
Introducing Lateral Thinking in
Search Engines

Yann LANDRIN-SCHWEITZER1, Pierre COLLET, Evelyne LUTTON

COMPLEX Team - INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France
Yann.Landrin-schweitzer@inria.fr, Evelyne.Lutton@inria.fr

Tel : +33 (0)1 39 63 55 23 — Fax : +33 (0)1 39 63 59 95
http://www-rocq.inria.fr/fractales

Laboratoire d’Informatique du Littoral, ULCO BP719, 62100 Calais cedex, France
Pierre.Collet@univ-littoral.fr

Tel : +33 (0)3 21 46 57 53 — Fax : +33 (0)3 21 46 57 51
http://lil.univ-littoral.fr

Abstract. Too much information kills information. This common statement ap-
plies to huge databases, where state of the art search engines may retrieve hun-
dreds of very similar documents for a precise query.
In fact, this is becoming so problematic that Novartis Pharma, one of the leaders
of the pharmaceutical industry, has come up with the somewhat odd request to
decrease the precision of their search engine, in order to keep some diversity in
the retrieved documents.
Rather than decreasing precision by introducing random noise, this paper de-
scribes ELISE, an Evolutionary Learning Interactive Search Engine that interac-
tively evolves rewriting modules and rules (some kind of elaborated user profile)
along a Parisian Approach[12].
Additional documents are therefore retrieved that are related both to the domains
of interest of the user and to the original query, with results that suggest of lateral
thinking capabilities.

1 Introduction

The ever-growing size of document collections available over the internet or within
intranets of large companies makes any complete human indexation impossible. Re-
trieving information from such a mass of documents can almost exclusively be done by
automated search systems.

These systems need to browse over a “document landscape” in order to find relevant
information. As such, they need to be provided with a goal (what must be found) and a
basic topology of the search space (how to go get it).

The analysis of the goal definition (the query) must be accurate and precise in order
to produce usable results. To simplify interpretation, query formulation often suppresses

1 This research is partly funded by Novartis-Pharma (IK@N/KE)



grammatical structure, replacing it with boolean boolean operators: “this notion AND
NOT that one”. This improves accuracy, at the cost of limited expressivity.

Unfortunately, due to user and language specificities, interpretation is not unam-
biguous. The same words can be associated with distinct meanings in some jargons2.

However, state of the art search engines make wonders and manage to find doc-
uments matching the request with impressive precision. Unfortunately, information in
documents sets has a generally high level of redundancy, meaning that many similar
papers are retrieved.

ELISE tries to circumvent this problem, by evolving information treatment strate-
gies specific to a sub-task of the search, on a per-user basis. These strategies are the
result of an on-line evolutionary process, using input from the user to design query-
rewriting routines adapted to a topic or a document subset.

This paper presents the specifications of the problem that motivated this research
(section 3), the factors constraining its solutions (section 4), the explored solutions (sec-
tion 5) and the description of their technical implementation (section 7). An analysis of
the results obtained on a public domain benchmark (the CFD test set) gives the basis of
a reflexion on the form several important aspects of GP take in this experiment (section
8). This leads to a conclusion on the unusual and new aspects of this application, paving
the way to future developments (section 9).

Users

Classification
& Retrieval

Doc. Database

Expansion

Thesaurus

interface
machine
Human

Fig. 1. Functional interaction in modern search systems: query expansion is based on a thesaurus.

2 In this context, jargon means a semantic subset shared by a group of users. Note that some
words may only exist in specific jargons, conveying distinct meanings, and not in any “main-
stream” language.



2 Conventional search systems

Boolean search engines simply retrieve texts that correspond exactly to the query. Look-
ing for “text AND mining” will exclusively retrieve documents that contain both words.
Such a query may therefore come up with texts on ore mining as well as texts on data
mining, providing that the word “text” appears in the document.

However, texts related to “text mining” that do not contain both words will not be
selected, even though the user might find interest in them. In order to minimise the ad-
verse effects of this way of exploiting queries, it is possible to perform what is called
a query expansion: instead of using all words of the query at their “face value,” ad-
vanced search engines replace them by a list of candidate synonyms, in order to collect
all the possible senses of each word and broaden the search. Synonyms are obtained
from a thesaurus [17]: a human-compiled dictionary of synonyms. The next step is a
very classical document retrieval process, using word indexes or database requests, fol-
lowed by the ordering and display of retrieved documents. This results in a three-stages
architecture, on the model of figure 1.

This method generally improves results over the direct processing of a user-formulated
boolean query, even though it does not even attempt to associate some sense to a set of
words.

With such a strategy, it is very probable that all concerned documents will be found,
but at the cost of “diluting” relevant references in hundreds of pieces of irrelevant infor-
mation. In technical terms, the recall rate is high, at the expense of precision, as shown
in figure 2.

Matching
Returned

Matching
Target

�������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������

�������� ������������������������������

����������������������������������������������������

Target document set

Returned document set

Matching documents

Precision

Recall

=

=

Fig. 2. Recall rate and Precision : if the desired set of returned documents, i.e. the target, is known,
the recall rate is the proportion of returned documents that match the target with respect to the
total size of the target. The precision is the proportion of relevant documents in the document set
returned by the system.

Selecting a particular sense for each word of the query would return more specific
documents. This can be done for instance by selecting a particular set of synonyms to
be used for this word. However, there is no automatic way of doing this. Some attempts



at interactive query refining, using this method (see [55]), have proved their efficiency,
but remain of rather tedious use.

2.1 Architecture and capabilities of modern search engines

Most modern search engines feature advanced capabilities in semantic expansion. This
is a highly desirable feature in any search engine, and one that is well mastered by the
users. But, to be of any use, it requires adapted thesauri, produced over several years by
teams of experts and needing constant updates.

These search engines often double as document database systems, capable of unify-
ing different databases, building and updating extensive document indexes quickly and
efficiently, and tracking document sources for updates. These characteristics are well
accepted and supported by the administrators of knowledge management solutions.

Most of them, through the use of heuristic mecanisms honed down to macth the
specificities of the document sets, reach wery high levels of measurable performance.
Mainstream systems will reach a precision of 90%, though recall rates are much more
variable, depending on the data: between 20% and 80%, the later on well-categorized
and formatted document collections. Tailored search system will top these performances
on a restricted set of documents, as seen in some of the TREC evaluations ([52] for in-
stance), while testing for robust retrieval sees this rates plumetting, with around 80%
recall rate and 10% precision, as seen in [53].

Overall, high retrieval capabilities are an integral part of modern text-retrieval sys-
tems, but do not endow state of the art search engines with imagination and adaptability.

Indeed, implementing and evaluating techniques that target document “value” for
the user is, at best, tricky. Documents that satisfies most of the systematic relevancy
criterions used in mainstream search engines, by being strongly correlated with search
terms, will also most probably contain little new information. Conversely, documents
that present radically new concept associations will not be identified as relevant, since
no convergence will be detected in their semantic components. Those search systems
are thus very good at presenting the user with what he/she already knows.

3 Aim of this research

Rather than asking the user to provide a precise sense definition for all words, the prin-
ciple behind ELISE is to develop some kind of user profiling to specialise the engine
for each user. This lets the system expand the set of retrieved documents to texts that
are of interest to each particular user. Moreover, this makes available filtering criteria
that can not be defined by a textual formulation, such as document structure, source or
density. Some of these criteria were previously made available by search engine through
specialized operators, making for more complex query syntaxes.

ELISE aims at providing these refinements over a simple boolean text query in an
effortless and adaptative way, by analysing users’ behaviour along the whole query
process.

This research, albeit exploratory, takes place in an industrial context, where techni-
cal imperatives (practicality and efficiency on a large scale, as well as distributed access
and the need for server-side processing) need to be kept in mind:



Description of the databases The described search system is intended to operate on
a set of medical databases that contains several millions of documents for a volume of
several tera-bytes [55].

Different domains are covered, meaning that the search engine cannot afford to be
too specialised.

Typical user Users are typically scientific engineers, researchers or practitioners in
many different specialised fields such as chemistry, biology, genetics, etc, and managers
or financial advisors deciding policies in these areas.

Testing and evaluation This algorithm is not designed to replace, but to be grafted
onto state of the art conventional search engines, meaning that in terms of recall rates,
the presented system will be at least as good as the best available search engines.

The original goal of this research is therefore not to increase recall rate or precision,
but to provide user-dependent text-retrieval capabilities that would promote “creativity,”
in the sense that the enhanced system should be capable of retrieving documents that
may only be remotely related to the query, but that are yet of interest to the particular
user that produced the query.

Such documents may or may not be retrieved by classical engines, as they do not
really correspond to the specifications of conventional search engines.

The goal of this research is therefore somehow orthogonal to what usual engines
have been trying to do up to now (maximising recall rates and precision). It therefore
makes sense to consider the presented system as an addition to conventional search
engines, as the added information provided by the system is not of the same type as the
information provided by those engines.

Such a goal amounts to trying to maximise user satisfaction upon usage of the “en-
hanced” search engine. This quantity is obviously user-dependent, and no benchmark
can exist to rate it. ELISE can only fulfill its goal if it is versatile enough to be able to
maximise nearly any requirements of the user.

Unfortunately, standard text-mining benchmarks, such as the CFD [7] or the TREC
[51] are only capable of telling which documents among the database contained in the
benchmark should be retrieved by a specific query, therefore only allowing to compute
the recall rate and precision of the query result.

Automatic tests performed with these benchmarks can therefore only provide infor-
mation about the capacity of ELISE to adapt to its context, mesured by its recall rate,
compared to a purely boolean search engine, as detailed in section 8.

4 Designing an adaptive user-dependent query processing system

Such a system must integrate with document database systems, interact with users over
a client-server model, make use of remote, asynchronous resources (databases, the-
sauri), . . . All of these constraints tend to promote a modular, data-flow-oriented archi-
tecture. According to this, the algorithm will be described in terms of information flow
and processing steps.



4.1 Tailoring search engines to users specificities

The first element of information being available in a transaction (i.e. all the steps from
a user’s query until the reply) is the query itself, that can therefore be considered as the
starting point of the processing chain.

A simple idea to achieve user-dependent processing while retaining capabilities of
underlying search engines, consists simply in transforming the original query into an-
other, maybe more complex, and pass directly this processed query to the search engine.

However, producing user-tailored transformations, without any prior information is
impossible. A user profile must be elaborated from the user’s behaviour. This implies
being able to observe the reactions of the user to the results that are presented to him
after a query.

Such intelligence could be gathered by asking the user to rate the pertinence of re-
trieved documents on a predetermined scale. A more elegant solution consists in spying
the behaviour of the user: the main purpose of this algorithm being to retrieve docu-
ments, determining which ones are actually viewed by the user can be considered as a
reasonably reliable indication of the user’s interest in those proposed. A rating of the
pertinence of the proposed documents can therefore be determined transparently, just
by keeping track of which documents were selected by the user.

This leads to a 3 steps information processing loop:

1. Using a user-profile to process an incoming query.
2. Performing a search in the document database with the new query and presenting

the result list to the user.
3. Integrating documents consultations from this list to update the user profile.

In practice, the second step is handled by the underlying search engine (boolean
search engine for tests, state of the art search engine for the real-world system).

4.2 Methods to build user profiles

The simple method proposed above can be extended by replacing the query expansion
phase of classical search engines by a query processing phase, with processing rules
learnt from user input.

The resulting structure is essentially close to that of conventional search systems,
therefore allowing to reuse most of the existing software tools and database formats. In
addition, deciding which sense to give to a particular word in the query can be done on
a per-user basis, provided that the system keeps track of the idendity of the user. This
leads to figure 3.

5 Evolving processing rules with Interactive Parisian EAs

Methods allowing a system to learn how to process a given query into another one, with-
out any kind of a-priori information, are very few. Evolutionary Algorithms (among
which Genetic Programming) are good candidates, as they only need a fitness function
that can simply be provided by user satisfaction.



Classification
& Retrieval

User

Learning Machine

Doc. Database

Semantic
tools

Thesaurus

interface
machine
Human

Fig. 3. Functional interaction in a learning search system: the machine learning stage performs
an adaptation of the system to a specific user.

An Evolutionary Algorithm can be used to evolve a profile, made of a set of transfor-
mation rules. These would be used to process queries, extracting requests to be passed
to a classical search engine from the original user query.

More precisely, the proposed solution is based on an “Interactive Parisian Evolu-
tionary algorithm” paradigm [12], which would acts as a user-specific adaptive learning
component on top of a classical query processing system.

5.1 Evolutionary Algorithms for document retrieval

Information retrieval, document retrieval, web-mining and information filtering are closely
related research fields. In these fields, EAs have been considered as attractive optimisa-
tion tools: GP have been used for information filtering [64], and EAs have been used in
several ways [28, 37]:

– Search and retrieval, [28] for web-document retrieval (to learn the weights of HTML
tags).

– Query optimisation, queries modification [62],
– Document representation, document indexing [22, 58, 57], ranking [28], tuning of

the weights of retrieved keywords [24], dependence modelling.
– Classification, on which a lot of research has been conducted, [6] and feature se-

lection for document classification [54, 63] (to find optimal feature subsets).

EAs are preferably used off-line, due to their generally high computational cost.
They are mainly used as tools for data pre- or post-processing [19, 20]. Only few ap-



proaches are based on interactive implementations, like [15] which examines the nature
of interactive querying and retrieval and uses an EA in Query-by-Browsing.

Personalising On-Line Information Retrieval systems or interfaces has been also
considered as an important feature. For example [59] considers the problem of extract-
ing pertinent informations: users have difficulties in specifying their interest, which
therefore changes in the course of time, leading to subjective ratings representing their
state of mind. The solution proposed is based on an EA with a monitoring module, that
records all activities of the user. The behaviour of the user is modelled by way of a
classifier system so that future actions can be predicted on the basis of past experience.

ELISE uses a more “pragmatic” approach, using the cost-efficient Parisian Ap-
proach [2] and interactive EAs to specialise existing search engines with evolved user
profiles. With one generation per query, time spent in the evolutionary algorithm is not
apparent for the human user. High efficiency is obtained through the Parisian paradigm,
where the whole population, made of short processing rules, is the solution, i.e the user
profile.

5.2 The Parisian EA paradigm

Interactive Evolution is now an attractive research topic, with many applications in var-
ious domains (an overview of this vast topic can be found in [47]). Actually, interaction
with humans raise several problems, mainly linked to the “user bottleneck” [39], i.e.
the human fatigue. Solutions have to be found in order to avoid systematic and boring
interactions [39, 47, 1], for example by reducing the size of the population and the num-
ber of generations, by choosing specific models to constrain the research in a-priori
“interesting” areas of the search space, or performing automatic learning (based on a
limited number of characteristic quantities) in order to assist the user and only present
to him the most interesting individuals of the population, with respect to previous votes
of the user.

The Parisian approach is another way to tackle this “user bottleneck” as it has been
designed to reduce computational costs while maintaining exploration capabilities and
genetic diversity. This approach has been designed relatively recently [12] and is actu-
ally a generalisation of the Michigan classifier systems approaches [21]. It is based on
the capability of an EA not only to push its best individual towards the global optimum,
but also to drive its whole population in attractive areas of the search space. The idea
is then to design a fitness landscape where the solution to the problem is given by the
whole population or at least by a set of individuals and not anymore by a single individ-
ual. Individuals do not encode a complete solution but a part of a solution, the solution
to the problem being then built from several “collaborating” individuals.

A Parisian population is a “society” which builds in common the solution that is
searched for. Of course, design of such algorithms becomes more complex than for a
direct conventional EA approach and the diversity of the population becomes a crucial
factor. Moreover, splitting the problem into interconnected subproblems is not always
possible.

However, when it is possible to do so, the benefit is great: a Parisian approach limits
the computational waste that occurs in classical EA implementations, when at the end
of the evolution, the whole final population is dumped except the best individual only.



Experiences and theoretical developments have proved that the EA gains more infor-
mation about its environment than the only knowkledge of the position of the global
optimum. The Parisian approach tries to use this important feature of EAs.

A Parisian EA may have all the usual components of an EA, plus the following
additional ones:

– two fitness functions : a “global” one that is calculated on the whole population or
on a major portion of it (after a clusterisation process or elimination of the very bad
individuals, for example) and a “local” one for each individual, that measures how
much this individual contributes to the global solution.

– a distribution process at each generation that shares the global fitness (which rep-
resents the output of the system or the so-called interaction with the environment)
on the individuals that contributed to the solution (that is a part or even the whole
“local” fitness function),

– a diversity control scheme, in order to avoid trivial solutions where all individuals
are concentrated on the same area of the search space.

Developing a Parisian EA for interactive search tools is based on the fact that search
cannot be reduced only to an optimisation process: often users do not have precisely in
mind what they search for. The aim may fluctuate, users sometimes gradually build their
queries from an exploration. Innovation (diversity) is important, “user satisfaction” is
a very peculiar quantity, very difficult to measure and moreover to embed in a fitness
function.

6 Sense extraction: different tools for distinct contexts

Semantic analysis is essentially a tool to take educated decisions on sense choices.
Therefore, the way semantic tools are used in this algorithm depends primarily on the
type and amount of information that can be extracted from the context.

From now on, the term sense will refer to the consensual signification of a word and
meaning to the signification intended by the user. A set of synonyms can be associated to
each sense (from now on abbreviated as synset) that can be used equivalently to convey
the sense in a text. Obviously, a synset can contain several words and conversely a word
can bear several senses.

Moreover, a single word can point to several lexical forms, as for instance leaves,
that can either be the plural of leaf (n.), or the 3rd person of leave (vb.).

To simplify things, lexical forms will be considered as bearing senses. Dedicated
dictionaries of synonyms (thesauri) can provide, for each lexical form, a list of related
synsets.

6.1 On the use of fuzzy thesauri in query processing

A query is meant to convey, in a very small number of words (typically 2 to 10), the
description of a search topic. This puts the emphasis on individual senses and their re-
lations. A thorough analysis of queries is therefore needed, implying a detailed sense



extraction (so that statistically rare senses are not overlooked) to pick out the interpre-
tation most compatible with the search history.

The second step in query analysis would be to determine the relations between
query terms and to group them accordingly into topics. A local analysis of the query is
needed to obtain such information: the limited size of human short term memory makes
it unlikely to find a long distance between connected terms.

A basic approach to merge these two steps is to use synset correlation between close
terms. This very simple method works surprisingly well on classical queries. Generally,
a strong degree of redundancy appears, even on plain text. For instance, tests realized
with the WordNet [60, 61] English Language Thesarus and simple English text, shows
a 15-20% redundancy between name and adjective synsets in the same sentence or in
neighbour ones.

“Fuzzy” thesauri, associating a weight to each word in a synset, can be built recur-
sively from classical thesauri, so as to provide a high level of connectivity. Moreover, the
weights —a measure of the specificity of a word to the sense designed by the synset—
actually improve the significance of the used correlations.

Different thesauri for different fields The use of specialised thesauri, often available
in technical and scientific domains, generally improves the search results when used
for related queries, since they are more precise and comprehensive on the field they are
specialised in.

Specific thesauri can be used at two levels: in rewriting rules, or directly in genetic
operators. A rewriting rule either uses the generic capabilities of a particular thesaurus
(that is, replacing all terms in a query by their synset according to this thesaurus) or
modifies a particular term in a way coded in this rule. Genetic operators modify the
query, mutating sub-rules or explicit terms, replacing one of these by another, from the
synset of the original term.

6.2 User interaction and information feedback

The fact that human users are variable and interested in different fields makes it difficult
for a rewriting algorithm to be robust, as a typical user will interleave queries on diverse
topics.

Fortunately, splitting the analysis task between multiple rules (as implied by the evo-
lutionary framework described below), does not require a particular scheme to handle
the full complexity of the decision process, but merely to be able to determine whether
it could apply on the current query or not.

In the proposed architecture, user feedback is the controlling stage. It decides of the
pace and direction of evolution, through fitness calculation. As such, fitness analysis
and handling is a crucial point for the system to be efficient.

7 ELISE: an Evolutionary Learning Interactive Search Engine

ELISE is based on an interactive EA, that evolves a “user profile” made of the whole
population of individuals (cf: Parisian approach). Interactions with the user are analysed
to improve the whole population (the profile) at each generation (see fig. 4).



The system has been designed to be transparent to the user. User queries are rewrit-
ten with the help of the user profile, then the database is searched with the set of rewrit-
ten queries and presented to the user as a list of documents, in the same way as any
usual search engine. Information about “user satisfaction” is collected as the number of
documents actually read by the user. This information is internally used by the EA as a
fitness function.

ELISE can be used as an improving mechanism on top of any kind of search engine.
The one used for experiments (see section 8) is SWISH++, [46], a basic public-domain
boolean search engine, without any semantic expansion nor stemming tool.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


































































































QUERY

VIEWS

Search

D
oc

 L
is

t

Fitness

R
at

in
gs

R
ul

es

Word Extraction

Rules
Generation

Doc. Database

Thesaurus

Fi
tn

es
s

P
ro

fil
e

Assembling
Template

Module
Template

Algorithm
Evolutionary

Fig. 4. ELISE: A new query of the user is rewritten using rules generated from the user profile
(evolved by the EA). The rules produce a set of queries that are presented to the data base and
return results. The interaction with the user (viewed documents) is used to rate the rules and to
update the fitness of the modules of the profile. A new generation is then produced by the EA.

7.1 Encoding a profile in an EA population: genome and structure

As EA performance strongly depends on the adequation between the genotype and the
optimisation task to be performed —or, when applicable, the topology of the search
space— the instruction set must be finely tailored to the context of query rewriting,



calling for specific semantic tools, designed for an in-depth analysis of a short sequence
of words.

The profile, i.e. the EA population, is used to modify the query of the user. Several
possibilities have been considered as basic population components (Parisian approach):

1. evolving user-specific semantic networks (or thesauri),
2. evolving queries themselves,
3. evolving rewriting rules,
4. evolving smaller components of rewriting rules.

The first two choices would have implied some amount of off-line processing (limiting
real time interaction).

Experiments with earlier versions of ELISE have shown that the third item was not
a good choice: finding the right modification to apply to the query is too difficult a task
without hundreds of trials. The tests showed that the search space was too large to be
correctly sampled, resulting in at best random and at worst empty result sets.

Methods naturally used by human users when results are not good enough are gen-
erally the same, whatever the subject of the query. Users replacing terms by synonyms,
excluding uninteresting terms that appear too often in the result list, etc. This means
that even if a query is not related to the previous one, the refining methods evolved by
the user still apply.

The current ELISE system therefore tries to do the same: evolve methods that will
turn an original query into a better one, by evolving modules that will for instance
expand the first word into its synonyms, then intersect the result with synonyms of the
second word. A population of such small rewriting modules is evolved with the aim
of maximising the number of modules that correspond to rewriting techniques the user
likes most.

These small modules are then assembled into more complex rewriting rules in order
to modify a complete query.

This structure is typical of a Parisian approach in the sense that the very difficult
original problem (rewriting a complete query) is decomposed into interconnected sub-
problems that are much easier to solve.

Evolving modules The way small modules are coded has a strong impact on the ef-
ficency of the whole system. They need to inter-operate and their structure must allow
them to be recombined and mutated so that they can be optimised efficiently.

Constraints can be described as follows:

– A boolean query is essentially a tree, where terminals are query terms, and nodes
boolean operators.

– There is no theoretical limit to the complexity of such trees (i.e. depth) and as
common web search-engine practice reveals, no meaningful empirical limit either.

This implies that it must be possible to process arbitrarily large sets of data, meaning
that modelisations equivalent to finite automata (like tree-based codings used in GP) are
not general enough.



Theoretically, RABIN automata (essentially, automata able to recognize infinite words
described by ω-rational expressions) should be enough, since the set of words recog-
nized by the underlying search engine is finite [31, 30, 32]. But the size of the alphabets
involved would make it impractical.

Additionally, the requirements of genetic operators (mutation / crossover) must be
satisfied, as they need to operate on these program representations. In ELISE, this es-
sentially means having a very lax coding structure, since it will be needed to cut and
merge program sections or change elements and still obtain valid codings.

Finally, a RPL (Reverse Polish Lisp) structure —a particular case of stack-based
languages— satisfies the constraint. It offers both the processing capabilities and a lax
enough structure to suit the need of ELISE. It is also close enough to classical tree
representations to make it possible to reuse an important part of the theoretical and
practical tools developed throughout the history of genetic programming.

7.2 OKit: A toolbox working on RPL structures

As the generality and description capacity of program codings is a common problem
in GP, a generic set of tools called OKit was developed to handle RPL structures, in-
dependently of the text-retrieval context [36]. In this representation, programs are lists,
containing either terminals or sub-lists. Two types of terminals are available:

1. Instructions, that take arguments and put back results on a stack.
2. Character strings, that are simply pushed onto the stack when the program is run.

In this representation, there is no difference between data (e.g. queries to be trans-
formed) and program parts.

The drawback of a lax syntax is that, depending on the set of instructions, some
programs can not be guaranteed to run. However, evolutionary optimization has a wide
range of tools to deal with invalid individuals and allowing for such transgressions in
many cases actually benefits to the efficiency of optimisation algorithms.

Instruction set If the representation is general enough to be usable in most genetic pro-
gramming cases, the necessary adaptation to the specificities of the problem lies mainly
in the creation of an appropriate set of instructions. While the basic stack operations
need to remain present in most applications (duplication or deletion of an element, list
operations...), a set of instructions able to operate on the particular data that is dealt
with is needed. In ELISE, this mainly consists in semantic operations (sense or con-
cept lookups in a semantic network, returning sets of terms) and tree operations (since
queries have a tree structure).

Semantic instructions actually reflect the diverse flavours of term expansion that can
be based on a semantic network.
Tree operations consist of:

– conditionals, based on a particular value of the root node,
– splitting instructions, that can break a tree into subtrees,
– merging instructions, that join two subtrees into a single one with a given root node

value.



Moreover, it is possible to take advantage of the similar structure shared by data and
program code in this representation, by introducing mapping instructions, that will ap-
ply a list (i.e. program) on every node or every terminal, of a query. As this type of
instruction enlarges considerably the description space of the coding, which is also the
search space of the ELISE learning machine, mapping instructions should be used with
care.

7.3 Modules initialisation

Initialisation templates are used to create a minimal proportion of reasonable modules
(30%), the rest of the initial population being made of randomly generated modules.

Then, of course, artificial evolution takes over and the modules of the best rules are
rewarded through the fitness function.

7.4 Variation operators on modules

To produce a new module from two parents modules, mutations are performed on both
parents, after which a crossover is performed between them. A “migration” operator
(that tries to repair a possibly unfeasible module) is then applied to the result of the
crossover.

As explained earlier, a module is a program part. Even with the lax syntax that is
adopted, some of the modules fail to run. While keeping unfeasible individuals may
be seen as a reservoir of unexpressed genes, the occurrence of such individuals should
remain low.

Consequently, genetic operators must be designed so as to produce valid structures
most of the time. This means essentially taking into account instructions arity and input
types when doing mutations or crossover, as well as “repairing” discrepancies when
needed, by introducing extra arguments or ignoring others, as required to keep valid
signatures of input and output mutated or recombined instructions.

Therefore, three types of mutation operators are used, with distinct probabilities:

Local, intra-class mutation that replaces:
– a character string by another term connected to it in the semantic network that

is used,
– or an instruction by another with the same prototype (i.e. the same arity and

type signature).
Local, inter-class mutation that:

– changes an instruction into another, with a different prototype, repairing the
resulting module as above,

– or turns an terminal into another terminal of a different type altogether (i.e.
changing an instruction into a character string).

Global (structural) mutation that changes
– the structure itself of the module, by replacing an terminal by a list,
– or the opposite.

Following the same idea, two types of crossover are used:



A local version will not descend into sublists leaving them unchanged,
A global version will also apply a crossover in sublists when possible.

These crossovers rely on the same mechanisms as those used for bit strings (re-
member that modules are lists, too): cut points are positioned randomly along the two
parents lists and list sections are exchanged in alternance. One of the modified lists is
then taken as result of the crossover.

In order to keep a low proportion of invalid individuals, a migration operator is
added to the usual mutation and crossover operators, that actually repairs the most ob-
vious incompatibilities in the module, thus bringing it closer to the set of feasible in-
dividuals. This is generally enough to ensure that the individual will be usable in most
cases.

7.5 Examples

Example of modules :

[ «VOCGEN» "metabolic disorder" «VOCSYN» «#AND» ]
[ [ «SPLIT» "acetic acid" «VOCGEN» «#AND» «#OR» ] «IFOR» ]

Initially, the original user query is placed on top of the stack. In Reverse Polish
Notation, the first module gets interpreted as follows :

– VOCGEN: generalises all the terms of the query.
– “metabolic disorder”: Pushes the term “metabolic disorder” on top of the

stack.
– VOCSYN: finds synonyms for what is on top of the stack, i.e. “metabolic disorder.”
– #AND: restricts the generalisation of the terms of the query to those that also are

synonyms of “metabolic disorder”, meaning that only documents containing syn-
onyms of “metabolic disorder” will be retrieved.

As for the second one:

– [ : grouping operator meaning we are entering a subroutine.
– SPLIT: cuts the original query in two parts, separating the two operands of the

higher boolean operator. The stack now contains two subqueries that were the
operands of the top operator that has been removed.

– “acetic acid”: Pushes the term “acetic acid” on the stack.
– VOCGEN: Generalises the item on top of the stack (i.e. “acetic acid” in this case).
– #AND: Restricts the scope of the second operand of the operator removed by the
SPLIT to documents containing generalisations of “acetic acid.”

– #OR: Group the new modified second operand with the orginal first operand using
an OR.

– ] : Closes the subroutine, that will now appear on top of the stack.
– IFOR : Applies the above subroutine to the query, if and only if its top operator is

an OR.



Examples of mutations A mutation of the first module is for instance:

[ «VOCGEN» "paramyxoviridae infections" «VOCSYN» «#AND» ]

This particular result was obtained with a semantic operation on the “metabolic disor-
der” terminal.

Another mutation, on the second module, has given:

[ [ «SPLIT» "acetic acid" «VOCGEN» «#OR» ] «IFAND» ]

This is a result of replacing instructions inside their class, as well as removing the AND
operator.

In this case, the scope restriction introduced by the AND operator has been replaced
by a scope generalisation, meaning that documents containing “acetic acid” or any of
its generalizations will also be retrieved.

Then, the two operands that have been split are not grouped any more, since an
operator has disappeared. When the group is exited with the ], two subqueries are on
the stack: the second operand that has been modified, and the unmodified first operand
of the original query.

Finally, this new mutated module will now operate only on queries featuring an AND
as top operator.

Example of a crossover A crossover between both mutated modules could read:

[ [ «SPLIT» "acetic acid" «VOCGEN» «#OR» ] «IFAND» «VOCSYN» «#AND» ]

The result is a module that will perform all the operations described above, to which
synonyms of all the terms of the second operand are added before it is grouped with the
unchanged first operand with an AND operator.

7.6 Assembling modules into rewriting rules for profile evaluation

The initialisation step is important in order to provide reasonable answers, even with an
initial non-evolved user profile.

Therefore, the more complex rules built from the modules presented above use a
set of templates that perform various plausible combinations of two or three modules
via the set of boolean operators available in the underlying search engine (for example
“AND,” “OR,” “NO” and maybe “NEAR” or “LIKE”, as well as “VOCSYN”, “VOC-
GEN” and others).

Modules are chosen with a stochastic selector (tournament) in order to favour the
expression of good modules in the derived rules.

Example:

[ @ @ «#AND» ]
[ @ «VOCSYN» ]
@ stands for a selected module. The first template groups two modules together
with the “AND” operator, while the second one creates a synonym expansion
of a module.



In the results presented below, 50 rules are created, that retrieve 50 different sets of
documents. The untouched original query is also added to these rules so as to be sure
that the system is really an addition to the basic search engine.

The problem is now to efficiently use the meager pieces of information collected
from the interaction with the user. The situation is typically that of a low feedback, the
only information available being which and how many documents have been viewed
by the user. In the Parisian Approach paradigm, there are two fitness functions: a
global one, corresponding to the global evaluation (number of viewed documents, for
instance), and a local fitness function (fitness of each module).

The current proposed solution is to associate two counters (Cretrieved and Ccount)
to each module of the population. The results presented below use the CFD bench-
mark (see section 8 below), which allows to determine the precision and recall rate for
each query. These quantities are translated into a bonus that is worth Recall_rate +α∗
Precision.

As the algorithm keeps track of which module is used in which rule that retrieved
which document the calculated bonus is added to the Cretrieved counter of the modules
that participated in the production of interesting documents, while their corresponding
Ccount counter is incremented by 1 whenever they have been used to construct a rule.

The fitness of each module is therefore the Cretrieved/Ccount ratio, measuring the
mean efficiency of the module when it is used.

7.7 Engine parameters

As is often the case in the Parisian Approach paradigm, elitism is quite massively used,
in the sense that a significant part of the population (the 70% top ranked modules) is
transmitted unchanged to the next generation. These 70% best modules represent the
core of the user profile that must not change quickly.

Mutation and crossover rates used for the generation of the 30% remaining modules
are respectively set at 30% (per gene) and 80% (per individual). The typical module
population size is 50.

8 Tests and Results

Tests presented in this section have been performed automatically on the Cystic Fi-
brosis Database (CFD)[7], using a basic boolean search engine (SWISH++ [46]). The
semantic operators are based on a medical oriented thesaurus: MeSH [33].

Automatically testing such an interactive system is of course extremely difficult
(especially with respect to the “user satisfaction” quantity). However, an automatic test
remains interesting in the sense that it allows to gather statistics rather easily. The CFD
benchmark consists of 1239 documents published from 1974 to 1979 discussing a spe-
cific topic (cystic fibrosis aspects). A set of 100 queries exists, that come along with the
relevant documents that should be retrieved by each query.

Therefore, the global recall rate and precision of the system can be precisely mea-
sured by comparing the returned document set to the documents that should have been
retrieved.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Recall SE reference
Recall ELISE global
Recall ELISE /zeros

Fig. 5. Cumulated mean recall rates of the underlying boolean search engine (dashes), of ELISE
(solid line), and of ELISE for queries for which the underlying search engine returns no answer
(dots).

8.1 Search performance

Figure 5 presents three curves: The bottom one is the cumulated mean recall rate of the
basic search engine (SWISH++) on the original query, showing that in average, searches
made on the words of the query only retrieve 10% of the documents that should have
been found.

The top curve is the cumulated mean recall rate of ELISE. After some hesitations
corresponding to the initial learning stage, ELISE is capable, after 18 queries only, of
finding around 40% of the interesting documents. This percentage keeps rising up to
45% at the end of the test of 140 queries, (i.e. 140 generations of the Parisian EA).

The most interesting curve is however the middle one, that shows the recall rate of
ELISE on the queries on which SWISH++ retrieved no relevant document.

This curve somehow represents the added value of the ELISE system over a boolean
search engine. The relevant documents that have been found were retrieved only thanks
to the modules and rewriting rules of the ELISE system.

The fact that this curve is rising shows that positive evolution takes place in the
modules. If the modules had evolved randomly without learning a user profile (inter-
ested in CFD, in this case), the curve would have looked flat, like the bottom curve of
the SWISH++ boolean search engine.

Figure 6 presents the same set of cumulated mean curves showing precision.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Precis SE reference
Precis ELISE global
Precis ELISE /zeros

Fig. 6. Cumulated mean precision of the underlying Boolean Search Engine (dashes), of ELISE
(solid line), and of ELISE for queries for which the BSE returns no answer (dots).

The top curve is now that of the boolean search engine. On the contrary of recall rate
(that was very poor as the BSE only retrieves documents that contain all words of the
query) precision is quite high as it is unlikely that documents that are totally unrelated
to the query will contain all the words of the query.

The middle curve is that of ELISE, which provides a much lower precision than
the basic seach engine. This behaviour was expected, since queries have been rewritten
specifically in order to decrease precision in favour of diversity in the retrieved docu-
ments.

The bottom curve now corresponds to the precision of the ELISE system for queries
on which the boolean search engine returned no answer (i.e. on which the query was so
badly formulated that no interesting document contained all words of the query). The
fact that this curve is lower than that for which the query is better formulated shows
that ELISE does not return documents at random based solely on its evolved modules.
Better formulating a query does indeed give a better precision, even with the complex
ELISE rewriting system.

Figure 7 shows the evolution of the best and mean fitness of the modules. Inter-
estingly enough, the mean fitness does not increase until generation 40. Some of the
best modules of the final population (after 140 generations) are detailed and explained
below.

[ «_DATA_» "artery, ciliary" «#OR» ]



0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

Average fitness
Best fitness

Fig. 7. Evolution of the fitness of the modules : best individual (dashes) and mean fitness for the
whole population(solid line).

Returns documents obtained from the original query, plus documents about
“ciliary arteries.” This is a generalisation (extension of the scope) of the origi-
nal query.

[ «#NOT» "ananase" «SPLIT» ]

Performs a search for documents about “ananase,” while ignoring the original
query (!)

[ «_DATA_» "arteries, ciliary" «#AND» ]

Among documents obtained from the original query, this module returns only
those about “ciliary arteries.” This is a restriction of the original query.

[ «_DATA_» "artery, ciliary" «VOCGEN» ]

Performs a search for documents having to do with “ciliary arteries” or gen-
eralisations of this concept, in the set of documents returned by the original
query.

[ «_DATA_» "dayto anase" «#OR» ]



Performs a search for documents about “dayto anase,” and appends them to
those returned by the original query.

[ «SPLIT» "bromelain" «#VOID» ]

Uses the implicit operator of boolean search engines (that is, generally a loose
“and”) to restrict the scope of the right part of the original query (i.e. at the
right of the root boolean operator).

Evolved terms used in these modules seem to be in connexion to the CFD topic,
while not being mentioned in the 140 queries that were submitted to ELISE.

The evolved modules, along with the submitted queries, have been shown to Thierry
Prost, medical practicioner. His analysis is the following:

The terms present in the modules of the ELISE system after 140 generations
contain in particular a whole set of enzymes (ananase, dayto anase, trau-
manase, bromelains, etc) used in various pathologies as anti-inflammatory
agents. This set draws the attention to:
1. the use of enzymes in the cystic fibrosis-like pancreatic substitute, to com-

pensate for the malabsorption due to the attack of this organ by the disease,
2. and to the therapeutic role played in the fluxing of bronchial secretions

—even if in this case, they are of other enzymatic kinds.
The absence of recent work indexed in Medline on these particular enzymes
(no relevant references found after 1997) is probably due to the old age of the
base having been used for the tests.
If the relationship with the term “ciliary arteries” and its derivatives is less
obvious and straightforward (hypothesis: ocular arterial disease is frequent in
diabetes, itself frequent in cystic fibrosis) this type of approach has the merit to
give hints and tracks of reflexion to the practitioner or researcher and to draw
attention to ignored aspects of the studied pathology.
Because of the sheer mass of indexed data, this step is indeed quite original and
very much complementary to the traditional output of search engines which aim
more at drawing up inventories of fixtures of current knowledge or recent work,
rather than to open new fields of research.

This analysis seems to show that the ELISE system hosts unexpected keywords in
its modules, that might potentially provide lateral thinking capabilities to conventional
search engines.

8.2 Evolutionary behaviour

Using the Parisian evolutionary paradigm allows ELISE to be efficient with a very sim-
ple architecture. Emphasis has been made on tailoring genetic operators for the dedi-
cated task of evolving programs. In particular, shielding emergent structures from dis-
ruptive evolutionary effects, exploring variations around performant modules have been
prevalent in the conception of these operators.

However, the genetic engine itself has been kept very simple, and does not make use
of the numerous schemes elaborated to counter some drawbacks of genetic program-
ming. Analysing the evolutionary behaviour of ELISE during the experiments on the
CFD (cf. below) show that most of these do not appear in this context.



Diversity The notion of distance between individuals is very difficult to implement,
particularly so in interactive evolution. The design of the ELISE prototype has therefore
let aside any consideration of diversity management, that can be implemented using
techniques such as niching or sharing.

In most EA applications, evolution will tend to duplicate (with insignificant vari-
ations) the best individuals to fill the population. When mutation remains a “local”
operator (i.e. mutated offspring remain close from their ascendants) this can slow down
considerably, or even freeze, the evolution.

This effect can be limited easily in the Parisian paradigm. The local fitness can be
easily tailored to include a proximity penality.

If this proximity information originates in a genotypic comparison, it provides an
easy implementation of sharing techniques in the Parisian context. However, a pheno-
typic comparison can also be used. In ELISE, this would lead to comparing returned
document sets at each query, and integrating the distance between these sets for each
module into its fitness.

Comparing the semantic content of modules and queries in the CFD set shows that
modules are specialized to handle subsets of queries, related to particular topics. For
a given query, modules that are not specific will receive a very small reward at this
generation. As a consequence, it is likely that they will not be selected to create children,
even if there is a good chance they are kept in the next generation.

This can be seen practically by analysing the respective age of the best individuals,
and the length of their bloodlines. High fitness individual are generally young, and have
short bloodlines. High fitness is thus very temporary, but medium fitness individuals,
that remain longer in the populations, mecanically receive lower rewards. This ensures
they do not fill the population, allowing creative individuals to emerge.

This variability limits the need for diversity management techniques in the evolu-
tionary engine.

8.3 Code growth and redundancy

Bloat is often considered as a plague of variable-length genome approaches. An al-
ternate interpretation in GP presents introns as necessary buffers to protect emergent
structures from evolutionary damage.

In any case, bloat and introns are often subject to a careful analysis in GP applica-
tions. However, tests on ELISE show that bloat does not appear, whatever evolutionary
parameters were chosen. In fact, an analysis of the largest individuals whenever they
appeared showed that most of them where “infeasible” individuals, that would not run
on most of the queries they had to process.

In ELISE, combining the natural penality against infeasible individuals and global
operators thus leads to an implicit penality against large individuals. While not forbid-
ding explicitely arbitrarily large individuals, this has the effect of limiting code growth.

9 Conclusion and future work

This papers shows that it is possible to use evolutionary techniques to refine search en-
gines in the framework of scientific publications related to medecine, biology and bio-



chemistry. The tests presented in this paper above a basic boolean search engine show
that the system is able to adapt (improve its recall rate) and discover new associations.

This work has been driven by tests on relevant benchmarks. However, due to the
eminent user-related nature of the fitness function, only real-world testing will shed
light on parts of the system that should be modified or upgraded.

Real-size experiments will be conducted soon on real databases with a more ef-
ficient underlying search system at Novartis-Pharma (Ulix search engine, [55]). Con-
ditions will therefore be quite different from test benches, and hopefully user feed-
back will be of good enough quality to guide future developments. The present system
must therefore be open and versatile enough so that modifications do not require drastic
changes in the structure of the algorithm.
Many things remain to be done, even though ELISE is already a functional prototype:

Diversity control A major component of Parisian approaches, which once again ap-
pears as crucial in the test presented in this paper, is the diversity control of the
population of modules. It is based on a sensible measurement of the distance be-
tween individuals with respect to the problem and keeping in mind the computa-
tional cost.
This point has been temporarily simulated in the current implementation by artif-
ically increasing probabilities of operators that usually increase genetic diversity.
However this problem has to be considered carefully for the real-life experiments
to come.

Level of abstraction Until now, methods have been suggested to improve information
processing with EAs under the assumption that this information was only of a quan-
titative nature, directly convertible into fitness. However, since the system deals
with texts and senses, document and query analysis provides essentially semantic
information.
This “higher level” intelligence could also be used to steer the evolution toward
regions of interest, as determined by the analysis of the document-to-query relation.
Several experiments using symbolic information to steer the evolution have proved
highly successful (for instance [40, 13, 34, 41, 45, 13, 40]). Most of these use this
information to alter the behaviour of genetic operators, putting forward particular
genetic constructs.

Thesauri To enlarge the semantic scope of genetic operators and instructions, multiple
thesauri should be used, like MeSH, but also EmTree[16] and WordNet [61] or even
dynamically built user specific and fuzzy thesauri.
For instance, a dynamic thesaurus, generated from the analysis of term relations
in queries and visited documents, could be used to determine term mutations in
the rules, favouring recently extracted terms over coordinated terms produced by
reference thesauri. To be exploited to full potential, this method will need much
fine-tuning.

Ranking and aggregation of results sets Right now, ELISE produces multiple queries
out of the single query written by the user. Therefore, several sets of documents are
retrieved by the underlying search engine for each query.
Results aggregation is therefore necessary, with the important task of producing a
relevant ordering for the final set that is presented to the user. Ordering is a de-



terminant part of user interaction [49], since users will seldom consult documents
beyond the first twenty.
Despite its importance, the current prototype of ELISE does not yet attempt to solve
this problem, as any test until now could only be conducted with machine-readable
benchmarks, where ordering is not taken into account.
Ordered sets resulting from the different queries passed to the search engine are
therefore simply interleaved, so that the best matches for each sets are presented to
the user.

Acknowledgements

The authors are grateful to Thierry Prost, MD, PhD, for his educated analysis of the
innards of ELISE.

References

1. W. Banzhaf, “Interactive Evolution,” in Handbook of Evolutionary Computation, 1997, Ox-
ford University Press.

2. A. Boumaza and J. Louchet, “Dynamic Flies: Using Real-Time Parisian Evolution in
Robotics,” In EVOIASP 2001, Lake Como, Italy, 2001.

3. R. J. Brachman “What’s in a Concept: Structural Foundations for Semantic Networks,”
International Journal of Human-Computer Studies 9, 1977

4. C. Brouard “Construction et exploitation de réseaux sémantiques flous pour l’extraction
d’information pertinente: le système RELIEFS,” PhD. Thesis, LIP6, Université Paris-6, 2000

5. E. Cantu-Paz and C. Kamath, “On the use of evolutionary algorithms in data mining,” In
Abbass, H., Sarker, R. and Newton, C. (Eds.) Data Mining: a Heuristic Approach, pp. 48-
71. Hershey, PA: IDEA Group Publishing, 2002.

6. E. Cantu-Paz, C. Kamath, “On the use of Evolutionary Algorithms in Data Mining,” in Data
Mining: a Heuristic Approach, H. A. Abbass, R. A. Sarker and C. S. Newton (Eds), Idea
Group Publishing, 2001.

7. Cystic Fibrosis Reference Collection, http://www.sims.berkeley.edu/ hearst/irbook/cfc.html
8. J. Chapuis, E. Lutton “ArtiE-Fract: Interactive Evolution of Fractals,” GA ’01, Generative

Art Conference, Milano, Italy, 2001
9. H. Chen, “Machine learning for information retrieval: neural networks, symbolic learning

and genetic algorithms,” JASIS vol. 46 (3), Journal of the American Society for Information
Science and Technology, April 1995.

10. H. Chen “Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning
and Genetic Algorithms,” Journal of the American Society for Information Science, 1995

11. H. Chen, G. Shankaranarayanan, L. She and A. Iyer, “A Machine Learning Approach to
Inductive Query by Examples: An Experiment Using Relevance Feedback, ID3, Genetic
Algorithms and Simulated Annealing,” JASIS vol. 49 (8), Journal of the American Society
for Information Science and Technology, June 1998.

12. P. Collet, E. Lutton, F. Raynal, M. Schoenauer, “Polar IFS + Parisian Genetic Programming
= Efficient IFS Inverse Problem Solving,” In Genetic Programming and Evolvable Machines
Journal, Volume 1, Issue 4, pp. 339-361, October, 2000.

13. L. Davis “Adapting operator probabilities in Genetic Algorithms,” ICGA ’89, International
Conference on Genetic Algorithms and their Application, 1989.



14. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman “Indexing by latent
semantic analysis,” Journal of the American Society for Information Science, 1990.

15. A. Dix, “Interactive Querying, locating and dicovering information,” Second Workshop on
Information Retrieval and Human Computer Interaction, Glasgow, 11th September 1998,
http://www.hiraeth.com/alan/topics/QbB/

16. EMBASE, the Excerpta Medica database Elsevier Science, Secondary Publishing Division,
New York

17. D. J. Foskett. “Thesaurus,” Readings in Information Retrieval, K. S. Jones, P. Willet, M.
Kaufmann Publishers, San Fransisco, 1997

18. A. Freitas, “A survey of evolutionary algorithms for data mining and knowledge discovery,”
to appear in: Ghosh, A.; Tsutsui, S. (Eds.) Advances in evolutionary computation, Springer-
Verlag, 2001, citeseer.nj.nec.com/freitas01survey.html

19. A.A. Freitas, “Data Mining with Evolutionary Algorithms: Research Directions,” AAAI
Worshop, Technical Report WS-99-06, ISBN 1-57735-090-1, The AAAI Press, 1999.

20. A.A. Freitas, “A survey of evolutionary algorithms for data mining and knowledge discov-
ery,” To appear in: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary Computation.
Springer-Verlag, 2002. http://www.ppgia.pucpr.br/ alex

21. D. A. Goldberg “Genetic Algorithms in Search, Optimization and Machine Learning,”
Addison-Wesley Publishing, 1989

22. M. D. Gordon, “Probabilistic and Genetic Algrithms for Document Retrieval,” Communica-
tions of the ACM 31, pp 1208-1218, 1988.

23. T. Hofmann “Probabilistic Latent Semantic Indexing,” SIGIR ’99, International ACM SIGIR
Conference on Research and Development in Information Retrieval, Berkeley, USA, 1999

24. J.-T. Horng and C.-C. Yeh, “Applying Genetic Algorithms to QUery Optimisation in Docu-
ment Retrieval,” Information Processing and Management 36, pp 737-759, 2000

25. S. Kamohara, H. Takagi and T. Takeda, “Control Rule Acquisition for an Arm Wrestling
Robot,” in IEEE Int. Conf. on System, Man and Cybernetics (SMC’97), vol 5, Orlando, FL,
USA, pp 4227-4231, 1997.

26. Y.-H. Kim, S. Kim, J.-H. Eom and B.-T. Zhang, “SCAI Experiments on TREC-9,” Proceed-
ings of the Ninth Text REtrieval Conference (TREC-9), pp. 392-399, 2000.

27. S. Kim and B.-T. Zhang, “Evolutionary Learning of Web-Document Structure for Informa-
tion Retrieval,” Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001),
vol. 2, pp. 1253-1260, 2001.

28. S. Kim, B.-T. Zhang, “Evolutionary Learning of Web-Document Structure for information
Retrieval,” Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001), vol.
2, pp. 1253-1260, 2001.

29. M. L. Wong, K. S. Leung and J. C.Y. Cheng, “Discovering Knowledge from Noisy Databases
Using Genetic Programming” JASIS vol. 51 (9), Journal of the American Society for Infor-
mation Science and Technology, July 2000.

30. R. McNaughton, “Algebraic decision procedures for local testability,” Math. Systems Theory,
vol 8, 1974, number 1, pp 60–76.

31. R. McNaughton, “Testing and generating infinite sequences by a finite automaton,” Informa-
tion and Control, vol 9, 1966, pp 521–530.

32. , R. McNaughton and S. Papert, ”Counter-free automata,” With an appendix by W. Hen-
neman, M.I.T. Research Monograph, No. 65, The M.I.T. Press, Cambridge, Mass.-London,
1971.

33. “MeSH (Medical Subject Headings), a controlled vocabulary thesaurus”
http://www.nlm.nih.gov/pubs/factsheets/mesh.html National Li-
brary of Medicine (NLM), National Institutes of Health, Bethesda, Maryland

34. C. Meyer, J.-G. Ganascia, J.-D. Zucker “Learning Strategies in Games by Anticipation,”
IJCAI ’97, International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997



35. N. Monmarche, G. Nocent, G. Venturini and P. Santini. “On Generating HTML Style Sheets
with an Interactive Genetic Algorithm Based on Gene Frequencies,” Artificial Evolution, Eu-
ropean Conference, AE 99, Dunkerque, France, November 1999, Selected papers, Springer
Verlag, LNCS 1829, 1999, C. Fonlupt and J. K. Hao and E. Lutton and E. Ronald and M.
Schoenauer (Eds).

36. Y. Landrin-Schweitzer, OKit, a Virtual Machine and Compiler for Concatenative Languages.
http://varkhan.free.fr/Software/OKit

37. S. Pal, V. Talwar and P. Mitra, “Web Mining in Soft Computing Framework: Relevance,
State of the Art and Future Directions,” IEEE Transactions on Neural Networks, 2002, cite-
seer.nj.nec.com/pal02web.html

38. R.S. Parpinelli, H.S. Lopes and A.A. Freitas, “Data Mining with an Ant Colony Optimization
Algorithm,” To appear in IEEE Trans. on Evolutionary Computation, special issue on Ant
Colony algorithms. 2002.

39. R. Poli and S. Cagnoni, “Genetic Programming with User-Driven Selection : Experiments
on the Evolution of Algorithms for Image Enhancement,” in 2nd Annual Conf. on Genetic
Programming, pp 269-277, 1997.

40. J. D. Schaffer, A Morishima “An Adaptive Crossover Distribution Mechanism for Genetic
Algorithms,” ICGA ’87, International Conference on Genetic Algorithms, 1987.

41. M. Sebag, C. Ravisé, M. Schoenauer “Controlling Evolution by Means of Machine Learn-
ing,” EP 1996, 5th Annual Conf. on Evolutionary Programming (EP’96), March 1996, San
Diego, USA.

42. D.-H. Shin , Y.-H. Kim, S. Kim, J.-H. Eom, H.-J. Shin and B.-T. Zhang, “SCAI TREC-8
Experiments,” Proceedings of the Eighth Text Retrieval Conference (TREC-8), pp. 511-518,
1999.

43. K. Sims, “Interactive evolution of dynamical systems,” in First European Conference on
Artificial Life, pages 171–178, 1991. Paris, December.

44. K. Sims, “Artificial Evolution for Computer Graphics,” Computer Graphics, 25(4):319–328,
July 1991.

45. W. M. Spears “Adapting crossover in a Genetic Algortithm,” ICGA ’91, International Con-
ference on Genetic Algorithms, 1991.

46. SWISH++, Simple Web Indexing System for Humans: C++ version,
http://homepage.mac.com/pauljlucas/software/swish/

47. H. Takagi, “ Interactive Evolutionary Computation : System Optimisation Based on Human
Subjective Evaluation,” IEEE Int. Conf. on Intelligent Engineering Systems (INES’98), Vi-
enna, Austria, pp 1-6, Sept 17-19, 1998.

48. H. Takagi, M. Ohsaki, “IEC-based Hearing Aids Fitting,” IEEE Int. Conf. on System, Man
and Cybernetics (SMC’99), Tokyo, Japan, vol 3, pp 657-662, Oct. 12-15, 1999.

49. "The BEST Search Engines", UC Berkeley - Teaching Library Internet Workshops
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/SearchEngines.html

50. S.J.P. Todd and W. Latham, “Evolutionary Art and Computers,”, Academic Press, 1992.
51. The Text REtrieval Conference (TREC) homepage http://trec.nist.gov/
52. P. Kantor, E.M. Voorhees, “TREC-5 Confusion Track”, Proceedings of the Fifth Text RE-

trieval Conference (TREC-5), Gaithersburg, Maryland, Nov. 20-22, 1996.
53. E.M. Voorhees, “TREC-2003 Robust Retrieval Track”, Proceedings of the Twelfth Text RE-

trieval Conference (TREC 2003) Gaithersburg, Maryland, November 18-21, 2003
54. L.Y. Tseng and S. B. Yang, “Genetic Algrithms for Clustering. Feature selection and Classi-

fication.” International Conference on Neural Networks, Vol 3, pp 1612-1616, 1997.
55. T. Vachon, N. Grandjean, P. Parisot, “Interactive Exploration of Patent Data for Com-

petitive Intelligence: Applications in Ulix (Novartis Knowledge Miner),” International
Chemical Information Conference and Exhibition, Nîmes, France, 21-24 October 2001.
http://www.infonortics.com/chemical/ch01/01chempro.html



56. M. J. Martin-Bautista, M.-A. Vila and H. L. Larsen, “A Fuzzy Genetic Algorithm Approach
to an Adaptive Information Retrieval Agent,” JASIS vol 50 (9), Journal of the American
Society for Information Science and Technology, July 1999

57. D. Vrajitoru, “Genetic Algorithms in Information Retrieval,” AIDRI97, Learning; From Nat-
ural Principles to Artificial Methods , Genève, June 1997.

58. D. Vrajitoru, “Large Population or Many Generations for Genetic Algorithms ? Implica-
tions in Information Retrieval”, In F. Crestani, G. Pasi (eds.): Soft Computing in Information
Retrieval. Techniques and Applications, Physica-Verlag, Heidelberg, pp 199-222, 2000.

59. W. Winiwarter, “PEA-A Personal E-mail Assistant with Evolution-
ary Adaptation,” International Journal of Information Technology, 1999.
http://citeseer.nj.nec.com/winiwarter99pea.html

60. C. Fellbaum, G. A. Miller, “WordNet: An Electronic Lexical Database,” The MIT Press,
May 1998

61. G. A. Miller, C. Fellbaum, R. Tengi, P. Wakefield, “WordNet, an Electronic Lexical Database
for the English language: http://www.cogsci.princeton.edu/ wn/” Cognitive
Science Laboratory, Princeton University.

62. J. Yang, R. R. Korfhage and E. Rasmussen, “Query Improvement in Information Retrieval
using Genetic Algorithms: A Report on the Experiments of the TREC project”, The first Text
Retrieval Conference (TREC-1), 1993.

63. J. Yang and V. Honavar, “Feature extraction, Construction and Selection - A Data Mining
Perspective,” Kluver Academics Publishes, pp 117-136, 1998.

64. B.-T. Zhang, J.-H. Kwak, C.-H. Lee, “Building Software agents for information fitlering on
the internet: A Genetic Programing approach,” Genetic Programing Conference, 1996.


