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Geneti Algorithms as a tool in the study of aperiodi order,with appliation to the ase of X-Ray di�ration spetra ofGaAs-AlAs multilayer heterostruturesBenô�t LEBLANC1, Evelyne LUTTON1, and Fran�oise AXEL21 INRIA - RoquenourtB.P. 105, 78153 LE CHESNAY Cedex, FraneTel : +33 1 39 63 55 23 - Fax : +33 1 39 63 59 95e-mail: Benoit.Leblan�inria.fr,Evelyne.Lutton�inria.frhttp://www-roq.inria.fr/fratales/2 Laboratoire de Physique des Solides CNRS UMR 8502Bat 510, Universit�e Paris Sud, 91405 ORSAY, FraneTel : +33 1 69 15 53 96 - Fax : +33 1 69 15 60 86e-mail: axel�lps.u-psud.frAbstrat. We present the �rst appliation of Geneti Algorithms to the analysis of data from an aperiodi-ally ordered system, high resolution X-Ray di�ration spetra from multilayer heterostrutures arrangedaording to a deterministi or random sheme. This method paves the way to the solution of the \in-verse problem", that is the retrieval of the generating disorder from the investigation of the spetra of anunknown sample having non rystallographi, non quasi-rystallographi order.PACS. 02.50.-r Probability theory, stohasti proesses, and statistis { 05.90.+m Other topis in statisti-al physis, thermodynamis, and nonlinear dynamial systems { 61.10.-i X-ray di�ration and sattering{ 61.43.-j Disordered solids { 68.65.-k Low-dimensional, mesosopi, and nanosale systems: struture andnoneletroni propertiesIntrodutionSolving a partiular problem an amount to the �ndingof the minimum of a funtion over a given spae. Onethen onsiders an optimization problem. When the fun-tion has a ertain type of regularity, a number of methodsexist, most often based on gradient or generalized gradientomputations (see for instane [1℄). Generalized gradientmethods work well when :{ \some sort" of gradient an be de�ned and omputedat any point of the spae of solutions (for instane, adiretional derivative),{ the funtion of interest does not have too many loalminima, or the value taken by the funtion at theseminima is signi�antly greater than its value at theabsolute minimum.But for very irregular funtions whih do not satisfythese requirement, di�erent methods have to be used foroptimization. Most of them are based on stohasti shemes.1. One of the most known stohasti algorithms is Simu-lated Annealing. It is a powerful tehnique for �ndingthe global minimum of a funtion when a great num-ber of parameters have to be taken into aount. It

is based upon an analogy with the annealing of solids,where a material is heated to a high temperature, thenvery slowly ooled in order to let the system possiblyreah its ground state energy. The deliate point is tolower the temperature T not too rapidly, so as to avoidloal minima.The Metropolis algorithm is then used : at \tempera-ture" T, the jump from a state of energy E to a stateof energy E0 is made with probability one if E0 is lowerthan E, that is the state of energy E0 is \aepted",and with a probability proportional to exp((E�E0)=T )if not [2{4℄.Theoretial results exist that prove the onvergeneof suh a proess, but reahing the optimal solutionis guaranteed only if the \temperature" parameter islowered at a logarithmi rate, implying a very largenumber of iterations in general.To solve optimization problems of other systems oneuses a transposition to the statistial mehanis situ-ation of simulated annealing along the lines of table 1[5℄.The ombinatorial problem is therefore formulated asa statistial mehanial problem.



2 Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi OrderOptimization problem of a given system Simulated annealingDomain of the problem SampleDe�nition of on�guration StateCost funtion for a on�guration Energy of a stateOptimal on�guration Ground stateMinimal ost Ground state energyControl parameter for optimization proess TemperatureTable 1. Optimization and simulated annealing2. Another one is the Replia Method whih has �rst beenapplied to spin glass systems. It had been originallyproposed as a trik to simplify the omputation of theaverage value of the free energy density. This is done byintroduing n unoupled replias of the initial systemof size N , then de�ning the partition funtion and thefree energy of the n replias as a funtion of n integer,that are simply related to the partition funtion andfree energy of the initial system. Then extending theseto analyti funtions of n, one takes the two limits n!0 and N !1 in an adequate fashion, thus obtainingthe desired average free energy.The appliation to the solution of other optimizationproblems is straightforward [6,7℄.3. In the following, we hose to experiment another op-timization tehnique, Geneti Algorithms [8,9℄ whihwe seleted for its eÆieny in dealing with disreteodings, and desribe in details below.The systems under study, as explained below, are mul-tilayers heterostrutures omposed of planar layers of twokinds (the two letter alphabet) arranged aording eitherto deterministi algorithms, aperiodi substitutional orautomati sequenes, or analogous systems where the dis-order generating sequene is unknown.In part 1, we present the multilayer system under studyand introdue the \inverse problem". In part 2 an appli-ation of a Geneti Algorithm to this problem is presentedfor the investigation of alulated Xray di�ration spetra.Results are presented in part 3.1 X-Ray di�ration spetra and the inverseproblem1.1 X-Ray di�ration spetra analysis : the modelIn their artile [10℄, Peyri�ere, Cokayne and Axel presenta theoretial and numerial study for the analysis of XRaydi�ration spetra of Prouhet-Thue-MorseGaAs-AlAs mul-tilayer heterostrutures.The experimental disovery of quasirystals [11℄ in 1984has opened a new �eld of researh to both experimen-talists and theoriians. In this �eld, the importane ofdeterministi strutures having ontrolled aperiodi dis-order is being inreasingly reognised. This is why one-dimensional deterministi sequenes generated by substi-tution or �nite automata [12{14℄ have been widely used

mathematial objets to build suh strutures. In par-tiular, 3D multilayer heterostrutures having two kindsof layers arranged aording to the Fibonai sequenewere �rst de�ned and e�etively made as early as 1985 bymoleular-beam epitaxy [15,16℄ (MBE) and onsequentlyinvestigated by x-ray and neutron di�ration [16{19℄ Ra-man sattering [20,21℄ et.Prompted by all of these studies, an extension of suhmethods to nonquasiperiodi systems soon began, withspeial interest in the Thue-Morse sequene, andt its math-ematial and physial properties. For instane, in 1987, aThue-Morse superlattie heterostruture was made for the�rst time and investigated by Raman sattering [20℄.The Prouhet-Thue-Morse sequene f�ng an be de-�ned in several equivalent ways as follows :{ Let � be a substitution ating on a two letter alphabet,for example (0; 1) : ��0! 011! 10 (1)The sequene is then haraterized by its initial ondi-tions �0 and the number n of iterations of �. Its lengthis N = 2n.With �0 = 0, the sequene is :0010110011010010110100110010110 : : :{ A reursive de�nition. With �i the ith element in thesequene, one has :� �2n = �n�2n+1 = 1� �n with �0 2 f0; 1g (2){ A de�nition using an algorithmi mahine known as a2-automaton (see [22,10℄).Let us notie that for a given length there exist twopossible sequenes alled mirror sequenes orrespondingto the two initial onditions �0 = 0 and �0 = 1.In pratie, superlattie heterostrutures are grown ona GaAs(001) substrate by moleular-beam epitaxy (MBE).The deposition rate is about 1 �A/se. The lattie simplyonsists of AlAs (A) and GaAs (B) layers. The values ofdA and dB are designed to be dA = dB = 5a0, where a0 is



Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi Order 3the average onstant of the ubi \zin-blende" lattie ofAlAs and GaAs.Taking advantage of the spei� properties of the Prou-het-Thue-Morse sequene and using the atomi struturefators of the GaAs and AlAs layers, and using kinematidi�ration theory, the authors [10℄ alulate a general for-mula for the di�ration amplitude Ŝn(q) with q the wavevetor.The intensity of the high resolution X-Ray di�rationspetrum is then :In(q) = ���Ŝn(q)���2 = Ŝ�n(q)Ŝn(q) (3)The authors have thus been able to suessfully re-produe experimental high resolution X-Ray di�rationspetra from 27 and 210 Prouhet-Thue-Morse multilayerheterostrutures originally published in referene [23℄.1.2 Generalization of the modelThis model an be generalized for multilayer heterostru-tures having any kind of generating binary sequene(sN (k))k2[0;N�1℄with N the total length of the sequene.With the symboli assoiation and using the notations of[10℄ :0: odes GaAs layers, with thikness d0 and di�rationamplitude �̂0(q) as a funtion of wave vetor q.1: odes AlAs layers, with thikness d1 and di�rationamplitude �̂1(q) as a funtion of wave vetor q.Then the di�ration amplitude readsŜN(q) = �sN (0)(q) + N�1Xj=1 e�2i�q[Pj�1k=0 dsN (k)℄�sN (j)(q)(4)We note that for the alulation of ŜN (q) one has to usea summation of N = 2n terms, whereas the alulationof ŜN (q) in the Prouhet-Thue-Morse ase requires only nfators. The generalization in the present ontext is at theprie of going from O(n) to O(2n) in omputational time[10℄.1.3 Nature and interest of the \inverse problem"The goal is to retrieve from the experimental X-Ray di�ra-tion spetrum of an unknown multilayer heterostruturesample the binary sequene after whih the layers are ar-ranged.Suh a problem is well resolved in \lassial" rystal-lography where the possible latties of rystalline sam-ples have symmetries belonging to one of the 230 rys-tallographi groups. The analysis of the XRay di�rationspetrum then allows { the hemial omposition beingknown { the omplete retrieval of the struture. This is

also true for quasirysals [24,25℄, but not for materialswhere long range order is \less regular", suh as aperiodideterministi order generated by a substitutive sequeneor for glassy materials where the disorder is in generalthought of as being of random origin. The interest of �nd-ing or approahing a solution to this problem is obvious.When dealing with diÆult \inverse problems" as theprevious one, where no analytial solution is known, astraightforward strategy is to try and deal with this prob-lem as with an optimization problem. The optimizationproblem here is the minimization of a \distane" betweenthe experimental spetrum and the omputed spetrumaording to equation 4, with respet to the generatingbinary sequene (sN(k))k2[0;N�1℄. The funtion to be min-imized in this ase is a very irregular and omplex funtionand a well adapted stohasti optimization method mustbe used1. We present in the sequel a solution of this prob-lem based on a Geneti Algorithms.2 Use of a Geneti Algorithm2.1 Geneti AlgorithmsGeneti Algorithms { or more generally Evolutionary Al-gorithms { mimi Darwin's evolutionarymodel of survival-of-the-�ttest, in evolving a set of potential solutions ratherthan a unique point. This is a main advantage over otherstohasti shemes when optimizing irregular and diÆultfuntions over large searh spaes.This method is based on two themes : the ability of sim-ple representations (sequenes on a two letter alphabet)to enode ompliated strutures, and the power of simpletransformations to improve suh strutures. It has beenshown [26℄ that with the proper ontrol struture, rapidimprovements of bit strings ould be made to \evolve" aspopulation of animals do. Reently established theoretialresults [27{30℄ prove that, given appropriate onditions,geneti algorithms tend to onverge onto solutions thatare globally optimal, i.e. the limit distribution of the pop-ulation when generations tends to in�nity is onentratedon the global maximum (or maxima, if there are several)of the �tness funtions. 2In natural evolution, the harateristis of eah indi-vidual are embodied in the omposition of its hromo-somes. Operations that alter this hromosomal omposi-tion speially our when parents reprodue ; among themare random mutation, i.e. a small alteration of its hro-mosomal material, and rossover, an exhange of hromo-somal material between two parents' hromosomes. Thisfeature of natural evolution - the ability of a population1 The size of the searh spae (see setion 2.2) without on-sidering the irregularity of the funtion itself, is a suÆientreason to onsider stohasti optimization methods.2 Other theoretial and experimental analysis proved a\weaker" onvergene riterion, i.e. the best individual of thelimit population is positioned on the global optimum (or onone of the global optima) of the �tness funtion.



4 Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi Orderof hromosomes to explore its searh spae and simulta-neously ombine the best �ndings through rossover - isexploited during a Geneti Algorithms run.Of ourse these notions are suÆiently simpli�ed sothey an be used in a omputer program. The generalstruture of a Geneti Algorithm program is desribed in�gure 1, the seletion step is usually performed by a bi-ased random shot, where the probability for an individualto be seleted is proportional to its \�tness", i.e. a mea-sure of the quality of the \solution" represented by thisindividual regarding the problem to solve. The \geneti"operators are usually two : rossover and mutation. Theyare stohasti operators, applied with some probabilities(p and pm respetively). Figures 2 and 3 show two las-sial implementation of these operators.In the appliation presented in this paper, we havemade spei� hoies onerning these points, in orderto perform an eÆient statistial optimization. Of ourse,there exist many possible variations of this struture : weimplemented a lassial sheme, where the population sizeof eah generation is onstant, and the initial population israndomly generated on the searh spae. This appliationhas been programmed with ALGON [31℄, a general Ge-neti Algorithm software whih was developed at INRIAby two of the authors.2.2 The standard methodFor a given problem to be solved with the help of a GenetiAlgorithm, it is neessary to de�ne an eÆient oding ofits possible solutions (also alled individuals) whih ouldlend themselves to the ation of geneti operators. It is alsoneessary to arefully design a �tness funtion that eval-uates the qualities displayed by an individual onfrontedto the given problem.In the present ase:{ The oding of an individual is a binary sequene wihrepresents its genotype from whih the di�ration spe-trum (its phenotype) is alulated.{ The �tness funtion arries the \resemblane" of thespetrum generated by a given individual to the targetspetrum. With Ne sample points (the values of thewave vetor q for whih the intensity In(q) is alu-lated) in the spetrum, one de�nes the following \dis-tane" between spetra and the �tness funtion:distane(spi; sp) = 1Ne Ne�1Xk=0 [spi(k)� sp(k)℄2fitness(i) = exp (�distane(spi; sp))where (spi(k))k2[0;Ne�1℄ are the values of the sampledspetrum assoiated to individual iand (sp(k))k2[0;Ne�1℄ the values of the target spe-trum.Note that this value is exatly 1 when the spetra spiand sp are idential, and goes to 0 as the two spetraare inreasingly di�erent.
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mutation siteFig. 3. The Mutation proess : a small perturbation of thegenome. For example a bit is ipped (0 ! 1) on a randomlyhosen position on the genome (mutation site)An analysis has been performed with target spetrathat are XRay di�ration spetra numerially alulatedusing the general model of equation (4) with a given binarysequene of length N. Figures 12 and 13 show suÆientlywell how very lose they are to the experimental data.This binary sequene is then the exat solution and theindividual whih represents it has a �tness value equal to1. One assumes furthermore that the sequene length N isknown, whih limits the searh spae to the set of binaryhains of length N for a spae size of 2N .We onsider, as in [10℄, a Prouhet-Thue-Morse sequeneof order 7, the size if the searh spae is then 2128. Suh asize alone would not be an obstale for the onvergene ofan optimization algorithm if the fitness funtion did nothave a multimodal harater, i.e. it has only one globaloptimum.Preliminary omputations show that a lassial Ge-neti Algorithm must be improved due to diÆulties aris-ing from the multimodal harater of the �tness funtionand the lak of spei�ity of the Hamming distane toharaterise the \eÆieny" of the individuals having the



Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi Order 5best �tness value in nearing the solution (the Hammingdistane, that is the number of sites at whih two binaryhains of idential length are di�erent, is the natural dis-tane used in searh spaes when using harater stringsor binary odes).Moreover, the sequene length has a diret e�et onthe osillating harater of the orresponding spetrum.In order to have a orret sampling of the target spe-trum, the number of sample points Ne has thus to be inproportion to the sequene length.2.3 The Shared Geneti AlgorithmBeause of the above mentionned diÆulties it has beenfound useful to use the sharing ([32℄) method whih allowsto keep some geneti diversity in a population, so as toredue the risk of premature onvergene. (See [33℄ for asurvey of the methods used for the onservation of genetidiversity among a Geneti Algorithm population.)Sharing methods an briey be desribed as follows :by analogy with the natural phenomenon of \nihing", theGeneti Algorithm is modi�ed in order to simultaneouslyexplore all the promising zones it disovers in the searhspae. The onept of sharing stems from the followingneed : If the individuals of a same population subgrouphave to share their resoures, the growth of this populationis limited. In ase of overpopulation, the individuals willtend to look for new territories to be explored. The majorway of ontrolling a Geneti Algorithm being through its�tness funtion, a simple strategy is to lower the �tness ofan individual with respet to its neighbors in the urrentpopulation. It is based on the use of a distane de�nedon the searh spae and omputed either on hromosomes(genotypi distane) or on the searh spae itself (pheno-typi distane). In the urrent problem, we shall keep theHamming distane.Another simple way to maintain geneti diversity andto avoid �tness realulation of the same individual, is toforbid idential individuals inside the urrent population.The appliation of a then so-alled \elitist" strategy hasalso proven to be eÆient in order to redue the e�ets of�tness sensitivity to a small geneti hange. In this ase,only a part of the population is replaed at eah genera-tion, this part being generally made of individuals havingthe lowest �tness values. This elitist strategy has also theadvantage of keeping mainly those individuals that repre-sent \good" solutions in the urrent population.Moreover, the joint use of a sharing and an elitist strat-egy raises the problem of the preservation of some ge-neti diversity inside the seletion proess. The sharingmethod presented by Miller and Saw in [34℄, thereafteralled Dynami Nihe Sharing, seems to us partiularlywell adapted to ombine the advantages of elitism andsharing strategies. An improved version of this tehniqueis used here (see Appendix for details).Finally, aording to Baker [35℄, who has omparedseveral seletion methods, the Stohasti Universal Sam-pling seletion method (instead of a lassialRoulette WheelSeletion) seems to us more appropriate in the present

problem. The Roulette Wheel Seletion has a larger vari-ane with respet to the number of o�spring of a givenindividual, while these methods both produe in averagethe same expeted number of o�spring p(i) that is for in-dividual i of a population of size N :p(i) = fitness(i)PNj=1 fitness(j) (5)3 ResultsThree types of sequenes with three di�erent length havebeen tested to generate the target spetrum for the GenetiAlgorithm : a Prouhet-Thue-Morse sequene, a periodisequene (strit alternane of 0 and 1), and a randomlygenerated sequene. Their sizes have been suessively 32,64 and 128.3.1 Sequenes of length 32Figures 4, 5 and 6 show the intensities In(q) as a funtionof the wave vetor q for the target spetra orrespondingto the three di�erent types of sequenes of size 32.The Geneti Algorithm parameters are :{ Population size : 160 individuals.{ Use of two points rossover, with a rossover probabil-ity p = 0:85.{ Mutation probability pm = 0:02.{ Use of the dynami nihe sharing, with the number ofnihes to be identi�ed P = 8, the parameter �share =12, that ontrols the mean radius of a nihe (the Ham-ming distane is used for a metri on the searh spae).{ The survival rate ts = 0:5. It orresponds to the pro-portion of individuals in a population subset being au-tomatially transferred to the next generation.The dynami nihe sharing parameters have been hosenin order to take into aount several fats :{ Two binary hains of length l uniformly randomly ho-sen di�er on the average by l=2. A value of �share toolose to or larger than l=2 would indue too many over-laps.{ A value �share too low would indue a too large num-ber of population subsets onsidering the number ofdesired nihes. The majority of the population indi-viduals would then belong to the non-peaks ategory.{ For a given size of population subset, a too large num-ber of nihes would indue an average population sub-sets size too low.The parameter P is thus hosen as a funtion of thepopulation size, so that the population subsets be not toosmall. The parameter �share has thus been �xed in or-der to perform a lassi�ation of the major part of thepopulation.Finally, the number of sample points Ns is 210, thisnumber diretly inuenes the omputation time, but a



6 Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi OrderSequene Ng minimum Ng maximum Ng average Standard deviationPeriodi 24 47 35.5 7.5PTM 33 163 66 35Random 46 447 104 90Table 2. Number of generations to �nd the target for sequenes of length 32
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Fig. 4. Spetrum In(q) generated with the Prouhet-Thue-Morse sequene of size 32 (see text)
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Fig. 5. Spetrum In(q) generated with the periodi sequeneof size 32 (see text)

2

3

4

5

6

7

8

9

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-aleat.32"

Fig. 6. Spetrum In(q) generated with the random sequeneof size 32 (see text)

Population size 160p 0.85pm 0.02Number of nihes P 8�share 12Survival rate ts 0.5Number of sample points Ns 210Table 3. Parameter setting of the GA for sequenes of length32subsampling of the spetrum would diminish the eÆienyof the �tness funtion.These parameters are summarised in table 3.For 20 tests performed aording to these onditions,we present in table 2 the number of the generationNg usedto �nd the target sequene, or its mirror, whose spetrumin the ase of the Prouhet-Thue-Morse and periodi se-quene as quasi idential to the target spetrum.The omputation time for 100 generations is near 5minutes on a de-alpha station (DEC-3000-M300X).It is interesting to note the extent to whih, the morethe spetrum depends on a regular underlying struture,the more eÆient the Geneti Algorithm is.3.2 Sequenes of length 64The results are shown in �gures 7, 8 and 9. The GenetiAlgorithm parameters are presented in table 4 :Population size 400p 0.85pm 0.01Number of nihes P 16�share 24Survival rate ts 0.5Number of sample points Ns 416Table 4. Parameter setting of the GA for periodi and PTMsequenes of length 64The average omputation time for 100 generations is40 minutes on a de-alpha station. For 5 tests we obtainthe results of table 5.For this parameter setting, the performanes of theGeneti Algorithm on a random sequene are very bad,on�rming the fat that spetra based on sequenes hav-ing a regular struture are more easily inversed (we havealready notied this with the experiments on length 32 se-quenes). A modi�ed parameters setting (see table 6) led



Leblan, Lutton and Axel: Geneti Algorithms and Aperiodi Order 7Sequene Ng minimum Ng maximum Ng average Standard deviationPeriodi 63 136 103.6 28PTM 221 341 262 47random 567 1712 1068 462Table 5. Number of generations to �nd the target for sequenes of length 64
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Fig. 7. Spetrum In(q) generated with the Prouhet-Thue-Morse sequene of size 64 (see text)
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Fig. 8. Spetrum In(q) generated with the periodi sequeneof size 64 (see text)
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Fig. 9. Spetrum In(q) generated with the random sequeneof size 64 (see text)

to a omputation time of almost 2 hours for 100 genera-tions, results are presented in the last raw of table 5.Population size 1000p 0.85pm 0.01Number of nihes P 20�share 24Survival rate ts 0.5Number of sample points Ns 520Table 6. Parameter setting of the GA for random sequenesof length 64For omparison, the Geneti Algorithm needs around20 000 �tness evaluations to onverge in the ase of a peri-odi sequene, whereas it needs 50 000 �tness evaluationsfor the Prouhet-Thue-Morse sequene, and 500 000 forthe random sequene (the searh spae is always of sizejSj = 264 ' 1:84 � 1018).3.3 Sequenes of length 128In this ase, experiments on the Prouhet-Thue-Morse se-quene of order 7 and on a periodi sequene have beenperformed (�gure 10 and 11 show the assoiated targetspetra). The size of the searh spae inreases in an ex-ponential way with respet to the preeding test, and atthe same time, the omputation time of the spetra alsoinreases in a signi�ant way. If we inrease the numberof sample points proportionally to the sequene length,the omplexity would be O(n2). Experiments prove thatinreasing the population size is suÆient to make the Ge-neti Algorithm onverge to the solution.The Geneti Algorithm parameters are summarised intable 7. Population size 2000p 0.85pm 0.01Number of nihes P 30�share 48Survival rate ts 0.5Number of sample points Ns 624Table 7. Parameter setting of the GA for sequenes of length128The Geneti Algorithm �nally found the Prouhet-Thue-Morse sequene after 884 generations, i.e. near 900 000 �t-
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Fig. 10. Spetrum In(q) generated with the Prouhet-Thue-Morse sequene of size 128
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Fig. 11. Spetrum In(q) generated with the periodi sequeneof size 128ness evaluations (due to rounding errors during the om-putation of the number of survivors of a population subset,an average of 1000 individuals are reated at eah gener-ation). For the periodi sequene, 184 generations wereneessary, i.e. near 200 000 �tness evaluations. The om-putations time was near 1 hour for 10 generations. The Ge-neti Algorithm parameter setting ertainly needs furtheradjustments (also the hoie of the number of samplingpoints), but it is obvious that suh omputation timesdisourage systemati tests. We an still onsider as quitesatisfatory the fat that it is de�nitely possible to solvethis problem with a Geneti Algorithm.4 ConlusionWe presented an appliation of Geneti Algorithms to theanalysis of high resolution X-Ray di�ration spetra ofbinary multilayer heterostrutures. The method atuallyallows the aurate retrieval of the binary generating se-quene from the analysis of spetra of an unknown multi-layer sample up to a layer number of 128.Other target spetra should be investigated, so as toenable us to know the extent to whih this tehnology al-

lows satisfatory struture determination in systems withaperiodi order.
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Fig. 12. Experimental spetrum, showing the di�rated in-tensity I(q) in arbitrary units as a funtion of wave vetor q,for a Prouhet-Thue-Morse GaAs-AlAs multilayer with N=128(ourtesy F. Laruelle, L. Leprine and J. Shnek, CNET-Bagneux)
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Fig. 13. Computed spetrum from the model of [10℄ with asimple substrate model
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of niche CFig. 14. An elitist strategy for dynami nihe sharingWithin this framework, the modi�ed �tness value Fshareof an individual belonging to a dynami nihe equals itsinitial �tness divided by the size of the dynami nihepopulation. The �tness of the individuals belonging to theategory of non-peaks is divided by the meter mi used forthe lassial sharing (see [32℄). So the new �tness valueFshare is given byFshare(i) = fitness(i)mdsh;iwhere the dynami nihe meter, mdsh;i is given by :mdsh;i = �nj if i belongs to the dynami nihe j,mi if i belongs to the \non-peak"lass).with mi = NXk=1Sh(dik)The peak identi�ation tehnique proposed by Millerand Shaw (Greedy Dynami Peak Identi�ation) an bedesribed as follows :1. Sorting of the population based on dereasing initial�tness.2. Extration of individual i from this sorting.3. If i belongs to one or several nihes, it is lassi�ed inthe nihe the dynami peak of whih is the losest toi. Else i beomes a new dynami peak and the numberof identi�ed nihes inreases by 1.4. If the number of identi�ed nihes is less that P or if iis less that the population size, one goes bak to step2.5. Else : end.Essentially, the dynami nihe sharing is di�erent fromthe lassial sharing by the distribution of the populationinside a nihe. In this last ase, the ount of the individ-uals inside a given nihe is done separately for eah ofthe individuals. And sine it knoks down the shared �t-ness, the Geneti Algorithm tends to redue this ountwith the e�et of making more uniform the population

distribution inside a given nihe. This proess then slowsdown the onvergene speed of this population subset to-wards the optimum of the onsidered nihe (under thehypothesis, however, that inside a given nihe, there anbe only one optimum). On the ontrary the dynami nihesharing identify the nihes in a more global manner andknoks down identially all the individuals of a given nihe.The seletive pressure inside a given nihe then dependsonly on the initial �tness value of the individuals, yet un-hanged by sharing.This value easily lends itself to the appliation of an\elitist" strategy, sine one indeed an use the expliit di-vision of the population into subsets : one subset per iden-ti�ed nihe and possibly the subset of unlassi�ed individ-uals. The operational hoie to keep a �xed proportion ofthe population then naturally extends to eah populationsubset.Figure 14 is an illustration of this idea.{ The left table shows a population lassi�ed in dereas-ing order ( A1 has the best �tness value, C4 the low-est). The population is divided into three populationsubsets orresponding to nihes A, B and C, where A1is the best individual of nihe A, A4 the worst, et ...This example illustrates the ase where the whole pop-ulation is taken into aount for the hoie of survivors(the proportion of survivors is 0.5, survivors being in-dividuals seleted to be transfered diretly from theformer the the latter population lass). All the indi-viduals of nihe A survive, ontrary to those of niheC.{ The right table illustrates the ase when the hoie ofsurvivors is performed, still with a proportion of 0.5,out of the individual population subsets. The individ-uals are gathered in eah nihe and internally lassi-�ed in dereasing order. Eah nihe having the samenumber of individuals, they all have equal numbers ofsurvivors.It an be learly seen that the �rst method goes againstthe aim of sharing whih is to keep eah nihe populated,or at least the interesting ones if there are too many.


