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Abstract 
 
This paper describes current research on the optimisation  of the pedagogical path of a student 

in an existing e-learning software. This optimisation is performed following the models given by a 
fairly recent field of Artificial Intelligence: Ant Colony Optimisation (ACO) [1,2,4]. The 
underlying structure of the E-learning material is represented by a graph with valued arcs whose 
weights are optimised by virtual ants that release virtual pheromones along their paths. This 
gradual modification of the graph’s structure improves its pedagogic pertinence in order to 
increase pedagogic success. The system is developed for Paraschool, the leading French E-
learning company. Tests will be conducted on a pool of more than 10,000 users. 
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1 Introduction 

The e-learning software of the French Paraschool company offers a complement to high-
school teaching. The software is used in schools, over a LAN, with a supervising teacher, or from 
home over the Internet. It contains small tutorials, exercises and multiple-choice questions that 
allow students to practice on their own. The original software provided deterministic HTML links  
and Paraschool was looking for a system that would enhance the navigation by making it adaptive 
and user-specific, so that both individual profiles and collective characteristics could be taken into 
account in an automatic and dynamic fashion. For instance, some successions of lessons may 
prove particularly successful in helping students understand a particular notion and those 
successions, leading to high success rates in subsequent exercises, should be automatically 
detected and highlighted. 

1.1 Evolutionary Computation and Ant Colony Optimisation 
Numerous difficulties pertaining to this problem (multiple contradictory objectives, fuzziness, 

complexity) immediately ring the bell of evolutionary techniques (a set of AI engineering tools of 
bio-mimetic inspiration), among which Ant Colony Optimisation (ACO) seems particularly well 
suited. This subfield of Evolutionary Computation comes from the observation of actual ant 
colonies and social insects in general such as bees or termites, and of their extraordinary abil ities 
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to co-operate at the individual level to trigger complex and intelli gent behaviour at the global 
level, an emerging phenomenon also known as “Swarm Intelligence” [1,4]. The ants' ability to 
come up with optimal paths to fetch food, for example, through the release of chemicals along 
their way is very remarkable and modell ing this simple idea yielded exciting results in the field of 
combinatorial optimisation [5] (efficient heuristic solving of the Travelling Salesman Problem 
(TSP), routing problems, etc.). 

Applying ACO techniques in Paraschool’s context seems relatively straightforward when one 
sees the E-learning software as a graph with valued arcs through which students navigate, 
following suggestions made by the system and where: 

• nodes are pedagogical items (exercises, lessons, quizzes, etc.); 
• arcs are hypertext links between those items; 
• weights on the arcs reflect the probabil ities to suggest subsequent nodes to students; 
• original weights are determined by the pedagogical team of Paraschool. 

The task of the ACO is to optimise the weights on the arcs in order to maximise student success. 
Besides their eff iciency to quickly reach near-optimal solutions, ACO algorithms are also 

especially appreciated for their robustness and adaptability: just as natural ant colonies quickly 
find a new source of food when one disappears, ACO algorithms quickly find new optimal paths 
when the underlying graph suddenly changes. In Paraschool’s case, optimising a graph with 
respect to some dynamic cognitive behaviour at both an individual (with multiple instances) and a 
collective level therefore seems li ke a perfect job for ACO algorithms. The transposition, in 
particular, from the work successfully carried out with ants on TSPs is again straightforward: each 
student going through the graph is represented by a virtual ant that releases virtual pheromones 
(concretely by incrementing floating point values carried by the arc) proportionally to its amount 
of successes and failures. Out of this information, stored in the “environment” and called 
“stigmergic” information [1], emerges a representation of the interaction between the students and 
the pedagogic material. This representation is used to derive probabil ities that dictate the 
forthcoming behaviour of the software. The key advantage of this system is that this representation 
is both reactive and robust. And this is so, firstly because pheromones evaporate with time -which 
prevents the system from freezing or converging towards a particular state- and secondly because 
students, by browsing the graph, continually update the representation, thereby reflecting the 
dynamics of their needs. 

2 Features and specifications 

2.1 Pedagogic weights 
The pedagogical team  gives a weight W  to each arc, reflecting its importance with respect to 

other arcs coming out of the same node. This describes the pedagogic structure of the site: after a 
given lesson, the user can follow several possible arcs; the relevance of which is indicated by W. 
The higher W, the more adequate it is for students to follow the corresponding arc. 

2.2 Pheromone release and evaporation 
Following the validation of a node, an ant (i.e. a student) releases pheromones along the way 

that led it to that node. There are two kinds of pheromones: one for successes (S), one for failures 
(F). Pheromones are released backwards in time along the ant’s path starting from the last 
validated node with decreasing ampli tude. This is meant to reflect the fact that all the nodes a 
student went through previously have an influence on its abili ty to succeed in validating its current 
node. Of course, this influence should decrease with time: the more ancient a visit to a node, the 
less influence it has. This “back propagation” of pheromone release is limited in scope for obvious 



reasons (from both the algorithmic and  pedagogic standpoints) and a number of nodes is thus set 
by the pedagogical team after which the back propagation stops. A typical value of 4 nodes has 
been agreed upon. In addition, pheromones released as stated above evaporate with time: their 
values tend to go back to 0 if the corresponding arc is unused for a long time. This is meant to 
make the system adaptive and to prevent it from being trapped in a particular state. 

2.3 H-nodes: historic weight computation and evaporation 
In order to adapt the system to each student, track is kept -i.e. stored in a database- of each 

node visited by a student, not only in the present sessions but in all of his/her previous sessions as 
well . For each node and for each student a historic weight H is stored in a H-node with a default 
value of 1.0, meaning that the node has not been visited yet. When the node is visited, the value is 
multiplied either by h1 (if it is a success) or by h2 (if it is a failure). Values for h1 and h2 can be 
tuned, but typically, h1=0.5 and h2=0.75. This H  value is going to be used (see below for details 
on how) to discourage a student from visiting a node he/she has already seen, this discouraging 
being weaker when the node was failed. To reflect the fact that a student has limited memory, this 
H value tends to go back to 1.0 with time, along the following equation where x is the time elapsed 
since the last consultation: 
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In the next equation, 2 is a time constant that sets the speed of  the phenomenon. It should be 
calibrated to correspond to the volatility of the students’ memory: 
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This latter equation can be used by the pedagogical team to tune the value of 2 in a convenient 
way: provided one defines what “ forgetting an exercise” means, for instance if its weight, starting 

from 5.01 =−tH  (1 visit with success), grows back to 9.0=tH �� WKLV� JLYHV� .§���� DQG� WKH�
pedagogic team then only has to estimate the time it takes to “ forget an exercise”: 1 week for 
example (x=604800 sec.) gives 66.3 −≈ Eτ . 

2.4 Fitness calculation 
Using all the information described above, each arc a is given a fitness value: 
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This value unifies in a weighted average all the factors that make an arc “desirable” or not: f is 
high when: 

• The arc’s ending node was last visited a long time ago (H is close to 1) 
• The arc is encouraged by professors (high W) 
• People have succeeded a lot around that node (high S) 
• People have failed a little around that node (low F) 

2.5 Arc selection and subsequent suggestion 
After a node has been validated, the outgoing arcs are sorted according to this computed 

fitness value. One arc is randomly selected among the whole list, with a probabil ity that is 
proportional to its fitness. It is suggested as an adequate follow-up to the student who pressed the 
ACO-powered NEXT button. A variety of selection procedures has been implemented, taken from 



the field of genetic and evolutionary computation, among which: roulette-wheel selection, ranking 
based methods and stochastic tournament selection. Choosing one method or another gives more 
or less control on the phenomenon by allowing to tune more or less precisely the amount of 
randomness this selection procedure is going to have. (cf. [3] for details). 

The three approaches have been implemented, but tests have not been thorough enough to 
determine which method was the best. 

3 First Results 

Numerous tests have been conducted. First, a simulation procedure has been defined to allow 
for stabili zation and calibration of the various parameters. The algorithm was then applied to the 
actual Paraschool software. 

3.1 Simulations 

3.1.1   Modelling the population 
A model of user population has been derived to conduct automatic simulation tests: 

Each virtual student (i.e. ant), is given a certain level represented by a floating point value 
between 0.0 and 1.0. This value is normally distributed over the population of students with mean 
0.5 and standard deviation 1/3. Each exercise is assigned a difficulty value, also between 0.0 and 
1.0. When an ant arrives at a given node, if its level allows it to validate the node (level>difficulty), 
it succeeds, otherwise, it fails. Pheromones are released accordingly. General calibration of the 
algorithm was performed on a “ real” graph, i.e. corresponding to an actual part of the Paraschool 
website (the “Vectors” chapter of a mathematics course for high school students around age 14). 
Arcs between nodes and corresponding weights have been assigned by the Paraschool pedagogical 
team. The sample case is therefore realistic (20 nodes, 47 arcs) and constitutes a meaningful 
structure with real size. 

3.1.2   A particular test case 
Several features are expected from the ant colony. In particular, it should be able to correct 

inappropriate arc weight values. To investigate this properly, after a rough calibration and 
observation process conducted on the real sized graph mentioned above, experiments are 
conducted on a reduced graph that exhibits such a situation: 

 After solving exercise 1, the student can either go to exercise 2 or to exercise 3 before he 
ends, in both cases, with exercise 4. Exercise 3 is encouraged by the pedagogical team as the arc 
leading to it is assigned a weight of 5 versus 1 for the arc leading to exercise 2. The problem is 
that the success rate of exercise 4 is much higher when the student comes from exercise 2 than 
when he/she comes from exercise 3. What is expected from the system in such a case is to detect 
the situation and to reverse the two probabili ties so that students are encouraged to follow the right 
path. This should be achieved naturally, i.e. without any human intervention, thanks to the release 
of virtual pheromones along the arcs. The arc leading to exercise 2 wil l hold a large amount of 
success pheromones and a low amount of failure pheromones. The arc leading to exercise 3, on the 
contrary is going to be in the opposite situation and this double discrepancy is going to be 
reflected in the arcs' fitness, thereby modifying their probabili ties to be followed. Progressively, 
the arc leading to exercise 2 takes over the arc leading to exercise 3 and experiments show that a 
reasonable situation is promptly re-established 

In the real-world version, such a discrepancy  between weights given by the pedagogic team 
and evolved weights wil l issue a warning so that measures can be taken to solve the problem. 



3.2 Real world application 

The application to the real Paraschool system is only in its early stage. The ant colony 
algorithm has been integrated to the entire website in a downgraded mode where pheromones are 
only used to gather information and do not yet influence arc probabil ities. Ten days after the 
integration, 566 “ants” have browsed the site, 2419 arcs have been visited and 3021 H-nodes have 
been created. First observations tend to show that singular nodes (i.e. too easy or too difficult 
exercises) see corresponding amounts of pheromones cumulate around them (e.g. high S and low 
F), giving its first credits to the pheromone representation of the pedagogic structure. From an 
algorithmic point of view, these initial observations also show that the system is stable and able to 
handle all the additional computations without any noticeable overhead. 

4 Conclusions and outline for future work 

Time has now come to analyse the algorithm behaviour while in passive mode and tune the 
different parameters. When results show that the system is really stable, it will be switched to 
active mode wherefrom it is hoped that the ACO heuristic will provide: 

• a seemingly intelligent system that improves the behaviour of the web site from the 
student's viewpoint, 
• a refined auditing tool to help the pedagogical team identify the strengths and weaknesses 
of their software and pedagogic material. 

From a theoretical perspective, this work brings encouraging elements of answers as to whether 
the emerging properties of social insect-based models can: 

• make proper tools to enhance e-learning systems, 
• adequately describe the cognitive behaviour of a social system (students and teachers), 
• scale well from small experimental environments to a real-world application involving 
several thousands of individuals. 
As this technique is original in the field of E-Learning and as the observation phase is only 

beginning, the present study should be seen as pointing out a potentially interesting research 
direction while great expectations are put in the observation of the forthcoming behaviour of the 
system. 
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