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t. We present the �rst appli
ation of Geneti
 Algorithms to the analysis of data from an aperiodi-
ally ordered system, high resolution X-Ray di�ra
tion spe
tra from multilayer heterostru
tures arrangeda

ording to a deterministi
 or random s
heme. This method paves the way to the solution of the \in-verse problem", that is the retrieval of the generating disorder from the investigation of the spe
tra of anunknown sample having non 
rystallographi
, non quasi-
rystallographi
 order.PACS. 02.50.-r Probability theory, sto
hasti
 pro
esses, and statisti
s { 05.90.+m Other topi
s in statisti-
al physi
s, thermodynami
s, and nonlinear dynami
al systems { 61.10.-i X-ray di�ra
tion and s
attering{ 61.43.-j Disordered solids { 68.65.-k Low-dimensional, mesos
opi
, and nanos
ale systems: stru
ture andnonele
troni
 propertiesIntrodu
tionSolving a parti
ular problem 
an amount to the �ndingof the minimum of a fun
tion over a given spa
e. Onethen 
onsiders an optimization problem. When the fun
-tion has a 
ertain type of regularity, a number of methodsexist, most often based on gradient or generalized gradient
omputations (see for instan
e [1℄). Generalized gradientmethods work well when :{ \some sort" of gradient 
an be de�ned and 
omputedat any point of the spa
e of solutions (for instan
e, adire
tional derivative),{ the fun
tion of interest does not have too many lo
alminima, or the value taken by the fun
tion at theseminima is signi�
antly greater than its value at theabsolute minimum.But for very irregular fun
tions whi
h do not satisfythese requirement, di�erent methods have to be used foroptimization. Most of them are based on sto
hasti
 s
hemes.1. One of the most known sto
hasti
 algorithms is Simu-lated Annealing. It is a powerful te
hnique for �ndingthe global minimum of a fun
tion when a great num-ber of parameters have to be taken into a

ount. It

is based upon an analogy with the annealing of solids,where a material is heated to a high temperature, thenvery slowly 
ooled in order to let the system possiblyrea
h its ground state energy. The deli
ate point is tolower the temperature T not too rapidly, so as to avoidlo
al minima.The Metropolis algorithm is then used : at \tempera-ture" T, the jump from a state of energy E to a stateof energy E0 is made with probability one if E0 is lowerthan E, that is the state of energy E0 is \a

epted",and with a probability proportional to exp((E�E0)=T )if not [2{4℄.Theoreti
al results exist that prove the 
onvergen
eof su
h a pro
ess, but rea
hing the optimal solutionis guaranteed only if the \temperature" parameter islowered at a logarithmi
 rate, implying a very largenumber of iterations in general.To solve optimization problems of other systems oneuses a transposition to the statisti
al me
hani
s situ-ation of simulated annealing along the lines of table 1[5℄.The 
ombinatorial problem is therefore formulated asa statisti
al me
hani
al problem.
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 OrderOptimization problem of a given system Simulated annealingDomain of the problem SampleDe�nition of 
on�guration StateCost fun
tion for a 
on�guration Energy of a stateOptimal 
on�guration Ground stateMinimal 
ost Ground state energyControl parameter for optimization pro
ess TemperatureTable 1. Optimization and simulated annealing2. Another one is the Repli
a Method whi
h has �rst beenapplied to spin glass systems. It had been originallyproposed as a tri
k to simplify the 
omputation of theaverage value of the free energy density. This is done byintrodu
ing n un
oupled repli
as of the initial systemof size N , then de�ning the partition fun
tion and thefree energy of the n repli
as as a fun
tion of n integer,that are simply related to the partition fun
tion andfree energy of the initial system. Then extending theseto analyti
 fun
tions of n, one takes the two limits n!0 and N !1 in an adequate fashion, thus obtainingthe desired average free energy.The appli
ation to the solution of other optimizationproblems is straightforward [6,7℄.3. In the following, we 
hose to experiment another op-timization te
hnique, Geneti
 Algorithms [8,9℄ whi
hwe sele
ted for its eÆ
ien
y in dealing with dis
rete
odings, and des
ribe in details below.The systems under study, as explained below, are mul-tilayers heterostru
tures 
omposed of planar layers of twokinds (the two letter alphabet) arranged a

ording eitherto deterministi
 algorithms, aperiodi
 substitutional orautomati
 sequen
es, or analogous systems where the dis-order generating sequen
e is unknown.In part 1, we present the multilayer system under studyand introdu
e the \inverse problem". In part 2 an appli-
ation of a Geneti
 Algorithm to this problem is presentedfor the investigation of 
al
ulated Xray di�ra
tion spe
tra.Results are presented in part 3.1 X-Ray di�ra
tion spe
tra and the inverseproblem1.1 X-Ray di�ra
tion spe
tra analysis : the modelIn their arti
le [10℄, Peyri�ere, Co
kayne and Axel presenta theoreti
al and numeri
al study for the analysis of XRaydi�ra
tion spe
tra of Prouhet-Thue-MorseGaAs-AlAs mul-tilayer heterostru
tures.The experimental dis
overy of quasi
rystals [11℄ in 1984has opened a new �eld of resear
h to both experimen-talists and theori
ians. In this �eld, the importan
e ofdeterminis
ti
 stru
tures having 
ontrolled aperiodi
 dis-order is being in
reasingly re
ognised. This is why one-dimensional deterministi
 sequen
es generated by substi-tution or �nite automata [12{14℄ have been widely used

mathemati
al obje
ts to build su
h stru
tures. In par-ti
ular, 3D multilayer heterostru
tures having two kindsof layers arranged a

ording to the Fibona

i sequen
ewere �rst de�ned and e�e
tively made as early as 1985 bymole
ular-beam epitaxy [15,16℄ (MBE) and 
onsequentlyinvestigated by x-ray and neutron di�ra
tion [16{19℄ Ra-man s
attering [20,21℄ et
.Prompted by all of these studies, an extension of su
hmethods to nonquasiperiodi
 systems soon began, withspe
ial interest in the Thue-Morse sequen
e, andt its math-emati
al and physi
al properties. For instan
e, in 1987, aThue-Morse superlatti
e heterostru
ture was made for the�rst time and investigated by Raman s
attering [20℄.The Prouhet-Thue-Morse sequen
e f�ng 
an be de-�ned in several equivalent ways as follows :{ Let � be a substitution a
ting on a two letter alphabet,for example (0; 1) : ��0! 011! 10 (1)The sequen
e is then 
hara
terized by its initial 
ondi-tions �0 and the number n of iterations of �. Its lengthis N = 2n.With �0 = 0, the sequen
e is :0010110011010010110100110010110 : : :{ A re
ursive de�nition. With �i the ith element in thesequen
e, one has :� �2n = �n�2n+1 = 1� �n with �0 2 f0; 1g (2){ A de�nition using an algorithmi
 ma
hine known as a2-automaton (see [22,10℄).Let us noti
e that for a given length there exist twopossible sequen
es 
alled mirror sequen
es 
orrespondingto the two initial 
onditions �0 = 0 and �0 = 1.In pra
ti
e, superlatti
e heterostru
tures are grown ona GaAs(001) substrate by mole
ular-beam epitaxy (MBE).The deposition rate is about 1 �A/se
. The latti
e simply
onsists of AlAs (A) and GaAs (B) layers. The values ofdA and dB are designed to be dA = dB = 5a0, where a0 is
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onstant of the 
ubi
 \zin
-blende" latti
e ofAlAs and GaAs.Taking advantage of the spe
i�
 properties of the Prou-het-Thue-Morse sequen
e and using the atomi
 stru
turefa
tors of the GaAs and AlAs layers, and using kinemati
di�ra
tion theory, the authors [10℄ 
al
ulate a general for-mula for the di�ra
tion amplitude Ŝn(q) with q the waveve
tor.The intensity of the high resolution X-Ray di�ra
tionspe
trum is then :In(q) = ���Ŝn(q)���2 = Ŝ�n(q)Ŝn(q) (3)The authors have thus been able to su

essfully re-produ
e experimental high resolution X-Ray di�ra
tionspe
tra from 27 and 210 Prouhet-Thue-Morse multilayerheterostru
tures originally published in referen
e [23℄.1.2 Generalization of the modelThis model 
an be generalized for multilayer heterostru
-tures having any kind of generating binary sequen
e(sN (k))k2[0;N�1℄with N the total length of the sequen
e.With the symboli
 asso
iation and using the notations of[10℄ :0: 
odes GaAs layers, with thi
kness d0 and di�ra
tionamplitude �̂0(q) as a fun
tion of wave ve
tor q.1: 
odes AlAs layers, with thi
kness d1 and di�ra
tionamplitude �̂1(q) as a fun
tion of wave ve
tor q.Then the di�ra
tion amplitude readsŜN(q) = �sN (0)(q) + N�1Xj=1 e�2i�q[Pj�1k=0 dsN (k)℄�sN (j)(q)(4)We note that for the 
al
ulation of ŜN (q) one has to usea summation of N = 2n terms, whereas the 
al
ulationof ŜN (q) in the Prouhet-Thue-Morse 
ase requires only nfa
tors. The generalization in the present 
ontext is at thepri
e of going from O(n) to O(2n) in 
omputational time[10℄.1.3 Nature and interest of the \inverse problem"The goal is to retrieve from the experimental X-Ray di�ra
-tion spe
trum of an unknown multilayer heterostru
turesample the binary sequen
e after whi
h the layers are ar-ranged.Su
h a problem is well resolved in \
lassi
al" 
rystal-lography where the possible latti
es of 
rystalline sam-ples have symmetries belonging to one of the 230 
rys-tallographi
 groups. The analysis of the XRay di�ra
tionspe
trum then allows { the 
hemi
al 
omposition beingknown { the 
omplete retrieval of the stru
ture. This is

also true for quasi
rysals [24,25℄, but not for materialswhere long range order is \less regular", su
h as aperiodi
deterministi
 order generated by a substitutive sequen
eor for glassy materials where the disorder is in generalthought of as being of random origin. The interest of �nd-ing or approa
hing a solution to this problem is obvious.When dealing with diÆ
ult \inverse problems" as theprevious one, where no analyti
al solution is known, astraightforward strategy is to try and deal with this prob-lem as with an optimization problem. The optimizationproblem here is the minimization of a \distan
e" betweenthe experimental spe
trum and the 
omputed spe
truma

ording to equation 4, with respe
t to the generatingbinary sequen
e (sN(k))k2[0;N�1℄. The fun
tion to be min-imized in this 
ase is a very irregular and 
omplex fun
tionand a well adapted sto
hasti
 optimization method mustbe used1. We present in the sequel a solution of this prob-lem based on a Geneti
 Algorithms.2 Use of a Geneti
 Algorithm2.1 Geneti
 AlgorithmsGeneti
 Algorithms { or more generally Evolutionary Al-gorithms { mimi
 Darwin's evolutionarymodel of survival-of-the-�ttest, in evolving a set of potential solutions ratherthan a unique point. This is a main advantage over othersto
hasti
 s
hemes when optimizing irregular and diÆ
ultfun
tions over large sear
h spa
es.This method is based on two themes : the ability of sim-ple representations (sequen
es on a two letter alphabet)to en
ode 
ompli
ated stru
tures, and the power of simpletransformations to improve su
h stru
tures. It has beenshown [26℄ that with the proper 
ontrol stru
ture, rapidimprovements of bit strings 
ould be made to \evolve" aspopulation of animals do. Re
ently established theoreti
alresults [27{30℄ prove that, given appropriate 
onditions,geneti
 algorithms tend to 
onverge onto solutions thatare globally optimal, i.e. the limit distribution of the pop-ulation when generations tends to in�nity is 
on
entratedon the global maximum (or maxima, if there are several)of the �tness fun
tions. 2In natural evolution, the 
hara
teristi
s of ea
h indi-vidual are embodied in the 
omposition of its 
hromo-somes. Operations that alter this 
hromosomal 
omposi-tion spe
ially o

ur when parents reprodu
e ; among themare random mutation, i.e. a small alteration of its 
hro-mosomal material, and 
rossover, an ex
hange of 
hromo-somal material between two parents' 
hromosomes. Thisfeature of natural evolution - the ability of a population1 The size of the sear
h spa
e (see se
tion 2.2) without 
on-sidering the irregularity of the fun
tion itself, is a suÆ
ientreason to 
onsider sto
hasti
 optimization methods.2 Other theoreti
al and experimental analysis proved a\weaker" 
onvergen
e 
riterion, i.e. the best individual of thelimit population is positioned on the global optimum (or onone of the global optima) of the �tness fun
tion.
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hromosomes to explore its sear
h spa
e and simulta-neously 
ombine the best �ndings through 
rossover - isexploited during a Geneti
 Algorithms run.Of 
ourse these notions are suÆ
iently simpli�ed sothey 
an be used in a 
omputer program. The generalstru
ture of a Geneti
 Algorithm program is des
ribed in�gure 1, the sele
tion step is usually performed by a bi-ased random shot, where the probability for an individualto be sele
ted is proportional to its \�tness", i.e. a mea-sure of the quality of the \solution" represented by thisindividual regarding the problem to solve. The \geneti
"operators are usually two : 
rossover and mutation. Theyare sto
hasti
 operators, applied with some probabilities(p
 and pm respe
tively). Figures 2 and 3 show two 
las-si
al implementation of these operators.In the appli
ation presented in this paper, we havemade spe
i�
 
hoi
es 
on
erning these points, in orderto perform an eÆ
ient statisti
al optimization. Of 
ourse,there exist many possible variations of this stru
ture : weimplemented a 
lassi
al s
heme, where the population sizeof ea
h generation is 
onstant, and the initial population israndomly generated on the sear
h spa
e. This appli
ationhas been programmed with ALGON [31℄, a general Ge-neti
 Algorithm software whi
h was developed at INRIAby two of the authors.2.2 The standard methodFor a given problem to be solved with the help of a Geneti
Algorithm, it is ne
essary to de�ne an eÆ
ient 
oding ofits possible solutions (also 
alled individuals) whi
h 
ouldlend themselves to the a
tion of geneti
 operators. It is alsone
essary to 
arefully design a �tness fun
tion that eval-uates the qualities displayed by an individual 
onfrontedto the given problem.In the present 
ase:{ The 
oding of an individual is a binary sequen
e wi
hrepresents its genotype from whi
h the di�ra
tion spe
-trum (its phenotype) is 
al
ulated.{ The �tness fun
tion 
arries the \resemblan
e" of thespe
trum generated by a given individual to the targetspe
trum. With Ne sample points (the values of thewave ve
tor q for whi
h the intensity In(q) is 
al
u-lated) in the spe
trum, one de�nes the following \dis-tan
e" between spe
tra and the �tness fun
tion:distan
e(spi; sp
) = 1Ne Ne�1Xk=0 [spi(k)� sp
(k)℄2fitness(i) = exp (�distan
e(spi; sp
))where (spi(k))k2[0;Ne�1℄ are the values of the sampledspe
trum asso
iated to individual iand (sp
(k))k2[0;Ne�1℄ the values of the target spe
-trum.Note that this value is exa
tly 1 when the spe
tra spiand sp
 are identi
al, and goes to 0 as the two spe
traare in
reasingly di�erent.

generation of the initial population

 "parents" population

selection of two parents

crossover of the parents

mutation of offsprings

"children" population

stop the evolution ?

solutions extraction

yes

no

creation of a new 
"parents" population
from the "children"

Fig. 1. General s
heme of a Geneti
 Algorithm
parents children

crossing siteFig. 2. The Crossing Over pro
ess : parts of the genome areex
hanged between parents to form the o�spring
0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 10 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1

mutation siteFig. 3. The Mutation pro
ess : a small perturbation of thegenome. For example a bit is 
ipped (0 ! 1) on a randomly
hosen position on the genome (mutation site)An analysis has been performed with target spe
trathat are XRay di�ra
tion spe
tra numeri
ally 
al
ulatedusing the general model of equation (4) with a given binarysequen
e of length N. Figures 12 and 13 show suÆ
ientlywell how very 
lose they are to the experimental data.This binary sequen
e is then the exa
t solution and theindividual whi
h represents it has a �tness value equal to1. One assumes furthermore that the sequen
e length N isknown, whi
h limits the sear
h spa
e to the set of binary
hains of length N for a spa
e size of 2N .We 
onsider, as in [10℄, a Prouhet-Thue-Morse sequen
eof order 7, the size if the sear
h spa
e is then 2128. Su
h asize alone would not be an obsta
le for the 
onvergen
e ofan optimization algorithm if the fitness fun
tion did nothave a multimodal 
hara
ter, i.e. it has only one globaloptimum.Preliminary 
omputations show that a 
lassi
al Ge-neti
 Algorithm must be improved due to diÆ
ulties aris-ing from the multimodal 
hara
ter of the �tness fun
tionand the la
k of spe
i�
ity of the Hamming distan
e to
hara
terise the \eÆ
ien
y" of the individuals having the
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 Order 5best �tness value in nearing the solution (the Hammingdistan
e, that is the number of sites at whi
h two binary
hains of identi
al length are di�erent, is the natural dis-tan
e used in sear
h spa
es when using 
hara
ter stringsor binary 
odes).Moreover, the sequen
e length has a dire
t e�e
t onthe os
illating 
hara
ter of the 
orresponding spe
trum.In order to have a 
orre
t sampling of the target spe
-trum, the number of sample points Ne has thus to be inproportion to the sequen
e length.2.3 The Shared Geneti
 AlgorithmBe
ause of the above mentionned diÆ
ulties it has beenfound useful to use the sharing ([32℄) method whi
h allowsto keep some geneti
 diversity in a population, so as toredu
e the risk of premature 
onvergen
e. (See [33℄ for asurvey of the methods used for the 
onservation of geneti
diversity among a Geneti
 Algorithm population.)Sharing methods 
an brie
y be des
ribed as follows :by analogy with the natural phenomenon of \ni
hing", theGeneti
 Algorithm is modi�ed in order to simultaneouslyexplore all the promising zones it dis
overs in the sear
hspa
e. The 
on
ept of sharing stems from the followingneed : If the individuals of a same population subgrouphave to share their resour
es, the growth of this populationis limited. In 
ase of overpopulation, the individuals willtend to look for new territories to be explored. The majorway of 
ontrolling a Geneti
 Algorithm being through its�tness fun
tion, a simple strategy is to lower the �tness ofan individual with respe
t to its neighbors in the 
urrentpopulation. It is based on the use of a distan
e de�nedon the sear
h spa
e and 
omputed either on 
hromosomes(genotypi
 distan
e) or on the sear
h spa
e itself (pheno-typi
 distan
e). In the 
urrent problem, we shall keep theHamming distan
e.Another simple way to maintain geneti
 diversity andto avoid �tness re
al
ulation of the same individual, is toforbid identi
al individuals inside the 
urrent population.The appli
ation of a then so-
alled \elitist" strategy hasalso proven to be eÆ
ient in order to redu
e the e�e
ts of�tness sensitivity to a small geneti
 
hange. In this 
ase,only a part of the population is repla
ed at ea
h genera-tion, this part being generally made of individuals havingthe lowest �tness values. This elitist strategy has also theadvantage of keeping mainly those individuals that repre-sent \good" solutions in the 
urrent population.Moreover, the joint use of a sharing and an elitist strat-egy raises the problem of the preservation of some ge-neti
 diversity inside the sele
tion pro
ess. The sharingmethod presented by Miller and Saw in [34℄, thereafter
alled Dynami
 Ni
he Sharing, seems to us parti
ularlywell adapted to 
ombine the advantages of elitism andsharing strategies. An improved version of this te
hniqueis used here (see Appendix for details).Finally, a

ording to Baker [35℄, who has 
omparedseveral sele
tion methods, the Sto
hasti
 Universal Sam-pling sele
tion method (instead of a 
lassi
alRoulette WheelSele
tion) seems to us more appropriate in the present

problem. The Roulette Wheel Sele
tion has a larger vari-an
e with respe
t to the number of o�spring of a givenindividual, while these methods both produ
e in averagethe same expe
ted number of o�spring p(i) that is for in-dividual i of a population of size N :p(i) = fitness(i)PNj=1 fitness(j) (5)3 ResultsThree types of sequen
es with three di�erent length havebeen tested to generate the target spe
trum for the Geneti
Algorithm : a Prouhet-Thue-Morse sequen
e, a periodi
sequen
e (stri
t alternan
e of 0 and 1), and a randomlygenerated sequen
e. Their sizes have been su

essively 32,64 and 128.3.1 Sequen
es of length 32Figures 4, 5 and 6 show the intensities In(q) as a fun
tionof the wave ve
tor q for the target spe
tra 
orrespondingto the three di�erent types of sequen
es of size 32.The Geneti
 Algorithm parameters are :{ Population size : 160 individuals.{ Use of two points 
rossover, with a 
rossover probabil-ity p
 = 0:85.{ Mutation probability pm = 0:02.{ Use of the dynami
 ni
he sharing, with the number ofni
hes to be identi�ed P = 8, the parameter �share =12, that 
ontrols the mean radius of a ni
he (the Ham-ming distan
e is used for a metri
 on the sear
h spa
e).{ The survival rate ts = 0:5. It 
orresponds to the pro-portion of individuals in a population subset being au-tomati
ally transferred to the next generation.The dynami
 ni
he sharing parameters have been 
hosenin order to take into a

ount several fa
ts :{ Two binary 
hains of length l uniformly randomly 
ho-sen di�er on the average by l=2. A value of �share too
lose to or larger than l=2 would indu
e too many over-laps.{ A value �share too low would indu
e a too large num-ber of population subsets 
onsidering the number ofdesired ni
hes. The majority of the population indi-viduals would then belong to the non-peaks 
ategory.{ For a given size of population subset, a too large num-ber of ni
hes would indu
e an average population sub-sets size too low.The parameter P is thus 
hosen as a fun
tion of thepopulation size, so that the population subsets be not toosmall. The parameter �share has thus been �xed in or-der to perform a 
lassi�
ation of the major part of thepopulation.Finally, the number of sample points Ns is 210, thisnumber dire
tly in
uen
es the 
omputation time, but a
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e Ng minimum Ng maximum Ng average Standard deviationPeriodi
 24 47 35.5 7.5PTM 33 163 66 35Random 46 447 104 90Table 2. Number of generations to �nd the target for sequen
es of length 32

2

3

4

5

6

7

8

9

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-PTM.1.32"

Fig. 4. Spe
trum In(q) generated with the Prouhet-Thue-Morse sequen
e of size 32 (see text)

2

3

4

5

6

7

8

9

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-reg.32"

Fig. 5. Spe
trum In(q) generated with the periodi
 sequen
eof size 32 (see text)

2

3

4

5

6

7

8

9

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-aleat.32"

Fig. 6. Spe
trum In(q) generated with the random sequen
eof size 32 (see text)

Population size 160p
 0.85pm 0.02Number of ni
hes P 8�share 12Survival rate ts 0.5Number of sample points Ns 210Table 3. Parameter setting of the GA for sequen
es of length32subsampling of the spe
trum would diminish the eÆ
ien
yof the �tness fun
tion.These parameters are summarised in table 3.For 20 tests performed a

ording to these 
onditions,we present in table 2 the number of the generationNg usedto �nd the target sequen
e, or its mirror, whose spe
trumin the 
ase of the Prouhet-Thue-Morse and periodi
 se-quen
e as quasi identi
al to the target spe
trum.The 
omputation time for 100 generations is near 5minutes on a de
-alpha station (DEC-3000-M300X).It is interesting to note the extent to whi
h, the morethe spe
trum depends on a regular underlying stru
ture,the more eÆ
ient the Geneti
 Algorithm is.3.2 Sequen
es of length 64The results are shown in �gures 7, 8 and 9. The Geneti
Algorithm parameters are presented in table 4 :Population size 400p
 0.85pm 0.01Number of ni
hes P 16�share 24Survival rate ts 0.5Number of sample points Ns 416Table 4. Parameter setting of the GA for periodi
 and PTMsequen
es of length 64The average 
omputation time for 100 generations is40 minutes on a de
-alpha station. For 5 tests we obtainthe results of table 5.For this parameter setting, the performan
es of theGeneti
 Algorithm on a random sequen
e are very bad,
on�rming the fa
t that spe
tra based on sequen
es hav-ing a regular stru
ture are more easily inversed (we havealready noti
ed this with the experiments on length 32 se-quen
es). A modi�ed parameters setting (see table 6) led
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e Ng minimum Ng maximum Ng average Standard deviationPeriodi
 63 136 103.6 28PTM 221 341 262 47random 567 1712 1068 462Table 5. Number of generations to �nd the target for sequen
es of length 64
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Fig. 7. Spe
trum In(q) generated with the Prouhet-Thue-Morse sequen
e of size 64 (see text)

3

4

5

6

7

8

9

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-reg.64"

Fig. 8. Spe
trum In(q) generated with the periodi
 sequen
eof size 64 (see text)
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Fig. 9. Spe
trum In(q) generated with the random sequen
eof size 64 (see text)

to a 
omputation time of almost 2 hours for 100 genera-tions, results are presented in the last raw of table 5.Population size 1000p
 0.85pm 0.01Number of ni
hes P 20�share 24Survival rate ts 0.5Number of sample points Ns 520Table 6. Parameter setting of the GA for random sequen
esof length 64For 
omparison, the Geneti
 Algorithm needs around20 000 �tness evaluations to 
onverge in the 
ase of a peri-odi
 sequen
e, whereas it needs 50 000 �tness evaluationsfor the Prouhet-Thue-Morse sequen
e, and 500 000 forthe random sequen
e (the sear
h spa
e is always of sizejSj = 264 ' 1:84 � 1018).3.3 Sequen
es of length 128In this 
ase, experiments on the Prouhet-Thue-Morse se-quen
e of order 7 and on a periodi
 sequen
e have beenperformed (�gure 10 and 11 show the asso
iated targetspe
tra). The size of the sear
h spa
e in
reases in an ex-ponential way with respe
t to the pre
eding test, and atthe same time, the 
omputation time of the spe
tra alsoin
reases in a signi�
ant way. If we in
rease the numberof sample points proportionally to the sequen
e length,the 
omplexity would be O(n2). Experiments prove thatin
reasing the population size is suÆ
ient to make the Ge-neti
 Algorithm 
onverge to the solution.The Geneti
 Algorithm parameters are summarised intable 7. Population size 2000p
 0.85pm 0.01Number of ni
hes P 30�share 48Survival rate ts 0.5Number of sample points Ns 624Table 7. Parameter setting of the GA for sequen
es of length128The Geneti
 Algorithm �nally found the Prouhet-Thue-Morse sequen
e after 884 generations, i.e. near 900 000 �t-
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Fig. 10. Spe
trum In(q) generated with the Prouhet-Thue-Morse sequen
e of size 128

3

4

5

6

7

8

9

10

65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

"spectre-reg.128"

Fig. 11. Spe
trum In(q) generated with the periodi
 sequen
eof size 128ness evaluations (due to rounding errors during the 
om-putation of the number of survivors of a population subset,an average of 1000 individuals are 
reated at ea
h gener-ation). For the periodi
 sequen
e, 184 generations werene
essary, i.e. near 200 000 �tness evaluations. The 
om-putations time was near 1 hour for 10 generations. The Ge-neti
 Algorithm parameter setting 
ertainly needs furtheradjustments (also the 
hoi
e of the number of samplingpoints), but it is obvious that su
h 
omputation timesdis
ourage systemati
 tests. We 
an still 
onsider as quitesatisfa
tory the fa
t that it is de�nitely possible to solvethis problem with a Geneti
 Algorithm.4 Con
lusionWe presented an appli
ation of Geneti
 Algorithms to theanalysis of high resolution X-Ray di�ra
tion spe
tra ofbinary multilayer heterostru
tures. The method a
tuallyallows the a

urate retrieval of the binary generating se-quen
e from the analysis of spe
tra of an unknown multi-layer sample up to a layer number of 128.Other target spe
tra should be investigated, so as toenable us to know the extent to whi
h this te
hnology al-

lows satisfa
tory stru
ture determination in systems withaperiodi
 order.
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Fig. 12. Experimental spe
trum, showing the di�ra
ted in-tensity I(q) in arbitrary units as a fun
tion of wave ve
tor q,for a Prouhet-Thue-Morse GaAs-AlAs multilayer with N=128(
ourtesy F. Laruelle, L. Leprin
e and J. S
hne
k, CNET-Bagneux)
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Fig. 13. Computed spe
trum from the model of [10℄ with asimple substrate model
A
knowledgementsThe authors thank E. Co
kayne for sending them his 
om-puter program of referen
e [10℄, F. Laruelle, L. Leprin
eand J. S
hne
k for stimulating dis
ussions, and the anony-mous referees for their remarks.Referen
es1. A. Bihian, C. Lemare
hal and J.J. Strodiot, On a bun-dle algorithm for nonsmooth optimization, pages 245{282.A
ademi
 Press, 1981. Non-Linear Programming 4, Man-gasarian, Meyer, Robinson, Eds.



Leblan
, Lutton and Axel: Geneti
 Algorithms and Aperiodi
 Order 92. E. Aarts and P. Van Laarhoven, Simulated annealing :a pedestrian review of the theory and some appli
ations.NATO ASI Series Vol. F30, PCO, El
erly
laan 2, B-3090Overijse, Belgium.3. S. Kirkpatri
k, C. D. Gelati Jr and M. P. Ve

i, Optimiza-tion by Simulated Annealing S
ien
e 220 (1983) 6714. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.H. Teller and E. J. Teller, J. Chem. Phys. 21 (1953) 10875. S. Geman and D. Geman, Sto
hasti
 Relaxation, GibbsDistributions, and the Bayesian Restoration of Images,IEEE Trans. on Pattern Analysis and Ma
hine Intelli-gen
e, 6(6) (1984) 712-741.6. M. Mezard and G. Parisi, J. Physique Lett. 46 (1985)L-7717. M. Mezard, G. Parisi and M. A. Virasoro, Spin GlassTheory and Beyond Le
ture notes in Physi
s No 9, WorldS
ienti�
 publisher, 1987, and referen
es therein.8. L. Davis, Geneti
 Algorithms and Simulated Annealing .Pittman, London, 1987.9. D. A. Goldberg, Geneti
 Algorithms in Sear
h, Optimiza-tion, and Ma
hine Learning . Addison-Wesley, January1989.10. J. Peyri�ere, E. Co
kayne, and F. Axel, Line-shape Analy-sis of high Resolution X-Ray Di�ra
tion Spe
tra of FiniteThue-Morse GaAs-AlAs Multilayer Heterostru
tures. J.Phys. I Fran
e 5 (1995), 111{127.11. D. S
he
htman, I. Ble
h, D. Gratias and J. W. Cahn, Phy.Rev. Lett. 53, 1951 (1984)12. G. Christol, T. Kamae, M. Mend�es-Fran
e and G. Rauzy,Bull. So
. Math. Fran
e 108, 401 (1980).13. M. Dekking, M. Mend�es-Fran
e and A. van der Poorten,Math. Intellig. 4, 130-138 (1982), 4, 173-181 (1982), 4, 90-195 (1982).14. J. P. Allou
he, Expositiones Mathemati
ae 5, 239 (1987).15. R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K.Bhatta
harya, Phys. Rev. Lett. 55, 1768 (1985).16. H. Terau
hi, S. Sekimoto, K. Kamigaki, H. Sakashita, N.Sano, H, Kato, and M. Nakayama, j. Phys. So
. Jpn. 54,4576 (1985).17. J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D.Axe, Phys. Rev. Lett. 57, 1157 (1986).18. H. Terau
hi, Y. Noda, K. Kamigaki, S. Matsunaka, M.Nakayama, H. Kato, N. Sano, and Y. Yamada, J. Phys.So
. Jpn 57, 2416 (1988).19. H. Terau
hi, K. Kamigaki, T. Okutani, Y. Hishihata, H.Kasatani, H. Kasano, K. Sakane, H. Kato, and N. Sano, J.Phys. So
. Jpn 59, 405 (1990).20. R. Merlin, K. Bajema, J. Nagle, and K. Ploog, J. Phys(Paris), Colloq. 48, C5-503-C5-506 (1987).21. F. Laruelle, V. Thierry-Mieg, M. C. Jon
our, and B. Eti-enne, J. Phys. (Paris) Colloq. 49, C5-529-C5-532 (1988)22. M. Mend�es Fran
e and J-P Allou
he, in Beyond Quasi
rys-tals. F. Axel and D. Gratias, eds. \Centre de Physique deHou
hes" Colle
tion. Springer Verlag, 1995.23. F. Axel and H. Terau
hi, High Resolution X-Ray Di�ra
-tion Spe
tra of Thue-Morse GaAs-AlAs heterostru
turesPhys. Rev. Lett. 66 (1991) 2223, and 73 (1994) 1308 (Re-ply).24. M. Cornier-Quiquandon, M. Quivy, S. Lefebvre, E. Elkaim,G. Heger, A. Katz and D. Gratias, Neutron di�ra
tionstudy of i
osahedral Al-Cu-Fe single quasi
rystals Phys.Rev. B44 (1991) 2071

25. W. Steurer, Five-Dimensional Patterson analysis of thede
agonal phase of the system Al-Mn, A
ta Cryst. B45(1989) 53426. J. H. Holland, Adaptation in Natural and Arti�
ial System. Ann Arbor, University of Mi
higan Press, 1975.27. R. Cerf, Asymptoti
 
onvergen
e of geneti
 algorithms, inArti�
ial Evolution, European Conferen
e, AE 95, Brest,Fran
e, September 1995, Sele
ted papers , Springer Verlag,1995, Le
ture Notes in Computer S
ien
e 1063, pages 37{54.28. T. E. Davis and J. C. Prin
ipe, A Simulated AnnealingLike Convergen
e Theory for the Simple Geneti
 Algo-rithm , in Pro
eedings of the Fourth International Con-feren
e on Geneti
 Algorithm, 13-16 July, pages 174-182,1991.29. G. Rudolph, Convergen
e Analysis of Canoni
al Geneti
Algorithm, in IEEE Transa
tions on Neural Networks,1994, Volume 5, No 1, pages 96-101.30. Y. Landrin-S
hweitzer and E. Lutton, Perturbation the-ory for Evolutionary Algorithms: towards an estimation of
onvergen
e speed,in Parallel Problem Solving from Nature- PPSN VI 6th International Conferen
e, 2000, SpringerVerlag,LNCS 1917.31. B. Leblan
 and E. Lutton, ALGON Users guide, inhttp://www-ro
q.inria.fr/fra
tales/, 1997.32. D. E. Goldberg and J. Ri
hardson, Geneti
 algorithmswith sharing for multimodal fun
tion optimization. InJ. J. Grefenstette, editor, Geneti
 Algorithms and theirAppli
ations, pages 41{49, Hillsdale, New Jersey, 1987.Lawren
e Erlbaum Asso
iates.33. S. W. Mahfoud, Ni
hing Methods for Geneti
 Algorithms.PhD thesis, University of Illinois at Urbana-Champaign,1995. http://GAL4.GE.UIUC.EDU/illigal.home.html34. B. L. Miller and M. J. Shaw, Geneti
 algorithms with dy-nami
 ni
he sharing for multimodal fun
tion optimization.Te
hni
al report, IlliGAL Report, University of Chi
ago,1995, in http://GAL4.GE.UIUC.EDU/illigal.home.html35. J.E. Baker, Redu
ing bias and ineÆ
ien
y in the sele
tionalgorithm . in Geneti
 Algorithms and their appli
ations:Pro
eedings of the Se
ond International Conferen
e on Ge-neti
 Algorithms, pages 14{21, 1987.Appendix : Dynami
 ni
he sharingThis method rests on the two hypotheses usually made forsharing :1. the number of peaks P 
an validly be estimated,2. the peaks are all situated to within a minimum relativedistan
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teristi
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 Al-gorithm using sharing this way, the individuals graduallyo

upy the ni
hes as generations develop. The dynami
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he sharing tends to identify P peaks of this formingni
hes and uses the dynami
ally identi�ed peaks to 
las-sify all the individuals as belonging either to one of the dy-nami
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hes (be
ause they are within a distan
e smallerthan �share of a dynami
 peak), or belonging to the 
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of niche A

of niche B

of niche CFig. 14. An elitist strategy for dynami
 ni
he sharingWithin this framework, the modi�ed �tness value Fshareof an individual belonging to a dynami
 ni
he equals itsinitial �tness divided by the size of the dynami
 ni
hepopulation. The �tness of the individuals belonging to the
ategory of non-peaks is divided by the meter mi used forthe 
lassi
al sharing (see [32℄). So the new �tness valueFshare is given byFshare(i) = fitness(i)mdsh;iwhere the dynami
 ni
he meter, mdsh;i is given by :mdsh;i = �nj if i belongs to the dynami
 ni
he j,mi if i belongs to the \non-peak"
lass).with mi = NXk=1Sh(dik)The peak identi�
ation te
hnique proposed by Millerand Shaw (Greedy Dynami
 Peak Identi�
ation) 
an bedes
ribed as follows :1. Sorting of the population based on de
reasing initial�tness.2. Extra
tion of individual i from this sorting.3. If i belongs to one or several ni
hes, it is 
lassi�ed inthe ni
he the dynami
 peak of whi
h is the 
losest toi. Else i be
omes a new dynami
 peak and the numberof identi�ed ni
hes in
reases by 1.4. If the number of identi�ed ni
hes is less that P or if iis less that the population size, one goes ba
k to step2.5. Else : end.Essentially, the dynami
 ni
he sharing is di�erent fromthe 
lassi
al sharing by the distribution of the populationinside a ni
he. In this last 
ase, the 
ount of the individ-uals inside a given ni
he is done separately for ea
h ofthe individuals. And sin
e it kno
ks down the shared �t-ness, the Geneti
 Algorithm tends to redu
e this 
ountwith the e�e
t of making more uniform the population

distribution inside a given ni
he. This pro
ess then slowsdown the 
onvergen
e speed of this population subset to-wards the optimum of the 
onsidered ni
he (under thehypothesis, however, that inside a given ni
he, there 
anbe only one optimum). On the 
ontrary the dynami
 ni
hesharing identify the ni
hes in a more global manner andkno
ks down identi
ally all the individuals of a given ni
he.The sele
tive pressure inside a given ni
he then dependsonly on the initial �tness value of the individuals, yet un-
hanged by sharing.This value easily lends itself to the appli
ation of an\elitist" strategy, sin
e one indeed 
an use the expli
it di-vision of the population into subsets : one subset per iden-ti�ed ni
he and possibly the subset of un
lassi�ed individ-uals. The operational 
hoi
e to keep a �xed proportion ofthe population then naturally extends to ea
h populationsubset.Figure 14 is an illustration of this idea.{ The left table shows a population 
lassi�ed in de
reas-ing order ( A1 has the best �tness value, C4 the low-est). The population is divided into three populationsubsets 
orresponding to ni
hes A, B and C, where A1is the best individual of ni
he A, A4 the worst, et
 ...This example illustrates the 
ase where the whole pop-ulation is taken into a

ount for the 
hoi
e of survivors(the proportion of survivors is 0.5, survivors being in-dividuals sele
ted to be transfered dire
tly from theformer the the latter population 
lass). All the indi-viduals of ni
he A survive, 
ontrary to those of ni
heC.{ The right table illustrates the 
ase when the 
hoi
e ofsurvivors is performed, still with a proportion of 0.5,out of the individual population subsets. The individ-uals are gathered in ea
h ni
he and internally 
lassi-�ed in de
reasing order. Ea
h ni
he having the samenumber of individuals, they all have equal numbers ofsurvivors.It 
an be 
learly seen that the �rst method goes againstthe aim of sharing whi
h is to keep ea
h ni
he populated,or at least the interesting ones if there are too many.


