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We present a new approach in order to improve the convergence of Monte Carlo (MC)
simulations of molecular systems belonging to complex energetic landscapes: the problem is
redefined in terms of the dynamic allocation of MC move frequencies depending on their past
efficiency, measured with respect to a relevant sampling criterion. We introduce various
empirical criteria with the aim of accounting for the proper convergence in phase space
sampling. The dynamic allocation is performed over parallel simulations by means of a new
evolutionary algorithm involving ‘immortal’ individuals. The method is bench marked with
respect to conventional procedures on a model for melt linear polyethylene. We record
significant improvement in sampling efficiencies, thus in computational load, while the optimal
sets of move frequencies are liable to allow interesting physical insights into the particular
systems simulated. This last aspect should provide a new tool for designing more efficient new
MC moves.

1. Introduction

In the field of Monte Carlo (MC) simulations of
complex molecular systems, such as polymers in dense
amorphous phase, much effort is currently being
undertaken for the design of more efficient new MC
schemes [1–3]. These researches are motivated by the
fact that with the increase in size and complexity of
molecules, the potential energy surface of such systems
is characterized by numerous local minima separated
by very high barriers, hence this energy surface is
difficult to sample either along the trajectories obtained
from direct molecular dynamics or through conven-
tional Markovian Monte Carlo simulations. In this
paper we will also address this sampling efficiency
problem, but our approach will be to express it directly
in the framework of optimization techniques.

Having defined our benchmark model for testing
the efficiency of MC simulation schemes of complex
molecular systems, we review in x 2 possible numerical
criteria for measuring this efficiency over the whole
simulation.

Actually algorithms involving such criteria are
controlled by numerous parameters, among which

some are empirically set, such as the relative frequencies
of the several MC moves generally used in conjunction.
We further present a new evolutionary algorithm

(EA) designed to dynamically optimize these parameters
with respect to an appropriate criterion. As we will see,
such an algorithm is well suited for optimization
problems where the fitness function (or cost function)
has no derivative or is even subject to evaluation noise.
In x 3, numerical experiments are presented which

were designed to evaluate the interest of our approach
for improving the simulation performance: the discus-
sion puts forward the global reduction in computational
load brought about by evolutionary dynamical optimi-
zation, as well as the outcome in terms of physical
insight on the significance of individual MC moves in a
given complex molecular system.

2. Methods

2.1. Monte Carlo simulations
2.1.1. Choice of our reference molecular model,
simulation ensemble, and forcefield
We chose to work with the well-studied linear

polyethylene model described in [4], with the same
constants:

� Unified atom model considering each CH2 or
CH3 group as a single active site.
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� Fixed monomer-to-monomer link length of
1.54 �A, corresponding to C–C bond length.

� Lennard-Jones pair interaction potential. The
characteristic radius is �LJ ¼ 3:94 �A, and the
potential well depth �LJ ¼ 0:098 kcalmol�1. For
two sites i; j where the distance between them is
rij, we have then:

#LJðrijÞ ¼ 4�LJ �
�LJ
rij

� �12

�
�LJ
rij

� �6
" #

: ð1Þ

In practice, in order to compute the total interaction
potential at a particular site, we only consider
neighbouring sites that are located within a cutoff radius
�cut (here �cut ¼ 8:67 �A). A term taking into account
long-range interactions, depending on the density and on
this radius, is finally added (see [5] pages 31–35).

� Van der Ploeg and Berendsen bending potential,
function of a bond angle � (given by three
following monomers of the same chain) allowed
to fluctuate around the mean value �0 ¼ 1128.
Given k� ¼ 57 950Krad�1:

#VPBð�Þ

kB
¼

1

2
k�ð� � �0Þ

2: ð2Þ

� Ryckaert and Bellman torsional potential,
function of dihedral angle � (given by four
following monomers of the same chain). Given
c0 ¼ 1116K, c1 ¼ 1462K, c2 ¼ �1578 , c3 ¼
�368K, c4 ¼ 3156K, c5 ¼ �3788K:

#tor

kB
¼
X5
k¼0

ck cos
kð�Þ: ð3Þ

� Cubic simulation model box with periodic
boundary conditions.

Simulations are performed in the following nNPT
ensemble:

� n ¼ 640 monomers.
� N ¼ 20 or N ¼ 10 chains, resulting in chains of 32

or 64 monomers.
� Pressure P ¼ 1 atm.
� Temperature T ¼ 450K.

2.1.2. Choice of a set of Monte Carlo moves
We consider Monte Carlo moves commonly used in

molecular simulations and which are all applicable in
the nNPT ensemble. First of all, we draw attention to
the fact that all MC moves do not require the same
computation time because the number of displaced
monomers varies from one to another. As the evaluation
of the Lennard-Jones potential within the sphere of

cutoff radius requires more computation time, we can
reasonably assume that the total computation time of
any move is proportional to the number of displaced
monomers. We will further name this number degree,
or deg.

(1) Translation, deg ¼ n=N (figure 1, upper left): the
whole molecule is translated along a random
vector. The translation distance is randomly
chosen in the interval ½0; dmax�. The parameter
dmax is sometimes dynamically adjusted in order
to reach a prescribed acceptance rate. This
translation move can generate expensive calcu-
lations of the Lennard-Jones potential if there
are too many interaction sites and is therefore
costly for long chains.

(2) Rotation, deg ¼ 1 (figure 1, upper right): a
terminal monomer is rotated within a sphere
centred on its preceding site; energy variation
must be calculated for the three potentials; this
simple move implies only one monomer.

(3) Reptation, deg ¼ 1 (figure 1, middle left): a
terminal monomer is removed, added at the other
end of the chain, and rotated. The computation
requirements are the same as for rotation.

Translation Rotation

Reptation Flip

Volume Fluctuation

Figure 1. MC moves considered in this work.
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(4) Flip, deg ¼ 1 (figure 1, middle right): a monomer
inside a chain is rotated along the axis of its two
neighbouring sites. The site is moved, two bond
angles change, four torsion angles change. The
rotation angle is randomly chosen in the interval
½0; �max�. The parameter �max is sometimes
dynamically adjusted in order to reach a
prescribed acceptance rate.

(5) Volume Fluctuation, VF, deg ¼ n (figure 1,
bottom): under constant pressure conditions,
this Monte Carlo move is required in order to
let the system’s density fluctuate around the
corresponding mean density. The simulation
box volume is increased or reduced with the
following rule:

lnðVnÞ ¼ lnðVoÞ þ�lnV , ð4Þ

where �lnV is randomly drawn in the interval
½��max;�max�. The acceptance rule in this case is:

accððrNo ;VoÞ; ðr
N
n ;VnÞÞ

¼ min
n
1; exp

�
� ��

h
UðrNn ;VnÞ �UðrNo ;VoÞ

þ PðVn � VoÞ þ ðN þ 1Þ��1lnðVn=VoÞ

i�o
ð5Þ

where � stands for 1=ðkBTÞ. Owing to the constant bond
length between monomers when the volume changes, the
chains are displaced according to their centre of mass.
All pair interaction energies of the system have to be
recomputed for each move.

2.1.3. Criteria for sampling efficiency in Monte Carlo
simulations of complex molecular systems

The sampling efficiency problem in Monte Carlo
simulations can be viewed as the statistical error due to
lack of uncorrelated samples. Indeed if hAi is the
quantity of interest, it is usually estimated with:

hAruni ¼
1

ns

Xns�1

i¼0

Ai, ð6Þ

where ns denotes the number of samples of the
observable A taken during the simulation. In the ideal
case where ðAiÞ are completely uncorrelated, we get:

�2ðhAruniÞ ¼
�2ðAÞ

ne
: ð7Þ

If the configurations on which the ðAiÞ are measured
are partly correlated, the variance will be higher. The
question of measuring this decrease in correlation will
be our concern in this section.

2.1.3.1. Analytical criterion. In the field of Markov
chain Monte Carlo methods (see [6]), this issue has
been identified as estimating the mixing time �ð�Þ,
that is the number of steps before the Markov chain is
‘close’ enough to the stationary distribution p. It can be
formalized for the case of a discrete state space O as:

�ð�Þ ¼ maxfx 2 � : �xð�Þg with

�xð�Þ ¼ minft : �xðt
0Þ � �; 8t0 � tg ð8Þ

where:

�xðtÞ ¼
1

2

X
y2�

jPtðx; yÞ � pðyÞj: ð9Þ

In this case �xðtÞ is a distance between the Ptðx; :Þ
distribution (distribution of the conditional law
PrðXtjX0 ¼ xÞ) and the p distribution. From this
definition and sufficient information about the Markov
chain structure, it is sometimes possible to get an upper
bound for this mixing time. Such a bound could be
used in a sampling algorithm to get the number of steps
between two uncorrelated states (or configurations).
But to our knowledge, in the case of a complex
Markov chain Monte Carlo sampling algorithm such
as molecular Monte Carlo simulation, this kind of
calculation has not yet been performed.

2.1.3.2. Chain end-to-end vector autocorrelation. In the
literature of molecular simulation of chain molecules,
when the discussion comes to the efficiency of the
simulation, we often find references to the chain end-to-
end vector autocorrelation. Actually, we consider for
each of the N chains the vector joining each end of the
chain. Then these vectors are normalized, and often
called ‘chain orientation vectors’. In the case of dense
amorphous polymers, where chains are tightly
entangled, orientation vectors will vary slowly.
Therefore it is reasonable to think that if, after a
sufficient number of simulation steps, orientation
vectors become uncorrelated with regard to their initial
orientations, the global system configuration will be
uncorrelated with regard to the initial configuration.
For each sampled configuration of the system at

simulation step t, we can compute the collection
fvtðiÞgi¼0; ... ;N of chain orientation vectors. After ns
sampling steps, we obtain ðns þ 1Þ sampled configura-
tions including the initial one, and it is possible to
compute the three following quantities:

� Instant autocorrelation: this can be computed at
any time, as it depends only on the initial and on
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the current configuration:

Ci
vðnsÞ ¼

1

N

XN
i¼0

vnsði Þ:v0ði Þ: ð10Þ

� Mean autocorrelation: the true autocorrelation
estimator. It corresponds to the average of
autocorrelation of samples separated by ns=2
sampling steps:

Cm
v ðnsÞ ¼

2

ns

Xns
t¼½ðns=2Þþ1�

XN
i¼1

vtði Þ:vt�ð1=nsÞði Þ: ð11Þ

� Cumulated autocorrelation: defined as the
average at every sampling step of the instant
autocorrelation:

Cc
vðnsÞ ¼

1

ns

Xns
t¼1

Ci
vðtÞ: ð12Þ

Whatever the definition, autocorrelation will decrease
toward 0 as the simulation goes on. But it is also
clear that if the instant autocorrelation will decrease
faster, it will be more oscillating because it includes less
information. The definition of the cumulated auto-
correlation is motivated by its iterative computation,
and the need to keep only the initial orientation vectors.
In comparison to the mean autocorrelation it requires
less memory and less computation:

Cc
vðns þ 1Þ ¼

nCc
vðnsÞ þ Ci

vðns þ 1Þ

ns þ 1
: ð13Þ

The question now is what is the best definition of
the autocorrelation to consider in order to define an

efficiency criterion? Let us assume that we want to
maximize this kind of criterion:

cðtÞ ¼ 1� CðtÞ;

where CðtÞ is one of the three previous definitions. Given
the stochastic nature of the Monte Carlo algorithm, the
outcome of this criterion measure for the same system
simulated under the same conditions during the same
time will be a random variable. Then it seems desirable
to choose the autocorrelation definition that will lead
to the smallest standard-deviation/average ratio.
For this purpose we present a simulation of

polyethylene under the nNPT ensemble, under the
conditions that are described in x 3. In this case 32
systems, each with a different equilibrated initial
configuration, are simulated independently. Criteria are
measured on increasing periods of simulation (counted
in explicit seconds of simulation), (�i ¼ i � 200 s,
i 2 f1, . . . , 10g). The measures are repeated twice for
each �i, giving 64 measures for each.
Figure 2 shows the graph for each criterion (civ

denoted ci, ccv denoted cc and cmv denoted cm), and also
the standard deviation/average ratio. As expected the
civ grows faster than the others. We notice that if the
standard deviation/average ratio decreases initially
while �i increases, it stabilizes around 1=3 for each
criterion. The first conclusion is that the remaining
variance comes from the stochastic nature of the
simulation (and not from an insufficiently long �i), and
the second is that among our three criteria none can be
considered ‘the best’ with respect to this ratio.
Finally if we consider the problem of memory

complexity, civ and ccv are the most interesting.
Furthermore, just for visual comfort (see figure 3), we
may prefer ccv, as it is smoother than civ allowing easier
visual comparisons.
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Figure 2. Left: average of measures of orientation vector autocorrelation criteria (civ denoted ci, ccv denoted cc and cmv denoted cm)
as a function of simulation time. Right: standard deviation/average ratio.
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2.1.3.3. Displacement of molecules. Another quantity
generally used when monitoring efficiency of molecular
simulation is the displacement of molecules with respect
to their initial positions. In the case of large molecules
such as polymers, the positions of the centres of mass of
chains are generally tracked. Considering that in dense
states, chains are tightly entangled, their centres of mass
have a slow motion with regard to their own size, and
therefore a significant displacement is a good guarantee
that configurations are sufficiently uncorrelated.

We propose the two following criteria based on centre
of mass chain displacement:

� The chain’s centre of mass mean square displace-
ment:

d2ðtÞ ¼
1

N

XN
i¼1

ðrctðiÞ � rc0ðiÞÞ
2; ð14Þ

with rctðÞ denoting the coordinates of the centre
of mass of a chain at simulation time t.

� The chain’s centre of mass cumulated mean square
displacement:

d2
c ðnsÞ ¼

1

ns

Xns
t¼1

d2ðiÞ: ð15Þ

A ‘cumulated displacement’ has no relevance with
regard to the physical properties of the system, but once

again it allows us to take all the information along the
trajectory of the system into account, in a simple
manner.
As these properties are increasing along the simula-

tion, they can be used directly as criteria for a
maximization. During the simulation presented in x 3,
we also measured these criteria, displayed in figure 4.
The standard deviation/average ratio here is in favour of
the cumulated criterion, but once again it appears that it
decreases and then stabilizes when the simulation time
increases.

2.1.3.4. Lacunarity. With the previous criteria we have
seen how to use the geometry of chains in order to
measure the mixing speed of the simulated system. But
one may object that, if that kind of measure is perfectly
suited to molecular dynamics, it should be less suited to
some Monte Carlo schemes. For example, in the case of
the displacement of molecules, care should be taken on
how particle coordinates are updated in order not to
create too ‘artificial’ displacements, particularly in
handling the periodic boundary conditions of the
simulation box. These reasons motivated us to find a
criterion that may be applied without the need for the
labelling of molecules, or other kinds of arbitrary
information. Therefore we choose to look at the ‘local
variations’ of density of the system: for most systems,
molecules are not uniformly distributed in the simula-
tion box. Holes and bulks are generally observed,
resulting in local variations of density in subparts of
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Figure 3. Comparison between instant autocorrelation and cumulated autocorrelation for the same simulation (Ci
v denoted Ci,

Cc
v denoted Cc).
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the simulation box. These variations will help us in
defining a new criterion.

Fractal geometry offers a tool named lacunarity [7, 8],
often used in image analysis, to measure the mass
dispersion of an object (with respect to homogeneity). If
we consider an object of mass M, volume V and a
subpart of volume v (for example a cube of side �), we
want to compare the observed mass mo of this subpart
to the expected mass me defined as ðv=V �MÞ.
Lacunarity measures the variations of mo with respect
to me:

L ¼
me

mo
� 1

� �2
* +

: ð16Þ

We can directly adapt this measure to the spatial
distribution of monomers, using a subdivision of the
cubic simulation box in R3 subcubes (R is a scale
parameter). Then we look at the number of monomers
per subcube (if the mass of each monomer is the same)
and name them mRði Þ; i 2 f1, . . .R3g. The expected
number is meðRÞ ¼ n=R3 if n denotes the number of
monomers of the system, so that one gets:

LðRÞ ¼
1

R3

XR3

i¼1

mRði Þ

meðRÞ
� 1

� �2

: ð17Þ

LðRÞ gives the lacunarity of a configuration of the
system, given the scale parameter R.

During the simulation of the system at equilibrium, it
is possible to compute the lacunarity at different scales
of the sampled configurations, and then estimate the
equilibrium lacunarity. Furthermore, we can cumulate
monomer spatial distributions of each configuration,
and then observe the evolution of lacunarity as

configurations are added. If we assume that an
efficiently simulated system should rapidly move holes
and bulks, it should result in a rapidly decreasing
lacunarity of these cumulated distributions as shown in
figure 5.
For a given scale R, we propose the following

efficiency criterion:

cRLðnsÞ ¼ max 0;
L̂LðRÞ

LcðR; nsÞ
� 1

 !
, ð18Þ

withLcðR; nsÞ denoting the lacunarity of the ns cumulated
distributions of monomers and L̂LðRÞ denoting the
average of lacunarity measures of each distribution
(generally higher than LcðR; nsÞ):

L̂LðRÞ ¼
1

ns

Xns
i¼1

LðR; i Þ: ð19Þ

2.2. Dynamic allocation of Monte Carlo move
frequencies through evolutionary algorithms

2.2.1. Evolutionary algorithms
Evolutionary algorithms (EAs) are population-based

stochastic optimizers [9], inspired by the Darwinian
principles of evolution of species. They can be briefly
described as follows: given a search space, the goal is to
find one (or more) point of this space that optimizes
a criterion:

(1) Generate a set of points (called individuals) of
the search space: a population.

(2) Compute the criterion (positive real-valued
function) for each individual: their fitness score.

(3) Select individuals from the population, with
random trial biased according to their fitness
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Figure 4. Left: average of criteria d2 (denoted D) and d2
c (denoted Dc), measured in reduced units (1 unit = �2

LJ) against simulation
time. Right: standard deviation/average ratio.
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score: best individuals are more likely to be
selected.

(4) Selected individuals (called parents) are allowed
to reproduce, i.e. genetic operators are applied:

— with a probability pc each pair of parents is
crossed (else duplicated)

— with a probability pm resulting offspring
undergo mutation (generally a small random
perturbation of the individual).

These genetic operators are specific to the type of
search space.

(5) Offspring are used to build a new generation and
the algorithm loops to step 2 until an end criterion
is reached (limited number of evaluations for
example).

The artificial evolution encompasses, among others,
the fields of genetic algorithms [10, 11], evolution
strategies [12] and genetic programming [13]. The main
differences come from different encoding schemes
(binary strings, real vectors, logical trees, etc.) and
reproduction strategies, but owing to wide use in various
fields of application, these techniques have more or less
merged in the EAs acronym. One quality of EAs is the
fact that only the value of the fitness function at the
points represented by the individuals is required. There
is no need for derivatives or continuity, and EAs may
also be applied in the presence of noise. For these
reasons, EAs are good candidates for irregular, complex
problems such as the present one.

2.2.2. Dynamic evolutionary optimization of
parallel molecular simulations

In x 2.1.3 we proposed possible criteria that could be
used in order to turn the sampling efficiency problem
into a maximization problem. In order to apply an EA

to our problem, it remains to identify parameters of the
molecular simulation algorithm that could be tuned in
order to optimize one of the criteria.
For that purpose we propose an algorithm based on

parallel simulations of the same system. In traditional
Monte Carlo approaches, practitioners empirically
adjust the parameters of a simulation, for example in
the case of several allowed Monte Carlo movements,
the relative frequencies of those movements along the
simulation. These frequencies have no consequence on
the limit distribution of valid configurations, since they
only impact the way the search space is sampled during
the simulation. However, choosing good sets of such
frequencies for a specific problem can significantly
improve performances. More formally stated, our
problem is the following.
In the case of a Monte Carlo molecular simulation,

given a molecular model, specific physico-chemical
conditions and a set of adequate MC moves
ðM1, . . . ,MmÞ, find a frequency distribution ð�1, . . . ,�mÞ

for those moves that maximize an adequate efficiency
criterion.
In terms of optimization the search space is the space

of possible frequency distributions S�:

S� ¼ � 2
Ym
i¼1

�0; 1½;
Xm
i¼1

�i ¼ 1

( )
: ð20Þ

We also define a reference algorithm (RA) that is used
for comparison: it consists of nps simulations of polymer
systems with different initial states in the same physico-
chemical conditions (i.e. different points from the same
phase space), each simulation using an equiprobable
distribution of allowed movements.
We can describe the algorithm as follows:

� nps systems are simulated with identical physico-
chemical parameters;
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Figure 5. Five sampled configurations of 640 monomers each are added, and cast in the X–Y plane. Configurations come from the
same simulation, but with a longer sampling step on the right. The result is that configurations are more correlated on the left,
as it can be visually checked: lacunarity is higher on the left.
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� an individual (representing a specific frequency
set) is assigned to each system; the initial
population is randomly generated;

� the simulation time of one system is divided into
nc cycles;

� the nc cycles are further divided in ng generations
(see figure 6) during which individuals of the
population are evaluated, along with one of the
fitness criteria presented in x 2.1.3.

A cycle consists of several elementary MC moves
(trials to generate new conformations), totalling a
pre-defined CPU time. This way, fitness scores represent
the true efficiency of a frequency set over a specified
period of simulation time. This makes our algorithm
dependent on the hardware, operating system and
software used, but supportive of cheap and efficiently
mixing moves.

It appears first that the volume fluctuation move is
needed but it is very heavy in terms of computation
time. Furthermore it has no direct effect on the system
mixing. For these reasons we will set once the frequency
of this move, and optimize the relative frequencies of

the four other moves. In addition, as translation also
has a high degree, instead of considering the effective
frequencies (EF, probability that a move is chosen at
each simulation step), an individual will encode what
we call Equal Charge Frequencies (ECFs), that will be
defined for a move M such that:

EFðMÞ ¼
ECF ðMÞ

degðMÞ
: ð21Þ

ECF is more representative of the share of the total
computation load spent in the computation of a trial
move. Therefore the search space S� will be the space of
ECF instead of EF.
For the present case, in the reference algorithm (RA)

all MC moves are given an equal ECF of ð1=5Þ. This
implies that the volume fluctuation will always have an
ECF of 20% in the case of the evolutionary runs. The
corresponding EFs are given in table 1.

2.2.3. A new evolutionary algorithm involving
immortal individuals
Some specific characteristics of our algorithm concern-
ing the evolutionary part will now be outlined. It
appears first that the evaluation of an individual is the
result of a long simulation time (compared to a simple
optimization problem). Furthermore, for the same
frequency set applied for the same system in the same
conditions for the same duration, two independent
simulations will lead to different performances, due to
the stochastic nature of the Monte Carlo algorithm. For
this reason we need to consider that the fitness function
is subject to noise. In order to face these two aspects,
that is a costly fitness function (in terms of evaluation
time) subject to noise, we have proposed in [14] a new
EA, called an immortal evolutionary algorithm (IEA). It
has been tested on reference fitness functions, and has
shown good performance in rapidly finding good
individuals despite the presence of noise: in order to
reduce the effect of noise, similarities between individ-
uals have been used (many instances of a single
individual frequently coexist inside a population).
Going further in that direction, the whole information
produced along the evolution may also be considered: it
often happens that an individual is a copy — or a
slightly modified copy — of a ‘dead’ ancestor. In our

...
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Figure 6. Schematic representation of our EA-based parallel
MC simulation: the shaded bars stand for simulated
systems. Each system is given MC move frequencies
corresponding to an individual of the population, perfor-
mance is measured on nc=ng MC cycles and returned as the
fitness score. At each new generation, new individuals are
created and each simulation continues with corresponding
(hopefully better) frequencies. In comparison, for the
reference algorithm (RA), a unique set of frequencies is
used for all the systems during all the simulation time.

Table 1. Set of effective frequencies chosen for the reference
algorithm (RA).

N Translation Rotation Reptation Flip

Volume

fluctuation

20 20/1941 640/1941 640/1941 640/1941 1/1941

10 10/1931 640/1931 640/1931 640/1931 1/1931
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problem, if two frequency sets are very similar, we can
reasonably assume that performances will be similar on
average. As we will see below, keeping track of all
evaluations performed along the evolution provides
another way to reduce the noise of the fitness function.
For this purpose we define an H (history of evaluations)
set in the following way:

� Keep information of all evaluated individuals, the
H set:

H ¼ 	i; n	i ;
~ff ð	iÞ

� �
; i 2 f1, . . . , nHg

n o
,

with 	i being an individual, n	i its number of
evaluations and ~ff ð	iÞ the average of these evalua-
tions.

� Consider the max distance on S�:

d1ð�; 	Þ ¼ maxi2f1,...,mgj�i � 	ij:

� Consider the euclidian distance on S�:

d2ð�; 	Þ ¼
Xm
i¼1

�i � 	ið Þ
2

 !1=2

:

� Consider neighbourhoods based on max distance:

8� 2 S�; �1 2 IR�
þ;B�1ð�Þ

¼ 	 2 S�; d1ð�; 	Þ � �1
� �

:

� Define the following similarity measure on H:

wð�; 	Þ ¼ 1�
d2ð�; 	Þ

m1=2�1

� �
:

� For each point of H, assign the following
weighted fitness score:

fHð�Þ ¼

P
	2H\B�1ð�Þ wð�; 	Þn	 ~ff ð	Þ

� �
P

	2H\B�1ð�Þ wð�; 	Þn	ð Þ
:

Actually the fitness score of an individual (considered
for the selection) is a weighted average of the scores of
all similar individuals.

2.2.3.1. Immortal Individuals. The H set can now be
used in the following way: each time an individual x has
been evaluated, its ‘raw’ (not yet weighted) fitness score
is used to update H. The weighted fitness score can be
returned with the computation of fHðxÞ. Moreover this
H set may be used to modify the classical birth and
death cycle of a classical EA. More precisely the
individuals to be reproduced can be directly selected in
this genetic database. This can be seen as a growing
population of immortal individuals.

Any individual of H may thus have offspring at any
time. Thereby the information of the whole evolution is
not only used to produce more accurate fitness evalua-
tions but it offers a simple way to maintain diversity. We
should also emphasize the asynchronous aspect of this
algorithm, that is we do not have to wait for an arbitrary
sized population to be fully evaluated in order to
perform selection, but at any time we are able to choose
from all already evaluated individuals. It is adapted to
distributed implementations, for example with a client–
server model: a genetic server feeds clients that perform
the fitness evaluations. The server can manage the
database with the following principles (see also figure 7):

� A pool of random offspring is initially created.
� For any client request, the server supplies an

offspring from its pool until this pool is empty.
� As soon as a client has finished the evaluation of

its current individual, it is returned to the server
that adds the information to H.

� When the offspring pool is empty the server
creates new individuals to fill it again. This
creation is made by selecting parents from H
and applying genetic operators.

� In order to have a minimum initial diversity, we
impose that when the server creates new individ-
uals a minimum number of individuals has to be
present in H before selection can be applied. If
this condition is not fulfilled, offspring are
generated randomly until H is sufficiently large.

2.2.3.2. Selection and genetic operators. There are
many different kinds of selection schemes and genetic
operators, applicable to different encoding schemes. We
are not going to discuss all of them here, but we will
simply specify a combination that appeared to be
effective in the test runs presented in [14], and that we
decided to use for our present problem.
We proposed to use a specific selection method for the

IEA, called threshold selection:

� A fitness threshold is computed from the best
fitness value of H, ( fmax

H ¼ maxx2Hf fHðxÞg). This
threshold is simply the product of fmax

H by a
threshold coefficient cs (cs 2 ½0; 1�):

f sH ¼ fmax
H cs: ð22Þ

� Individuals are randomly drawn (without any
bias) from H, until an individual y comes out
such that fHð yÞ > f sH , which becomes the ‘selected
individual’, allowed to reproduce.

� If no individual satisfies this condition after nt
trials, the best of them is selected.
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As individuals have a vector of real numbers for
chromosomes, we applied classical genetic operators for
this encoding. After the selection phase, parent individ-
uals are grouped by pairs and crossover is applied with a
probability pc (if crossover is not applied, the offspring
are simply copies of their parents) and mutation with
a probability pm (the test is done for each offspring
separately):

� Arithmetic crossover, which produces two
offspring ðx0; y0Þ from two parents ðx; yÞ:

x0 ¼ 
xþ ð1� 
Þy,
y0 ¼ ð1� 
Þxþ 
y:

�
ð23Þ

Where 
 is a scalar randomly drawn in the ½0; 1�
interval. This rule can be applied component by
component with an independent 
 trial each time.

� Gaussian mutation:

x0 ¼ xþNð0; �mutÞ ð24Þ

where the �mut variance parameter depends on the
feasible region of the search space.

In our case, applying the genetic operators will not
result in two normalized offspring vectors. The normal-
ization is performed afterwards in order to always get
valid frequency vectors.

3. Numerical experiments: comparison of simulation

efficiencies for dynamically optimized versus

a priori set move frequencies and influence

of the sampling criterion

Having discussed possible criteria for the sampling
efficiency and designed a specific EA for our problem,
we now present numerical experiments in the nNPT
ensemble.

3.1. Common simulation parameters
The simulations presented here have been performed

with our own software written in C language. It has been
designed with a client-server architecture: the server
handles all the IEA routines and gathers all information
about the system. Clients connect to the server (TCP/IP
‘sockets’ are directly used) in order to get an instance
(a given configuration) along with a frequency set. The
simulations have been performed on a PC cluster of the
ID-IMAG laboratoryy (Grenoble, France), where each

H

...

...

Evaluation

Client Client Client

Server

Offspring pool

Scored Individual
Scored Individual
Scored Individual
Scored Individual

Scored Individual

Request

Genetic operators

Selection

Figure 7. Schematic representation of the IEA algorithm.

yhttp://www-id.imag.fr/Grappes/
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node is a Pentium III 733MHz running under the
LINUX/Mandrake system. Each client was allocated
a node, and the simulation time was directly measured
with the client process time.

In the following sections we present a set of
simulations performed under the same conditions,
except that each one uses a different fitness function;
see table 2.

The ! is added as a reminder that the fitness function
may be considered to be a random variable, depending
on �.

The remaining parameters are:

� 32 systems are simulated in parallel.
� The simulation time for one system is 80 000

seconds (client process execution time).
� The simulation time is divided into 80 evaluation

periods or generations, totalling 2560 evaluations.
� Threshold selection is applied with cs ¼ 0:8,

nt ¼ 10.
� Genetic operator probabilities are pc ¼ 0:8,

pm ¼ 0:05.
� The neighbourhood radius is �1 ¼ 0:05.
� The simulation time is divided into two phases.

The first 1280 evaluation periods are dedicated to
exploration: the ECFs are generated by the IEA
algorithm exactly as described previously. The
1280 remaining periods are dedicated to exploita-
tion: the individual of H having the best fH score
is used, but as the criterion is still being evaluated,
this ‘best individual’ may change. For example, if
an individual has been declared the best according
to a few lucky evaluations, further evaluations
will lower its fH score, and let another one appear
as the best.

Simulations will be presented in four sections (one per
criterion), and as there are two chain lengths (32 and 64
corresponding to N ¼ 20 and N ¼ 10), runs will be
named A32, A64, . . . , D32, D64. The following list sums
up the characteristics; throughout all these sections the
following results will be inspected:

� Average fitness curves: as there are 32 systems
running for 80 evaluation periods, we will display

the average fitness average of every period. Both
unweighted and weighted scores will be displayed.

� ECF histograms: at the end of the simulations,
each individual of H represents an ECF set. For
each MC move we look at the histogram of these
values.

� The curves of the average (over the 32 systems) of
the cumulated end-to-end vector autocorrelations
measured over all the simulation time. This global
performance measure will be further called CVA.

� The curves of the average (over the 32 systems) of
the chain centre of mass mean square displace-
ments measured over all the simulation time. This
global performance measure will be further called
CMD.

� The curves of the average (over the 32 systems) of
the cumulated configuration lacunarities mea-
sured over all the simulation time, at scale
R ¼ 3 and R ¼ 7. These global performance
measures will be further called CCL.

Each time performance will be compared to RA runs
RA32 and RA64 (see table 3), depending on chain
lengths.

3.2. Chain end-to-end vector autocorrelation criterion

f ð�;!Þ ¼ c1ð�;!Þ ¼ ð1� Cc
vð�;!ÞÞ:

Fitness curves are displayed in figure 8, and as
expected performances are better for the short chains.

Table 2. Fitness functions.

Criterion Nature

c1ð�;!Þ ¼ ð1� Cn
v ð�;!ÞÞ Cumulated end-to-end chain vector autocorrelation

c2ð�;!Þ ¼ d2
c ð�;!Þ Cumulated chain centre of mass mean square displacement

c3ð�;!Þ ¼ c3Lð�;!Þ þ c4Lð�;!Þ
� 	

Sum of lacunarity criteria for scales R ¼ 3; 4

c4ð�;!Þ ¼ c6Lð�;!Þ þ c7Lð�;!Þ þ c8Lð�;!Þ
� 	

Sum of lacunarity criteria for scales R ¼ 6; 7; 8

Table 3. Runs lookup table.

Runs Criterion Chain length Section

A32 c1 32 3.2

A64 c1 64 3.2

B32 c2 32 3.3

B64 c2 64 3.3

C32 c3 32 3.4

C64 c3 64 3.4

D32 c4 32 3.4

D64 c4 64 3.4
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In both cases the IEA brings an improvement even if in
the case of the long chains (A64) the curves are more
oscillating, even when considering the weighted fitness
scores. We clearly notice on the A32 fitness curves, the
exploration/exploitation transition at generation 40,
where the fitness jumps because only the best individual
is used. The fitness decreases a little afterwards due to
the ‘correction’ of the fitness score of the best individual.
Regarding the CVA (figure 9) for the A64 run, the
improvement of the criterion c1 (measured on a short
period) induces an improvement on the whole simula-
tion. However, the decorrelation speed in the A32 run
prevents making a clear comparison on the criterion,
because the instant autocorrelation Ci

v rapidly oscillates
around 0 in both cases, so we will now ignore this
criterion for short chains. Now if we look at the CMD
performances (figure 11), the global performance is in
favour of the IEA runs in both cases. It is important to
note here that when optimizing the CVA (c1 criterion),
both CVA and CMD are improved. This gives an
experimental confirmation of the intuitive idea that
these two criteria are correlated.

Looking at the ECF of moves (figure 10), we see that
the reptation move is preferred in both cases. In
addition, we can check that for each move a broad
band of ECF values has been explored. The effect of the
exploitation phase is an improved emergence of the
histograms peaks. It is interesting to note on the A64
histograms, that a plurality of peaks reveals that the
‘best individual’ title changed during the exploitation
phase. This behaviour can be explained by a greater
variance of the A64 fitness scores.
For information we provide in table 4 the best

individual of both runs. We declare the ‘best individual’
of a run as the one having the best fH score at the end of
the run, but with a sufficiently important weight w (see
x 2.2.3). For the A32 run, we have w ¼ 1229, fH ¼ 0:26
and for A64 w ¼ 478, fH ¼ 0:052 (because an IEA run in
these cases contains exactly 3200 evaluations, w is
bounded in the ½0; 3200� interval).
Finally, we notice that an improvement in terms of

CVA and CMD is not necessarily linked to an improve-
ment in CCL. Final values of these performance criteria
are grouped in table 5.
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Figure 8. Runs A32 (left) and A64 (right): average weighted and unweighted fitness scores versus generations.
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Figure 9. Runs A32 (left) and A64 (right): average (over the 32 systems) of the cumulated end-to-end vector autocorrelation
measured over all the simulation time.
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3.3. Centre of mass rms displacement criterion

f ð�;!Þ ¼ c2ð�;!Þ ¼ d2
c ð�;!Þ:

Remark: In order to limit the number of figures, we will
now provide the table of criteria final values.

We see in table 6 that CVA and CMD performances
are simultaneously improved here too, with an advan-
tage for B64 compared to A64. The ECFs show that the
reptation is still favoured with regard to this criterion,

but still with a non-negligible contribution of other MC
moves and in the case of B64 there are ‘hesitations’
between rotation and reptation. It reveals a fact outlined
in [4]: if we want the reptation to have a significant
effect, it is necessary to include MC moves that change
end monomer environments. Once a reptation succeeds,
it leaves a hole at the former position of the displaced
monomer. If no other move is used in conjunction, it is
highly probable that a ‘reverse’ reptation will succeed
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Figure 11. Runs A32 (left) and A64 (right): average (over the 32 systems) of the chain centre of mass mean square displacement
measured over all the simulation time. Ordinates are in reduced units (1 unit = �2

LJÞ.

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ECF Histograms 

Translation
Rotation

Reptation
Flip

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6

ECF Histograms

Translation
Rotation

Reptation
Flip

Figure 10. Runs A32 (left) and A64 (right): MC move ECF histograms.

Table 4. Best frequencies obtained for the chain end-to-end vector autocorrelation criterion. Uniform ECF for RA
(20% for each move).

Run Translation Rotation Reptation Flip VF

ECF (VF excluded) A32 14.9% 14.3% 65.9% 4.9% —

ECF A32 11.9% 11.5% 52.7% 3.9% 20%

EF A32 0.54% 16.8% 76.9% 5.7% 0.0456%

ECF (VF excluded) A64 22.2% 24.8% 33.3% 19.7% —

ECF A64 17.8% 19.8% 26.6% 15.8% 20%

EF A64 0.444% 31.7% 42.5% 25.3% 0.05%
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with the help of this unchanged hole: the two successful
reptations will have a negligible effect on the system
mixing. Once again results show that the CCL criteria
are not correlated to CVA and CMD.

3.4. Lacunarity criterion

f ð�;!Þ ¼ c3ð�;!Þ ¼ c3Lð�;!Þ þ c4Lð�;!Þ
� 	

:

The simulation box is divided into 16 or 27 cells, for
which the c3 criterion will measure the decrease in
density variance. Looking at table 7 we see that the
global performance is improved regarding the CCL
criteria in comparison to the RA. But the CVA and
CMD are less improved than the previous runs, and
furthermore the B64 is less efficient than the RA
regarding the CVA, and that can be explained by the
predominance given to the translation move, with an

ECF varying roughly between 30% and 50%.

f ð�;!Þ ¼ c4ð�;!Þ ¼ c6Lð�; !Þ þ c7Lð�;!Þ þ c8Lð�;!Þ
� 	

:

At this scale the IEA seems to better improve the CCL
criteria (see table 8). As for the previous run, and more
clearly in this case, the translation is the most favoured,
with the highest ECF (roughly ranging from 40% to
70%). But this time the CVA and CMD performances
for the long chains are inverted. From the runs C and D,
it appears that this move is efficient for small frequent
displacements, but has a weak effect on the global
conformation of long chains. Concerning short chains,
it seems that the translation succeeds in still bringing
some improvement concerning the CMD criterion.

3.5. Discussion of results
Comparing our different numerical simulations, we

can now sum up and make several remarks. First of all,

Table 5. Criteria comparison table for runs A32 and A64. Bold values denote the best between RA and IEA.

Run CVA CMD (in �2
LJ) CCL (R ¼ 3) CCL (R ¼ 7)

RA 32 not relevant 129.8 3.515 � 10�4 9.177 � 10�3

A32 (IEA) not relevant 181.8 2.79 � 10�4 8.49 � 10�3

RA 64 0.506 27.51 1.737 � 10�3
4.115 � 10�2

A64 (IEA) 0.474 40.8 1.973 � 10�3 4.313 � 10�2

Table 6. Criteria comparison table for runs B32 and B64. Bold values denote the best between RA and IEA.

Run CVA CMD (in �2
LJ) CCL (R ¼ 3) CCL (R ¼ 7)

RA 32 not relevant 129.8 3:515� 10�4 9:177� 10�3

B32 (IEA) not relevant 180.8 3:476� 10�4 9:482� 10�3

RA 64 0.506 27.51 1:737� 10�3 4:115� 10�2

B64 (IEA) 0.428 48.68 2:441� 10�3 5:811� 10�2

Table 7. Criteria comparison table for runs C32 and C64. Bold values denote the best between RA and IEA.

Run CVA CMD (in �2
LJ ) CCL (R ¼ 3) CCL (R ¼ 4)

RA 32 not relevant 129.8 3:515� 10�4 1:02� 10�3

B32 (IEA) not relevant 162.8 2:783� 10�4 8:84� 10�4

RA 64 0:506 27.51 1:737� 10�3 5:174� 10�3

B64 (IEA) 0.543 31.06 1:755� 10�3 4:222� 10�3

Table 8. Criteria comparison table for runs D32 and D64. Bold values enote the best between RA and IEA.

Run CVA CMD (in �2
LJ ) CCL (R ¼ 6) CCL (R ¼ 7) CCL (R ¼ 8)

RA 32 not relevant 129.8 3.393 � 10�3 9.177 �10�3 1.64 �10�2

B32 (IEA) not relevant 164.4 3.356 � 10�3 7:87�10�3 1:46�10�2

RA 64 0:506 27.51 2:044� 10�2 4.116 �10�2 7.186 �10�2

B64 (IEA) 0.551 25.2 1:256� 10�2 2:45�10�2 3:97� 10�2
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it appears that chain end-to-end vector autocorrelation
c1 and centre of mass displacement c2 criteria are closely
linked (and this is not surprising): if one of them is
improved the other is also improved. But when the
simulations are optimized with the lacunarity criterion,
the result is an improvement for this criterion but also a
degradation of other criteria. Even if these results
suggest a kind of opposition between these criteria,
they do not provide a definitive answer. For example it
would be worth developing a multi-objective optimiza-
tion [15] scheme using both a ‘chain criterion’ (c1 or c2)
and a lacunarity criterion.

Another interesting aspect is the difference in the most
favoured MC moves depending on the criterion. Even if
the reptation appears to be more favoured when a chain
criterion is used, surprisingly the translation appears to
be efficient for the lacunarity criterion (i.e. it produces
faster local fluctuations of monomer positions). But
perhaps the more interesting aspect is that, even if there
are clearly preferred moves depending on the criterion,
none of our candidate moves is discarded during the
simulation. This fact outlines the importance of
combining complementary moves even if some of them
could be individually considered as less efficient.

Finally we also insist on the comparison of the
systems with short (32 monomers) or long (64 mono-
mers) chains. In each of our simulations a cell contains
the same number of monomers, but the effect of the
chain length is substantial. Of course a system with
longer chain mixes slower, but our simulation showed
that there is also a difference in the resulting best
frequencies set given by the evolutionary algorithm.
For example in the case of chain criteria, reptation is
given more importance with shorter chain systems. This
means that depending on the type of system and
its physico-chemical conditions, good frequencies for
MC moves may vary significantly. And this fact is
also supportive of our method, because it lets the
evolutionary algorithm automatically find an adapted
combination of moves.

4. Conclusions

In this article, we turned the problem of sampling
efficiency of molecular simulation into an optimization
problem. We started with the identification of numerical
criteria and the available free parameters (the relative
frequencies of MC moves). We designed a new
evolutionary algorithm, well suited to solving this
particular class of optimization problem. We verified
the improvement of the efficiency of our polyethylene
simulations brought about by this IEA algorithm.
Furthermore, this improvement was tested with respect
to different efficiency criteria.

Our numerical experiments, implying four simple
moves (in addition to the volume fluctuation), have
shown that this improvement does not rely only on a
particular move, but also on a good combination of all
available moves. In this case, it appears that reptation is
the more efficient at moving and changing orientations
of chains, and translation is the more efficient at
producing rapid local density variations, corresponding
to our lacunarity criterion.
Furthermore we observed that ‘chains’ criteria and

the lacunarity criteria were not correlated, especially in
the case of long chains. This suggests that these criteria
carry different information about how the system is
mixing, and it would be worth applying multi-objective
techniques in order to improve simultaneously these
complementary criteria.
Even if the numerical experiments presented here

are limited to a specific molecular model in specific
conditions, our algorithm can be easily extended.
In fact, it could be used to test various MC moves in a
common framework. In its generality it can be applied to
any Monte Carlo scheme where a set of free parameters
(having no consequences on the limit distribution) can be
used to improve the efficiency, through the use of an
appropriate numerical criterion. For that reason we will
report in a forthcoming paper on the extension of our
approach to parallel tempering.

References
[1] SIEPMANN, J. J., and FRENKEL, D., 1992, Molec. Phys.,

75, 59.
[2] PANT, P. V. K., and THEODOROU, D. N., 1995,

Macromolecules, 28, 7224.
[3] CONSTA, S., VLUGT, T. J. H., Wichers HOETH, J., SMIT, B.,

and FRENKEL, D., 1999, Molec. Phys., 97, 1243.
[4] MAVRANTZAS, V. G., BOONE, T. D., ZERVOPOULOU, E.,

and THEODOROU, D. N., 1999, Macromolecules, 32, 5072.
[5] FRENKEL, D., and SMIT, B., 1996, Understanding

Molecular Simulation: From Algorithms to Applications
(London: Academic Press).

[6] JERRUM, M., and SINCLAIR, A., 1996, The Markov Chain
Monte Carlo method: an approach to approximate
counting and integration, Approximation Algorithms for
NP-hard Problems, edited by D. Hochbaum (Boston:
PWS), pp. 482–520.

[7] LEVY-VEHEL, J., 1990, About lacunarity, some links
between fractal and integral geometry, and application
to texture segmentation. Technical Report RR-1188,
Institut National de Recherche en Informatique
et Automatique.

[8] MANDELBROT, B. B., 1982, The Fractal Geometry of
Nature (San Francisco, CA: Freeman).

[9] SCHOENAUER, M., and MICHALEWICZ, Z., 1997, Control
Cybernetics, 26, 307.

[10] HOLLAND, J., 1975, Adaptation in Natural and Artificial
Systems (Ann Arbor: University of Michigan Press).

Improving the sample efficiency of MC molecular simulations 3307



[11] GOLDBERG, D. E., 1989, Genetic Algorithms in Search,
Optimization and Machine Learning (Reading, MA:
Addison-Wesley).

[12] RECHENBERG, I., 1973, Evolutionsstrategie: Optimierung
technischer systeme nach prinzipien der biologischen
evolution (Stuttgart: Frommann-Holzboog).

[13] KOZA, J. R., 1992, Genetic Programming: On the
Programming of Computers by Means of Natural
Evolution (Cambridge, MA: MIT Press).

[14] LEBLANC, B., LUTTON, E., BRAUNSCHWEIG, B., and
TOULHOAT, H., 2001,. History and immortality in
evolutionary computation, Proceedings of EA’01: The
5th International Conference on Artificial Evolution,
Lecture Notes in Computer Science, Le Creusot,
France, October 2001 (Berlin: Springer).

[15] FONSECA, C. M., and FLEMING, P. J., 1995, Evolutionary
Computation, 3, 1.

3308 B. Leblanc et al.


