; y 2 X suhthat dX(x; y) < 1, we have:dY (F (x); F (y)) � k � dX(x; y)h (5)Although a H�older funtion is always ontinuous, it needs not be di�erentiable.Intuitively, a H�older funtion with a low value of h looks muh more irregularthan a H�older funtion with a high value of h (in fat this statement only makesense if we onsider the highest value of h for whih (5) holds). The majority of�tness funtion on real searh spae is H�older.We now want to keep trak of the points of S (yi) that have been evaluatedat least one time. Of ourse the same point may have been evaluated more thanone time, so we have to onsider the number of evaluation (inst(yi)) and theaverage of these evaluations ( ~f(yi)). We an then de�ne the following set:��t = n�yi; inst(yi); ~f(yi)� ; i 2 f1; :::n ��goThe index t denotes the number of �tness evaluations that have been taken intoaount for the onstrution of ��t. It just emphasises that ��t an be onsideredas a geneti database, that is ontinuously updated along the evolution, i.e. whenpairs (individual, �tness evaluation) are omputed. However, for larity we willlater drop the t subsript.Using �� we an now de�ne a weighted �tness funtion:8x 2 S; g ��(x) = Py2 ��\B�1 (x) w(x; y)� inst(y)� ~f(y)Py2 ��\B�1 (x)w(x; y) � inst(y)Where the weight w(x; y) is de�ned aording to the eulidian distane:w(x; y) = �1� d2(x; y)pm� �1�



We have w(x; x) = 1, and as :max(d2(x; y); y 2 B�1(x)) = pm� �1 and d1(:; :) � d2(:; :)w(x; y) is always non negative: 8x 2 S; 8y 2 B�1(x); w(x; y) � 0�� an now be used in the following way. Eah time that an individual x hasbeen evaluated, its \raw" (not yet averaged) �tness sore is used to update thedatabase. The weighted �tness sore an be returned with the omputation ofg ��(x). The auray of the weighted �tness g �� depends greatly on the regularityassumption on the �tness funtion. The parameter �1 is diretly related to theregularity of the underlying �tness funtion (i.e. to k and h), and in the ase ofan extremely irregular funtion (i.e. having disontinuities or h near 0), we haveto set �1 = 0.3 Classial �xed size population versus growingpopulation ?The idea of using historial information has also been developed for multiob-jetive optimisation by Corn and al [2℄ and Zitzler and al [11℄. Their approahonsists in building an \arhive" of non-dominated individuals to maintain di-versity, that is updated at eah generation.We propose to build a geneti database, as a simple umulation of all pro-dued individuals. It an be used diretly in a real-oded GA, for example, withthe following proedure:1 : Evaluate eah individual of the urrent population.2 : Add eah individual with its raw �tness sore to the database.3 : Compute weighted �tness sores of all individuals with the help of thedatabase.4 : Apply your favorites seletion shemes, geneti operators, replaementshemes, and loop on step 1 until termination.Moreover this struture may be used to modify the lassial birth and deathyle of an EA. More preisely the individuals to be reprodued an be diretlyseleted in this geneti database. This an be seen as a growing population of im-mortal individuals. To maintain diversity, a simple tournament seletion seemsthen appropriate: hoose randomly nt (if nt is the size of the tournament) indi-viduals in �� and keep the one having the best weighted �tness. Any individualof the geneti database may thus have o�spring at any time. Thereby the infor-mation of the whole evolution is not only used to produe more aurate �tnessevaluations but o�ers a simple way to maintain diversity. We should also em-phasize the asynhronous aspet of this algorithm, i.e. we do not have to waitthe whole urrent population to be evaluated in order to perform seletion, butat any time we are able to hoose from all already evaluated individuals. It isadapted to distributed implementation, for example with a lient-server model:a geneti server deserves lients that perform the �tness evaluations. The serveran manage the database with the following priniples:



{ A pool of random o�springs is initially reated.{ For any lient request, the server supplies an o�spring from its pool untilthis one is empty.{ As soon as a lient has �nished the evaluation of its urrent individual, it isreturned to the server that adds the information to the database.{ When the o�spring pool is empty the server reates new individuals to �llit again. This reation is made by seleting parents from the database (witha tournament for example) and applying geneti operators.{ In order to have a minimum initial diversity, we impose that when the serverreates new individuals a minimum number of individuals (all it minpar)has to be present in the database before seletion an be applied. If this on-dition is not full�lled, o�springs are generated randomly until the databaseis suÆiently large.4 SharingIn order to maintain diversity it also seems onvenient to use a sharing proe-dure [4℄. We propose the following one, linked to the weighted averaging proe-dure in a simple way: eah time we ompute g ��(x) the following quantity anbe omputed with few extra omputation:8x 2 S; W �� (x) = Xy2 ��\B�1(x)w(x; y)� inst(y) (6)This an be seen as a neighbour ount whih is used in the shared �tness funtion:8x 2 S; suh as W ��(x) 6= 0; h ��(x) = g ��(x)��1 + 1W �� (x)� (7)As for eah evaluated point, we have W �� (x) � 1, a tournament based on h ��(x)an be used. The e�et of this sharing will be that for an individual withoutneighbours and evaluated one, we will have W �� (x) = 1 and therefore h ��(x) =g ��(x) � 2. On the ontrary for an individual having many neighbours we willhave h ��(x) ' g ��(x). As a onsequene, isolated individuals will be given ahigher probability to be seleted than surrounded ones.5 Experimental proedure.5.1 Algorithms an geneti operators.The following EA are ompared:{ a GA without use of the �tness weighted averaging.{ a GA with �tness weighted averaging (further denoted GAW).{ our immortal evolutionary algorithm (IEA), with tournament.{ IEA + sharing.



Individuals are enoded as real vetors, the searh is represented with equa-tion (1). The eulidian distane is used as a metri on this spae.The lassial generational GA will use the stohasti universal seletion (SUS,see [1℄) with a full replaement of population.The lassial gaussian mutation will be used for eah omponent with a�xed variane �i = 0:1� (bi � ai). We did not experiment here the adaptive �method, whih is ommonly used in Evolutionary Strategies.Regarding rossover, we will test 3 on�gurations:1 : Classial arithmeti rossover. If we denote (x; y) the parents, (x0; y0) theo�spring, and  a random uniform number from [0; 1℄:�x0 = x+ (1� )yy0 = (1� )x+ y (8)2 : Arithmeti rossover with mating restrition (that will be further alledmating rossover). Only parents that are lose enough are allowed to mate.Pratially, if m denotes the dimension of the searh spae, an eulidiandistane of (0:1�pm) will be the threshold.3 : No rossover.5.2 Common harateristis of experiments.{ All measurements are averaged on 25 runs, for a given on�guration.{ A limited number of 3200 �tness evaluations is �xed, i.e. for GA, runs area 100 generations with population of size 32.{ The unperturbed �tness sores are also kept o�-line in order to evaluate theauray of the algorithms.{ IEA parameters:� tournament size nt = 4� number of initial random individual minpar = 32.{ Eah time that measures are omputed on the population of a GA (average�tness sores for example), similar measures are taken for the IEA by group-ing new individuals in sets of the same size as the population size. Note thatthis is done only for measurement purpose.{ When rossover is used, the following probabilities are tested:� rossover probability p = f0:2; 0:5; 0:8g.� mutation probability pm = f0; 0:01; 0:1g.� In the ase of mutation alone we set pm = f0:02; 0:05; 0:1; 0:2g.We must outline that all measures of all run are not reported in this paper, as itwould require a large amount of �gures. We therefore tried to hoose the mostsigni�ant ones to be disussed here, a omplete report of these tests is availablein [8℄.



6 f1: A multimodal funtion6.1 De�nitionWe onsider the following funtion:F1 : [0; 1℄3 : ! IR+(x0; x1; x3) ! �P2i=0 t(xi)� (9)A gaussian noise is added to obtain the noisy �tness funtion:f1 = F1 � (1 +N(0;0:5)) (10)With t (see �gure 1, left):[0; 1℄ : ! [0; 1℄x ! 8>><>>: (4 � x) if x 2 [0; 0:25[(2� 4 � x) if x 2 [0:25; 0:5[(4 � x� 2) if x 2 [0:5; 0:75[(4� 4 � x) if x 2 [0:75; 1℄ (11)
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Fig. 1. Left: Funtion t. Right: average noise on f1 (on 25 runs).As t has two optima (at 14 and 34 ) of the same height, F1 will have 8 op-tima of the same height. In order to measure the ability of algorithms to loatemany optima, we will ount the number of individuals that fall in their viinity.Preisely, for eah optimum (oi;i2f0;:::;7g), we ount the number of individualsthat verify d1(oi; x) < 0:1, obtaining the list of optimum neighbouring ounts(noi;i2f0;:::;7g). If we now sort them in dereasing order, it beomes possible toompute averages over di�erent runs.Finally, as its lear that F1 is regular (h = 1) we set �1 = 0:05.



6.2 Results on F1Figure 1(right) shows the average noise of �tness evaluations. For the GA without�tness weighted averaging, the quantity plotted is simplyPx2population jf1(x)�F1(x)j, and for the other algorithms Px2population jg ��(x) � F1(x)j. We remindthat in the ase of the IEA, the term population denotes only the grouping of thelast new individuals for omparison purpose. We learly see that, in absene ofweighted averaging the noise inreases as the average �tness inreases beause ofthe multipliative nature of noise. When using the weighted averaging proedurenoise dereases signi�antly.Figures 2 to 4 show the performane in terms of Average Denoised Fit-ness (further alled ADF), orresponding to F1. The ability to loate optimais measured by the optimum neighbouring ounts (noi;i2f0;:::;7g)1 , for the threeon�gurations (arithmeti rossover, mating rossover and mutation alone).Note that in the ase of arithmeti rossover, the lassial GA with a lowrossover probability (p = 0:2) leads to the highest ADF sores, but onentraterather on a single optimum. The e�et of weighted averaging does not hangemuh the results. The IEA obtains lower performanes in terms of ADF, butobtains a better diversity of optima when used with sharing.In the ase of mating rossover, the GA and the GAW performs better whenp is set to 0.8. It must be outlined that the e�etive rossover ratio is lower,due to the mating restrition rule. But we see on the IEA runs that it providesgood results in terms of ADF and in the same time in terms of optima diversity(espeially when sharing is used).The appliation of mutation alone reveals to be quite eÆient at high rate(pm = 0:2) when using a GA, but less interesting for the IEA.In onlusion for this test funtion, we an see that a simple GA an eÆ-iently provide a good average �tness, but that the IEA + rossover with matingrestrition overs more eÆiently the di�erent optima.7 F2: An epistati version of F17.1 De�nitionConsider the following funtion:F2 : [0; 1℄3 : ! IR+(x0; x1; x3) ! t2(x0; x1) + t2(x1; x2) + t2(x2; x0) (12)with t2 being de�ned with the help of funtion t (see setion 6):t2(x; y) = � t(x) if (x � 0:5)� (y � 0:5) > 00:5� t(x) if (x � 0:5)� (y � 0:5) < 0 (13)1 As all graphs do not have exatly the same ordinate sale, we have drawn a line at(y = 10) for visual omparisons.



1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60 70 80 90 100

Generations

GA pc = 0.2, pm = 0.01
GAW pc = 0.2, pm = 0.01

IEA pc = 0.8, pm = 0.01
IEA+sharing pc = 0.5, pm = 0.01

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7

Optima

GA pc = 0.2, pm = 0.01
GAW pc = 0.2, pm = 0.01

IEA pc = 0.8, pm = 0.01
IEA+sharing pc = 0.5, pm = 0.01

Fig. 2. F1: Arithmeti rossover. Left: average denoised �tness values. Right: optimumneighbouring ounts.
1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60 70 80 90 100

Generations

GA pc = 0.8, pm = 0.01
GAW pc = 0.8, pm = 0.01

IEA pc = 0.5, pm = 0.1
IEA+sharing pc = 0.8, pm = 0.1

0.01

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7

Optima

GA pc = 0.8, pm = 0.01
GAW pc = 0.8, pm = 0.01

IEA pc = 0.5, pm = 0.1
IEA+sharing pc = 0.8, pm = 0.1

Fig. 3. F1: Mating rossover. Left: average denoised �tness values. Right: optimumneighbouring ounts.
1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60 70 80 90 100

Generations

GA, pm = 0.02
GAW, pm = 0.02

IEA, pm = 0.2
IEA+sharing, pm = 0.05

0.01

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7

Optima

GA, pm = 0.02
GAW, pm = 0.02

IEA, pm = 0.2
IEA+sharing, pm = 0.05

Fig. 4. F1: mutation alone. Left: average denoised �tness values. Right: optimum neigh-bouring ounts.



The noisy �tness is: f2 = F2 � (1 +N(0;0:5)) (14)As F2 is also a regular funtion (h = 1), we set �1 = 0:05.In omparison to F1, F2 also has 8 optima. The di�erene omes from theepistati form of t2. In fat there are two main optima at ( 14 ; 14 ; 14 ) and ( 34 ; 34 ; 34 )with a value of 3, and 6 seondary optima with a value of 2 with all other om-binations of 14 and 34 . It is lear that the two main optima are in some senseopposite and are separated by seondary misleading optima. The goal of thealgorithms will then be to explore at least one main optimum without being toomuh puzzled by seondary optima, and eventually over both main optima. Theoptimum neighbouring ounts are therefore slightly modi�ed the following way:(noi;i2f0;1g) represents neighbouring ounts of the main optima (also sorted inorder to ompute an average over runs) and (noi;i2f2;::;7g) will be neighbouringounts of the seondary optima.7.2 Results on F2.Figures 5 to 7 show one again that a simple GA is able to �nd a main optimumand exploit it but often fails to �nd the other one, and is rather puzzled byseondary optima. Weighted �tness brings a �rst improvement, but IEA seemsto performs better, again in ombination with mating rossover.8 Other tests.Other tests were performed, they are reported in [8℄:{ presribed regularity funtions (Weierstrass-Mandelbrot funtions).{ a moleular simulation appliation (see [7℄ for �rst results).9 Conlusion.We propose in this paper a new use of history in evolutionary omputation,adapted to omputationally heavy and noisy �tness funtions. An inreasedomplexity for the EA allows to redue the number of CPU-time onsuming�tness evaluations.Moreover we experimentally show that, when the funtion is suÆiently reg-ular in respet to a metri on the searh spae, it is possible to use similarityof individuals to redue noise suessfully without additional �tness evaluations.We propose a new algorithm using the whole history of evolution to generatenew o�spring. Experiments with a limited number of �tness evaluations on real-oded test funtions show that, if GA an overome the e�et of noise in �ndinggood regions, our immortal evolutionary algorithm (IEA) maintains a betterdiversity. Of ourse, we annot draw �rm onlusions on the basis of two test-funtions, but these experiments show in whih way we an tune the balane
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