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tThis paper proposes a few steps to es
ape stru
tured extensiverepresentations for obje
ts, in the 
ontext of evolutionary Topologi
alOptimum Design (TOD) problems: early results have demonstratedthe potential power of Evolutionary methods to �nd numeri
al so-lutions to yet unsolved TOD problems, but those approa
hes werelimited be
ause the 
omplexity of the representation was that of a�xed underlying mesh. Di�erent 
ompa
t unstru
tured representa-tions are introdu
ed, the 
omplexity of whi
h is self-adaptive, i.e. isevolved by the algorithm itself. The Voronoi-based representationsare variable length lists of alleles that are dire
tly de
oded into obje
tshapes, while the IFS representation, based on fra
tal theory, involvesa mu
h more 
omplex morphogeneti
 pro
ess. First results demon-strates that Voronoi-based representations allow one to push furtherthe limits of Evolutionary Topologi
al OptimumDesign by a
tually re-moving the 
orrelation between the 
omplexity of the representationsand that of the dis
retization. Further 
omparative results among allthese representations on simple test problems seem to indi
ate thatthe 
omplex 
ausality in the IFS representation disfavor it 
omparedto the Voronoi-based representations.1 Introdu
tionEvolutionary Algorithms (EAs) have been widely used in the framework ofparametri
 optimization, i.e. when the sear
h spa
e is a stru
tured spa
e of�xed length ve
tors. In that 
ontext, EAs are just yet another optimiza-tion method: They are indeed a powerful zero-th order global optimization1



method, and, as su
h, they have been su

essfully applied in many domains,but . . .The most innovative and outstanding results have been re
ently obtainedby taking advantage of the ability of EAs to deal with very unusual un-stru
tured sear
h spa
es, su
h as spa
es of unordered lists, of parse-trees[37, 39, 10℄, of graphs, and the like ([12, 13℄). The \only" prerequisites arean initialization pro
edure and variation operators that respe
t some min-imal requirements [54℄. Indeed, the larger the sear
h spa
e the better thesolutions it 
ontains, but the more diÆ
ult it might be to �nd them.On the other hand, using unstru
tured sear
h spa
es is probably the onlyway to evolve 
omplex solutions for whi
h a des
ription in extension willrapidly hit some s
alability limits.One �rst step away from stru
tured representations is to use sparse variable-length lists instead of full extensive des
riptions1: for instan
e, when sear
h-ing in the spa
e of polynomials, the extensive stru
tured representation wouldbe to look for the ve
tor 
oeÆ
ients of all monomials up to a 
ertain degree;an unstru
tured representation 
an be that of variable length lists of 
oef-�
ients, des
ribing only some parti
ular monomials. The main problem ofsu
h 
ompa
t unstru
tured representations is of 
ourse the design of meaning-ful variation operators (
rossover, mutation) that will make evolution di�erfrom random sear
h.Another further step toward s
alability is to use list of groups of ele-mentary items, also 
alled 
omponent-based representations in [11℄: in the
ontext of polynomial identi�
ation, that would amount to manipulate someelementary polynomials not limited to simple monomials. But su
h 
om-pa
t unstru
tured representations 
an also be organized into . . . stru
turedspa
es, to make their evolution easier: using Geneti
 Programming [36, 6℄is an alternative representation for variable degree polynomials, with well-designed variation operators. Su
h sear
h spa
e also allows one to add use-ful features, su
h as modularity and re
ursion, to the representations [37℄,making another step toward the evolution of 
omplex solutions: when thesolution to a problem has some symmetries, is seems quite unlikely, and atleast resour
e-wasting, that evolution will \dis
over" multiple instan
es ofthe same me
hanism.1Of 
ourse, there also exists extensive unstru
tured representation, su
h as the MessyGA representation [25℄, di�erent representations for the TSP [48℄, or extensive des
riptionof variable-topology neural networks [5, 21℄ whi
h will not be 
onsidered further in thispaper in the light of the s
alability issue. 2



But the to-date ultimate resear
h dire
tion toward the evolution of 
om-plex solutions seems to lie in the so-
alled morphogeneti
 approa
h [13℄: in-stead of evolving parts of solutions (simple item or more 
omplex 
ompo-nents), one evolves some programs that in turn give the solution when theyare run. One of the early attempts of morphogeneti
 approa
h is the CellularEn
oding of F. Gruau [27℄ where a Neural Network is built from an embryoby a GP-like program { while many re
ent su

esses have been reported usingGP in di�erent domains [39, 40℄. As they also 
an evolve modular solutions,morphogeneti
 approa
hes really are appealing to build very 
omplex solu-tions to diÆ
ult problems whose 
omponents 
an hardly be designed dire
tly.However, the in
rease in s
alability goes together with a loss in 
ausality: itis almost impossible for anyone to guess the in
uen
e of small parts of thegenotype on the �nal solution.In the framework of Topologi
al Optimum Design, the plain dire
t ex-tensive representation is the widely used bitarray approa
h based on a �xedmesh of the design domain. Though very su

essful to over
ome the mainlimitations of deterministi
 methods for TOD [34, 32, 35℄, this representationdoes not s
ale up with the 
omplexity of the mesh. Di�erent 
ompa
t un-stru
tured representations based on Voronoi diagrams are introdu
ed, thatexhibit a self-adaptive 
omplexity (i.e. the 
omplexity of the solutions isadjusted by the algorithm). These representations do not involve exa
tly
omponents, but do require some elementary alleles to be de�ned by theprogrammer; su
h alleles 
an be viewed as some sort of variable 
omponents:due to the high degree of epistasis of those representations, the phenotypi
expression of ea
h allele strongly depends on the other alleles. In an attemptto avoid the biases resulting from the manual 
hoi
e of these alleles, the IFSrepresentation, a morphogeneti
 approa
h based on fra
tal theory, is de�ned.The paper is organized the following way. The 
ontext of evolutionaryTOD is re
alled in se
tion 2, from the me
hani
al ba
kground to the adap-tive penalty method used within the �tness fun
tion. Se
tion 3 introdu
esa series of three di�erent representations based on the idea of Voronoi dia-grams while se
tion 4 presents original experimental results obtained with thesimple Voronoi representations, assessing the power of the 
ompa
t unstru
-tured approa
h. Comparative results on 
antilever ben
hmark problems arethen presented, allowing one to dis
riminate among the di�erent Voronoi-based representations. Se
tion 5 introdu
es the IFS representation, basedthe fra
tal theory, together with preliminary experimental results assessing3



its possible advantages and setting its limits, at least for simple problemsof TOD. Se
tion 6 dis
usses the relevan
e of the di�erent representationsintrodu
ed in the paper and 
on
ludes on further dire
tions of resear
h.2 Ba
kground2.1 The me
hani
al problemThe general framework of this paper is the Topologi
al Optimum Design(TOD) problem: �nd the optimal shape of a stru
ture (i.e. a repartitionof material in a given design domain) su
h that the me
hani
al behaviorof that stru
ture meets some requirements { here a bound on the maximaldispla
ement under a pres
ribed loading, but it 
ould also involve bounds onthe eigenfrequen
ies, or any 
ombination of sti�ness and modal optimization.The optimality 
riterion is here the weight of the stru
ture, but it 
ould alsoinvolve other te
hnologi
al 
osts.The me
hani
al model used in this paper is the standard two-dimensional(ex
ept in se
tion 4.4) plane stress linear model, and only linear elasti
 mate-rials will be 
onsidered (see e.g. [18℄). All me
hani
al �gures are adimensional(e.g. the Young modulus is set to 1) and the e�e
ts of gravity are negle
ted.One of the most popular ben
hmark problem of Optimum Design is theoptimization of a 
antilever plate: the design domain is re
tangular, the plateis �xed on the left verti
al part of its boundary (displa
ement is for
ed to 0),and the loading is made of a single for
e applied on the middle of its rightverti
al boundary. Figure 1 shows the design domain for the 2� 1 
antileverplate problem.2.2 State of the art in Shape OptimizationThe main trends in stru
tural optimization 
an be sket
hed as follows. A �rstapproa
h is that of domain variation [15℄ (also termed sensitivity analysisin Stru
tural Me
hani
s). It 
onsists in su

essive small variations of aninitial design domain, and is based on the 
omputation of the gradient of theobje
tive fun
tion with respe
t to the domain. The original approa
h hastwo major defe
ts: �rst, it requires a good initial guess, as it demonstratedunstable for large variations of the domain; se
ond, it does not allow to4
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Figure 1: The 2�1 
antilever plate test problem, and a bitarray representationof a stru
ture derived from a regular 13� 6 mesh. See se
tion 2.4.modify the topology of the initial domain (e.g. add or remove holes). However,the idea of topologi
al gradient was re
ently proposed and su

essfully used in[22℄, allowing the modi�
ation of the topology of the solution. Nevertheless,this method is stri
tly limited to the linear elasti
ity framework.The other method for topology optimization is the now standard approa
hof homogenization, introdu
ed in [8℄, whi
h deals with a 
ontinuous densityof material in [0; 1℄. This relaxed problem is known to have a solution in the
ase of linear elasti
ity [3℄ { and the 
orresponding numeri
al method does
onverge to a (non-physi
al) generalized solution made of �ne 
omposite ma-terial. It 
an then be post-pro
essed to obtain an admissible solution withboolean density [2℄. The homogenization method is also insofar limited to thelinear-elasti
ity. The theoreti
al results about optimal mi
ro-stru
tures onlyhandle single-loading 
ases, though numeri
al solution to multi-loading 
aseshave been proposed [1℄. In addition, this method 
annot address loadingsthat apply on the (unknown) a
tual boundary of the shape (e.g. uniformpressure).A possible approa
h to over
ome these diÆ
ulties of TOD is to usesto
hasti
 optimization methods.Sto
hasti
 optimization methods have been su

essfully applied to otherproblems of stru
tural optimization: in the framework of dis
rete truss stru
-tures, for 
ross-se
tion sizing [42, 52℄ among others, as well as for topologi
aloptimization [26, 14℄ and for the optimization of 
omposite materials [41℄.TOD problems have also already been addressed by sto
hasti
 methods:Simulated Annealing has been used to �nd the optimal shape of the 
ross-5



se
tion of a beam in [4℄; and Evolutionary Algorithms have been used tosolve 
antilever problems as the one presented in Se
tion 2.1 in [29, 17, 34℄.The above-mentioned limitations of the deterministi
 methods have beensu

essfully over
ome by these works { in [34, 32, 35℄ for instan
e, resultsof TOD in nonlinear elasti
ity, as well as the optimization of an underwaterdome (where the loading is applied on the unknown boundary) have beenproposed, both out of rea
h for the deterministi
 methods.2.3 Fitness 
omputationThe problem ta
kled in this paper is to �nd a stru
ture of minimal weightsu
h that its maximal displa
ement stays within a pres
ribed limitDlim whensome given point-wise for
e is applied on the loading point (see Figure 1). The
omputation of the maximal displa
ement is made using a Finite ElementAnalysis solver [30℄).From me
hani
al 
onsiderations, all stru
tures that do not 
onne
t theloading point and the �xed boundary are given an arbitrary high �tnessvalue. Moreover, the material in the design domain that is not 
onne
tedto the loading point { and has thus no e�e
t on the me
hani
al behavior ofthe stru
ture { is dis
arded during the Finite Element Analysis, but slightlypenalizes the stru
ture at hand (see [34, 32℄ for a detailed dis
ussion onboth these issues). In summary, for 
onne
ted stru
tures, the problem is tominimize the (
onne
ted) weight subje
t to one 
onstraint for ea
h loading
ase, namely DiMax � Dilim, where DiMax its maximal displa
ement 
omputedby the FEM under loading i, and Dilim its pres
ribed limit.Introdu
ing the positive penalty parameters �i, the �tness fun
tion tominimize is Weight+Xi �i(Dimax �Dilim)+(1) However, adjusting �i is not an easy task, and many spe
i�
 methodsexist in Evolutionary Computation [44℄.The adaptive penalty method used here updates the penalty parameterbased upon global statisti
s of feasibility in the population. Its main goal isto explore the neighborhood of the boundary of the feasible region by tryingto keep in the population individuals that are on both sides of that boundary:in the 
ontext of sti�ness optimization in TOD, the solution does lie on theboundary, . . . but for the 
ontinuous problem only! On
e dis
retized, this is6



no longer true, and it 
an only be said that the solution lies 
lose to theboundary.The obje
tive is to maintain in the population a minimum proportion offeasible individuals as well as a minimum proportion of infeasible individuals.Denote by �kfeasible the proportion of feasible individuals at generation k, andby �inf and �sup two user-de�ned parameters. As small penalty parametersfavor the infeasible individuals (and vi
e-versa), the following update rule forthe �i parameters is proposed to try to keep �kfeasible in [�inf ;�sup℄:�k+1 = 8><>: � � �k if �kfeasible < �inf(1=�) � �k if �kfeasible > �sup�k otherwise(2)with � > 1. User-de�ned parameters of this method are �inf , �sup, � andthe initial value �0. The robust values � = 1:1;�inf = 0:4; and �sup = 0:8were used in all experiments presented this paper.Note that the variations of � are non monotonous, and hen
e there isno a priori guarantee that the best individual in the population is feasible.It 
an even happen that the population 
ontains no feasible individual {though in that 
ase the steady in
rease of � should favor individuals withlower 
onstraint violation, and rapidly result in the emergen
e of feasibleindividuals.Some 
omparative results assessing the power of that population-basedadaptive penalty method 
an be found in [9℄ for test problems, and in [28℄in the 
ontext of TOD.2.4 Representations of stru
tures for TODAll the works 
ited in se
tion 2.2 that address TOD problems with EAs usethe same 'natural' binary representation, termed bitarray in [34℄: it relies ona mesh of the design domain { the same mesh that is used to 
ompute theme
hani
al behavior of the stru
ture in order to give it a �tness (see se
-tion 2.3). Ea
h element of the mesh is given value 1 if it 
ontains material,0 otherwise (see Figure 1). Note that this bit-based representation is notequivalent to the usual bitstring representation, and that some spe
i�
 geo-metri
al 
rossover operators had to be designed [33℄, similar to the 
rossoveroperator des
ribed below for the Voronoi-based representations.In spite of its su

esses in solving TOD problems [34, 32, 35℄, bitarrayrepresentation su�ers from a strong limitation due to the dependen
y of its7




omplexity on that of the underlying mesh. Indeed, the size of the individual(the number of bits used to en
ode a stru
ture) is the size of the mesh. Un-fortunately, a

ording to both the theoreti
al results in [16℄ and the empiri
al
onsiderations in [24℄, the 
riti
al population size required for 
onvergen
eshould be in
reased at least linearly with the size of the individuals. More-over, larger populations generally require a greater number of generationsto 
onverge. Hen
e it is 
lear that the bitarray approa
h will not s
ale upwhen using very �ne meshes. This greatly limits the pra
ti
al appli
ationof this approa
h to 
oarse (hen
e impre
ise) 2D meshes, whereas Me
hani
alEngineers are interested in �ne 3D meshes!These 
onsiderations appeal for some more 
ompa
t representations whose
omplexity does not depend on a �xed dis
retization. The ultimate step inthe dire
tion of 
omplexity-free representation is to let the 
omplexity itselfevolve and be adjusted by the EA.3 Voronoi-based representationsThe Voronoi representation is a �rst attempt toward unstru
tured represen-tations for TOD. It has �rst been proposed in [46℄, but has been used sin
ethen mainly in the 
ontext of identi�
ation problems [51, 50℄. This se
tionre
alls the de�nition of Voronoi representation, and proposes two other rep-resentations that also derive from the same ideas.3.1 Voronoi representationVoronoi diagrams: Consider a �nite number of points V0; : : : ; VN (theVoronoi sites) of a given subset of IRn (the design domain). To ea
h siteVi is asso
iated the set of all points of the design domain for whi
h the
losest Voronoi site is Vi, termed Voronoi 
ell. The Voronoi diagram is thepartition of the design domain de�ned by the Voronoi 
ells. Ea
h 
ell is apolyhedral subset of the design domain, and any partition of a domain of IRninto polyhedral subsets is the Voronoi diagram of at least one set of Voronoisites (see [47℄ for a detailed introdu
tion to Voronoi diagrams, and a generalpresentation of algorithmi
 geometry).The genotype: Consider now a (variable length) list of Voronoi sites, ea
hsite being labeled 0 or 1. The 
orresponding Voronoi diagram represents a8



partition of the design domain into two subsets, if ea
h Voronoi 
ell is labeledas its asso
iated site (see Figure 2).
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(a) Genotype (b) PhenotypeFigure 2: Voronoi representation on a 2� 1 design domain.De
oding: Of 
ourse, as some FE analysis is required during the 
omputa-tion of the �tness fun
tion, and as re-meshing is a sour
e of numeri
al noisethat 
ould ultimately take over the a
tual di�eren
e in me
hani
al behaviorbetween two very similar stru
tures, it is mandatory to use the very samemesh for all stru
tures at the same generation. A partition des
ribed byVoronoi sites is easily mapped on any mesh: the subset (void or material) anelement belongs to is determined from the label of the Voronoi 
ell in whi
hthe gravity 
enter of that element lies.However, the 
omplexity of the individuals (i.e. the number of Voronoisites in their representation) is totally independent of the 
hoi
e of the meshused for �tness 
omputation, and will evolve a

ording to the Darwinianprin
iples underwinning the whole evolutionary pro
ess.Initialization: the initialization pro
edure for the Voronoi representation isa uniform 
hoi
e of the number of Voronoi sites between 1 and a user-suppliedmaximum number, a uniform 
hoi
e of the Voronoi sites in the stru
ture, anda uniform 
hoi
e of the boolean void/material label.Variation operators: The variation operators for the Voronoi representa-tion are problem-driven:� The 
rossover operator ex
hanges Voronoi sites on a geometri
albasis. In this respe
t it is similar to the spe
i�
 bitarray 
rossoverdes
ribed in [33℄. Figure 3 is an example of appli
ation of this operator.9



Parent 1 Parent 2

Offspring 1 Offspring 2Figure 3: The Voronoi representation, and its 
rossover operator: a randomline is drawn a
ross both diagrams, and the sites on one side are ex
hanged
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(a) The add mutation: the site atend of the arrow has been addedto the genotype of Figure 2-a.The phenotype is rather di�erentfrom that of Figure 2-b). (b) Mutation by site displa
e-ment: a small displa
ement of onesite in Figure 2-a slightly modi�edthe phenotype (see Figure 2-b).Figure 4: Two mutations for Voronoi representation.10



� The mutation operator is 
hosen by a roulette wheel sele
tion basedon user-de�ned weights among the following operators:{ the displa
ement mutation performs a Gaussian mutation on the
oordinates of the sites. As in Evolution Strategies [53℄, adaptivemutation is used: one standard deviations is atta
hed to ea
h
oordinate of ea
h Voronoi site, undergoes log-normal mutationbefore being used for the Gaussian mutation of the 
orresponding
oordinate.{ the label mutation randomly 
ips the boolean attribute of one site.{ the add and delete mutations are spe
i�
 variable-length operatorsthat respe
tively randomly add or remove one Voronoi site on thelist.Boundary 
ontrol: One 
ru
ial problem in TOD is the �ne tuning of theboundary of the solution. The optimal shape 
an only be rea
hed in rea-sonable time if the algorithm is able to pre
isely 
ontrol the boundaries ofthe individuals in the population. Unfortunately, the Voronoi representationonly o�ers indire
t 
ontrol of the boundary of the stru
ture it represents.Moreover, the high epistasis of that representation makes it diÆ
ult to mod-ify a single boundary without disturbing the adja
ent ones. The idea behindthe dipole representation presented in next se
tion is to try to over
ome thatdiÆ
ulty.3.2 Dipole representationDipoles: A dipole is a set of two Voronoi sites, one labeled 0 and the otherlabeled 1, standing almost at the same point in the design domain, but whosemedian has a pres
ribed angle in the plane. A dipole is hen
e de�ned by threereal-valued variables, its 
oordinates (x; y) and the angle of its median withthe x-axis �. Figure 5-a is an example of a dipole. The dire
t 
ontrol over� allows a pre
ise 
ontrol over that part of the boundary that goes throughthe (x; y) point.The genotype: One individual in the dipole representation is a (variable11



θ
(x,y)Figure 5: The dipole representation. A single dipole (a) and the Voronoi di-agram built using three dipoles (b): some unwanted 
orners appear at medianmeetings.length) list of dipoles. As in the Voronoi representation, the 
orrespondingVoronoi diagram represents a partition of the design domain into two subsets.De
oding: As for the Voronoi representation, the �tness of all stru
turesis evaluated using a �xed mesh, and the proje
tion on that �xed mesh isperformed as in se
tion 3.1.However, as 
an be seen on Figure 5-b, the de
oding of adja
ent dipolesshows that the resulting stru
ture has two kinds of boundaries: the me-dian of the dipoles, whi
h 
an hopefully be 
ontrolled by the evolutionaryalgorithm, and the medians between dipoles, whose �ne tuning will be asdiÆ
ult as in the Voronoi representation { and maybe even more, as someweird 
on�gurations will often arise, as the one shown in Figure 5-b.Evolution operators: these operators for the dipole representation arederived from the ones of the Voronoi representation: the initialization pro-
edure 
hooses a number of dipoles, and initializes their 
oordinates uni-formly in the design domain and their angle in [0; 2�[. The 
rossover oper-ator ex
hanges dipoles exa
tly as its 
ounterpart for Voronoi representationex
hanged Voronoi sites (see Figure 3). The mutation operators in
lude thedispla
ement mutation, the Gaussian mutation of the angle of a dipole, andof 
ourse the addition and destru
tion of dipoles in the list.Truss-like stru
tures For 
antilever problems, it is well-known that thebest stru
tures are in fa
t truss stru
tures. Obtaining truss stru
tures usingVoronoi diagrams or dipoles requires the emergen
e of 
oupled subsets ofeither sites or dipole and thus might take some time to evolve.12



Moreover, the defe
ts of the dipole representation pointed out in Figure 5-b (together with experimental results as the ones of se
tions 4.2) demonstrateits inability to a
hieve the �ne tuning of the boundary that was the mainreason why it was designed.The Voronoi-bar representation, introdu
ed in next se
tion, aims at botha
hieve the �ne tuning of the boundary, and favor the evolution of trussstru
tures by providing alleles that already are truss elements.3.3 Bar representationVoronoi-Bars: A Voronoi-bar is hen
e de�ned by four real-valued variables,its 
oordinates (x; y), the angle of the bar with the x-axis � and its width.Figure 3.3-a is an example of a single Voronoi-bar.The genotype: One individual in the Voronoi-bar representation is a (vari-able length) list of Voronoi-bars. When all Voronoi-bars are simply 
onsid-ered as Voronoi sites, the 
orresponding Voronoi diagram represents a parti-tion of the design domain into 
onvex polygons. Ea
h su
h polygon is thenseparated into two subdomains, namely the 
entral part, made of material,and the outer part, \�lled" with void (see Figure 3.3). Whenever the widthis large enough, the whole 
ell is 1, whereas a null value for the width turnsthe 
ell into a 0 
ell: these extreme 
ases of the Voronoi-bar representationare nothing else than the Voronoi representation itself.De
oding: As for the Voronoi representation, the �tness of all stru
tureswill be evaluated using a �xed mesh, and the proje
tion on that �xed mesh isperformed as in se
tion 3.1: an element is 
onsidered made of material if andonly if its 
enter of gravity falls within the material part of a Voronoi-bar.As 
an be seen on Figure 3.3-b, the de
oding of adja
ent Voronoi-bars al-lows to dire
tly 
ontrol almost the whole boundary of the resulting stru
ture,apart from some limited portions at the jun
tion of two \bars".Evolution operators: these operators for the Voronoi-bar representationare on
e again derived from the ones of the Voronoi representation: theinitialization pro
edure 
hooses a number of bars, and initializes their 
oor-dinates, angles and width uniformly. The 
rossover operator ex
hanges barsexa
tly as its 
ounterpart for Voronoi representation ex
hanged Voronoi sites13



(x,y)

θ
l

Figure 6: The Voronoi-bar representation. A single bar (a) and the stru
turebuilt using two su
h bars (b): The thi
k line is the boundary between the twoVoronoi 
ells and is part of the stru
ture boundary only at the jun
tion of thetwo bars.(see Figure 3). The mutation operators in
lude the displa
ement mutation,the Gaussian mutation of the angle and width of a bar, and of 
ourse theaddition and destru
tion of bars in the list.4 Experimental results for Voronoi-based rep-resentationsThis se
tion introdu
es some results obtained using the Voronoi-based rep-resentations. Mesh-dependen
y experiments were run on the Voronoi rep-resentation to ensure the idea of 
ompa
t unstru
tured representation wasindeed playing its role: this was shown to be the 
ase up to the error in dis-
retization [28℄. Some original results on some 3D 
antilever problem furtherdemonstrate that using unstru
tured representations did indeed allow inno-vative results in Evolutionary Topologi
al Optimum Design. But the mostimportant part of this se
tion deals with 
omparative results on the ben
h-mark 
antilever problems to try to assess the usefulness of the introdu
tionof the other Voronoi-based representations.4.1 Evolutionary experimental 
onditionsUnless otherwise stated, the experiments presented further on have beenperformed using the following settings: Standard GA-like evolution (linearrank-based sele
tion and generational repla
ement of all parents by all o�-spring) with populations size 80; At most 40 Voronoi sites (or dipoles orbars) per individual; Crossover rate is 0.6 and mutation rate per individual14



is 0.3; Weights among the di�erent mutations are 0.5 for the displa
ementmutation, the remaining mutations equally sharing the remaining 0.5; Allruns are allowed at most 2000 generations, and the algorithm stops after 300generations without improvement; All plots are the result of 21 independentruns; All CPU times are given related to a Pentium III pro
essor running at300MHz under Linux. For instan
e, the 
ost of one generation for the 1� 2or the 2� 1 
antilever problems dis
retized with 200 elements is 2s.4.2 Comparative results of Voronoi-based representa-tionsThis se
tion presents 
omparative ben
hmark results on the three Voronoi-based representations. Two ben
hmark problems are 
onsidered: the 1 � 2and 2 � 1 
antilever plates with respe
tive limits on the maximal displa
e-ment of 20 and 220. In both 
ases, the verti
al left boundary is �xed, and thepoint-wise for
e is applied at half-height of the right verti
al boundary. Theexperimental 
onditions for all representations are those des
ribed in se
tion4.1.Figures 7, 8 and 9 show typi
al best stru
tures obtained with respe
tivelythe Voronoi, the dipole and the Voronoi-bar representations, while Figures10 and 11 show statisti
s over 21 runs for both test 
ases.The �rst 
on
lusion of these experiments is that all three representations�nd almost equally good solutions among the 21 runs. However, the bestrepresentation a

ording to the quality 
riterion is the Voronoi-bar represen-tation: almost all solutions were similar to the ones of Figure 9, whereas manysolutions found by the dipole representation were mu
h worse, and the so-lutions found by the Voronoi representation were 
onsistently slightly worse.These trends are re
e
ted on the 
omparative runs shown in Figures 10 and11. Note that both Voronoi and dipole representations sometimes showed re-sults similar to the Voronoi-bar representation, but the latter really appearedmore robust.Another 
riterion is the 
omplexity of the solutions. The test 
ases arehere very simple, and the solutions should re
e
t this simpli
ity. Here againthe Voronoi-bar representation is a 
lear winner: In all runs, the Voronoi-barrepresentation found very 
ompa
t solutions, 
ompared with those found by15
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�(a) : weight=0.215, 35 sites (b) : weight=0.35, 32 sitesFigure 7: The two best ben
hmark results for the Voronoi representation
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�(a) : weight=0.215, 15 dipoles (b) : weight=0.325, 36 dipolesFigure 8: The two best ben
hmark results for the dipole representation
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�(a) : weight=0.2, 4 bars (b) : weight=0.33, 20 barsFigure 9: The two best ben
hmark results for the Voronoi-bar representationthe other representations. The prefe
t 2-bars V-shape was even found on
efor the 1� 2 
antilever problem.Hen
e it seems that the additional 
omplexity in the elementary allelesof the Voronoi-bar representation does pay o�, at least on these ben
hmarkproblems.4.3 The 10� 1 
antileverThe problem of the 10 � 1 
antilever (dis
retized using a 100 � 10 regularmesh) proved to be diÆ
ult for the bitarray representation as it raises an ad-ditional diÆ
ulty: most of initial random stru
tures do not 
onne
t the �xedboundary and the point where the loading is applied. Hen
e an alternateinitialization pro
edure is used, where the average weight of random stru
-tures 
an be tuned (see [31℄ for details). Furthermore, the maximal numberof sites for ea
h individuals is in
reased to 120, and the best results wereobtained with a population size of 120.Nevertheless, the dipole representation was unable to �nd satisfa
torysolutions { in most 
ases, it simply 
ould never �nd a 
onne
ted solution,similarly to the bitarray representation.Figure 12 and 13 shows the most signi�
ant results obtained using re-spe
tively the Voronoi and the Voronoi-bar representations.Again, a slight advantage 
an be seen for the Voronoi-bar representa-tion in the quality of the best solution. However, the advantage in solution17
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Figure 12: Optimal stru
ture on the 100�10 mesh for 10�1 
antilever platefor the Voronoi representation. Dlim = 12, number of 
ells = 105. weight= 0.479. CPU time = 14s/gen.
Figure 13: Optimal stru
ture on the 100 � 10 mesh for 10 � 1 
antileverplate for the Voronoi-bar representation. Dlim = 12, number of 
ells = 91.weight = 0.424. CPU time = 14s/gen.
omplexity is not so 
lear than it was on the 1�2 ben
hmark. But a very in-teresting feature is the quasi-regularity of the Voronoi-bar solution: indeed,any me
hani
al engineer would build su
h a stru
ture by using the samepart stru
ture four or �ve times before ending with some spe
i�
 part at thefurther end (think of how 
ranes are designed). But as the Voronoi-basedrepresentations do not have the ability to evolve modularity, su
h partialsolutions have to be evolved six times. On-going work addresses this issueby introdu
ing hierar
hi
al representations based on the elementary Voronoirepresentations introdu
ed in se
tion 3.4.4 Three-dimensional problemThis se
tion demonstrates that the Voronoi representation 
an indeed be ap-plied to represent three-dimensional obje
ts. Be
ause the Voronoi diagramstheory is valid in any dimension, the extension of the representation de�nedin se
tion 3.1 to three dimensional obje
ts is straightforward { note that thisis true for the dipole representation, too (se
tion 3.2), but that the bar rep-resentation (3.3) will require some work, as multiple elementary geometri
alshapes should be designed (e.g. 3D bars of di�erent se
tions).The test problem is the 3D equivalent of the 
antilever ben
hmark prob-lem des
ribed in se
tion 2.1: The design domain is a quadrangle subset of19
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Figure 14: The design domain for the 3-dimensional 
antilever problem.IR3, the stru
ture is �xed on a verti
al plane, and a for
e is applied in the
enter of its opposite fa
e (see Figure 4.4). The problem is symmetri
al withrespe
t to a verti
al plane perpendi
ular to the �xed wall. Hen
e only halfof the domain is dis
retized, a

ording to a 16� 7� 10 mesh. Its left fa
e is�xed, and the loading is applied on the middle of the right fa
e.The �rst experiments presented here were performed only with the Voronoirepresentation (se
tion 3.1). As for large 2D domains (se
tion 4.3), the higher
omplexity of the problem lead to modify the settings: the population size isagain set to 120 and the maximum number of Voronoi sites is also in
reasedto 120.Figure 15 demonstrates that the algorithm was able to �nd some goodsolutions in . . . a few days of CPU time (3D FEM analyses are far more 
ostlythan 2D for the same mesh size). To the best of our knowledge, su
h resultsare the �rst results of 3D TOD obtained using Evolutionary Computation.Moreover, it also stresses the ability of EAs to �nd multiple quasi-optimalsolutions to the same problem, some of them quite original indeed when
ompared to the results of the homogenization method on the same problem.5 IFS representationThe Voronoi-based representations were some attempts to es
ape the dire
ten
oding of dis
retized stru
tures using a prede�ned mesh. However, thebasi
 blo
ks that build the stru
ture had to be designed by the programmer,and wrong 
hoi
es 
an bias the sear
h in a wrong dire
tion.20
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x y

z(a) : weight=0.15178, 103 sites (b) : weight=0.166, 109 sitesFigure 15: Two results for the symmetri
al three-dimensional problem usinga 16� 7� 10 mesh for half of the stru
ture, with same 
onstraint (CPU time= 6mn/gen). The point of view is that of Figure 4.4, i.e. the stru
ture is�xed on a verti
al wall at the ba
k of the �gure (not represented).The following fra
tal-based representation is an attempt to go further inthe morphogeneti
 dire
tion: no assumption is made about what the buildingblo
ks of a stru
ture 
ould be { but the sear
h spa
e for the genotype ishopefully ri
h enough so that a large number of di�erent stru
tures 
an beevolved.5.1 IFS TheoryAn IFS 
 = fF; (wn)n=1;::;Ng is a 
olle
tion of N fun
tions de�ned on a
omplete metri
 spa
e (F; d). Let W be the Hut
hinson operator, de�ned onthe spa
e of subsets of F :8 K � F; W (K) = [n2[0;N ℄wn(K)If all wn fun
tions are 
ontra
tive (i.e. there exists a positive real numbers < 1 su
h that d(w(x); w(y)) � s:d(x; y) for all (x; y) 2 F 2), the IFS is
alled hyperboli
, and there exists a unique set A, 
alled the attra
tor of theIFS, su
h that W (A) = A.The uniqueness of the attra
tor is a result of the 
ontra
tive mapping�xed-point theorem for W , whi
h is 
ontra
tive a

ording to the Hausdor�distan
e de�ned by 21



dH(A;B) = max[maxx2A (miny2B d(x; y));maxy2B (minx2A d(x; y))℄From a 
omputational viewpoint, there are two known ways to 
omputethe attra
tor of an IFS:� Sto
hasti
 method (toss-
oin): Let x0 be the �xed point of oneof the wi fun
tions. Build the sequen
e xn by xn+1 = wi(xn), i beingrandomly 
hosen in f1::Ng. Then Sn xn is an approximation of theattra
tor of 
 (the larger n, the more pre
ise the approximation).� Deterministi
 method: From any kernel S0, build the sequen
e fSngof subsets by Sn+1 = W (Sn). When n goes to 1, Sn is an approxima-tion of the real attra
tor of 
.5.2 Evolutionary IFS identi�
ationThe �rst attempts to evolve IFS using EAs dealt with the inverse problem:given a target shape A � F , �nd the IFS whose attra
tor is A.This problem 
an be formulated as an optimization problem: �nd the IFSwhose attra
tor minimizes the distan
e to the target shape A. As the fun
tionto be optimized is extremely 
omplex, some a priori restri
tive hypothesesare ne
essary. Usually, the sear
h spa
e is that of aÆne IFS, with a �xednumber of fun
tions: see [7, 55℄ for early 
omputational methods. Morere
ently, solutions based on Evolutionary Algorithms have been presentedfor aÆne IFS, i.e. IFS in whi
h all fun
tions are aÆne fun
tions [56, 23, 45℄.But aÆne IFS are a small subset of possible IFS, and some previous workof one of the authors [43℄ dealt with general non-aÆne IFS (
alled MixedIFS) using GP, that allows to evolve any type of fun
tion. However, whereasassessing the 
ontra
tivity of aÆne fun
tions is straightforward, the 
ontra
-tivity of general fun
tions de�ned as GP trees 
ould only be numeri
ally
he
ked a posteriori { and at a heavy 
omputational 
ost. This drawba
kmotivated the very re
ent introdu
tion of Polar IFS [19℄ in whi
h the fun
-tions are sought (still using GP) in polar form around their �xed points:a simple 
ondition on the � fun
tions ensures the lo
al 
ontra
tivity of thefun
tion around its �xed point. While this does not ensure the global 
on-tra
tivity, the proportion of 
ontra
tive fun
tions among that 
lass of polarfun
tions is mu
h larger than that of 
ontra
tive general GP trees - and the22
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�(a) : weight=0.31 (b) : weight=0.43Figure 16: The two ben
hmark results for the IFS representationinverse problem 
an be solved more rapidly and a

urately.Unfortunately, when the present work started, only the GP program toidentify mixed IFS was operational. Hen
e the �rst results presented in nextse
tions using IFS representation for the TOD problem have been obtainedusing the mixed IFS GP-based program des
ribed in detail in [43℄.5.3 IFS representation for TOD: �rst resultsThe idea of shape representation using IFS is now straightforward: Theattra
tor of an IFS is a shape de�ned in the design domain. Hen
e the�tness of the IFS 
an be 
omputed using that shape as a stru
ture, potentialsolution of the TOD.The attra
tor of a given IFS is 
omputed on the mesh that is used for theFE analyses, and the �tness is 
omputed as stated in se
tion 2.3. The same1 � 2 and 2 � 1 ben
hmark 
antilever problems than in se
tion 4 are used,and Figure 16 shows the best results obtained in 5 runs.First, the good news is that reasonable stru
tures were obtained. More-over, their shapes are indeed more \la
e-like" than when using a Voronoi-based representation { and without the 
ost of des
ribing all small holes asin the bitarray representations.However, the results are not as good as the results obtained by Voronoirepresentations, and that appealed for further experiments on less simpleproblems: the IFS representation was used for the 10� 1 
antilever problem23
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Figure 17: Optimal stru
ture on the 100�10 mesh for 10�1 
antilever platefor the IFS representation. Dlim = 12. weight = 0.58. CPU time = 15s/gen.of se
tion 4.3. The best feasible result (out of 10 independent runs) 
an beseen on Figure 17. Comparing this result to those presented on Figure 12 and13, it is 
lear that the optimal stru
ture is heavier here. Note that a lighterstru
ture (0.55) that violates the 
onstraint on the maximal displa
ementvery lightly (12.17 vs 12) has also be obtained in one of the runs.These preliminary experiments raise some 
riti
al issues:� The varian
e of the results was very high { some results were reallynot good at all. Su
h high varian
e is a real problem in exploitationsituations, where it is mandatory that reasonable solutions are found atevery run. However, for design problems, it 
an be
ome an advantage,as one 
an hope to obtain very good solutions. It did not happen withthe ben
hmark problems presented here, maybe be
ause the (known)best solutions really are too simple.� The same adaptive penalty strategy was used here than for the Voronoi-based representations (see se
tion 2.3). However, whereas all runs ofVoronoi-based representations found feasible solutions, most runs usingthe IFS representation found slightly infeasible solutions.� the 
omputational time for de
oding is mu
h larger for the IFS repre-sentation than for the Voronoi representation.� The in
uen
e of mesh re�nement on the a
tual shape obtained by de-
oding an IFS is not easy to guess. However, �rst experiments suggestthat di�erent meshes might result in quite di�erent shapes up to very�ne meshes.These remarks suggest that too many things remain unknown in the stru
-ture of the IFS sear
h spa
e. Further experiments are needed, on di�erentproblems where the solution is not 
learly a simple obje
t { starting with24



the 10� 1 problem of se
tion 4.3, but also going to design problems outsideStru
tural Me
hani
al, e.g. in Image Analysis domain. Another issue is theextension to three-dimensional problems. Whereas the theoreti
al extensionis straightforward, the 
omplexity of the 
omputation of the attra
tor of a3D IFS will in
rease drasti
ally.6 Dis
ussion and 
on
lusionThis paper has introdu
ed new representations for the representation of ob-je
ts in the framework of Evolutionary Computation. These representationswere experimented with on some Design problems in Stru
tural Me
hani
s.Departing from the raw bitarray representation based on a �xed dis
retiza-tion of the design domain, representations based on the theory of Voronoidiagrams have been proposed, from the simple Voronoi representation to themore 
omplex dipole and Voronoi-bar representations.These representations are unstru
tured, i.e. an individual is a variable-length unordered list of alleles. They are 
ompa
t, in the sense that theydon't require en extensive des
ription of the obje
t at hand on a (usuallyvery large) �xed set of alleles: Though the stru
ture of a single allele in-
reases when going from the Voronoi representation to the Voronoi-bar rep-resentation, all three representation implement self-adaptive 
omplexity ofthe solutions, i.e. the a
tual 
omplexity of the individuals is evolved by thealgorithm and does not have to be pre-de�ned by the user.These representations have been tried on simple test problems of Topo-logi
al Optimum Design. The results suggest that all three representations
an solve su
h problems, and require roughly the same 
omputational e�ortfor the same quality of solution, with a slight advantage for the Voronoi-barrepresentation. However, when examining the 
omplexity of the solution,there is a 
lear advantage in using the Voronoi-bar representation, whosesolutions 
onsistently involve less alleles than both others. Note that thisprobably also explains the observed slight improvement in quality vs 
ompu-tation e�ort, as it is easier to �ne tune the solution when only few alleles areto be adjusted. However, it should be kept in mind that all 2D 
antileverproblems have truss-like optimal solutions 
onstru
ted from . . . bar-like el-ements. Further experiments on problems for whi
h the optimal solutionsdoes not exhibit su
h 
hara
teristi
s should be 
arried on.25



Finally, the IFS representation was presented, a morphogeneti
 represen-tation in whi
h the stru
ture is indire
tly de�ned as the attra
tor of a set of
ontra
tive mappings on the design domain. Su
h representation does notmake any a priori supposition on the shape of building blo
ks for the solu-tion of the problem at hand. This should allow more 
omplex solutions tobe evolved without designing spe
i�
 alleles.Reasonable results were obtained on simple 2D TOD problems, but slightlyworse than those of any of the Voronoi-based representations. A possible rea-son for su
h results is that the in
rease of 
omplexity of the morphogeneti
pro
ess might only prove bene�
ial for problems where the solution is also
omplex { and further work will try to apply this representation to morediÆ
ult problems, in order to assess for that hypothesis. Moreover, it alsomight be the 
ase that the la
k of 
ausality (dire
t feed-ba
k from the me-
hani
al stru
ture on the IFS) forbids any useful evolutionary pro
ess, atleast with so few individuals and generations. Some experiments on highlyparallel systems with distributed populations of hundreds of thousands ofindividuals might help answering that question.Another 
riti
al issue is the dependen
y of the morphogeneti
 pro
ess onthe mesh, that seems to be mu
h higher for IFS representations than for allVoronoi representations. Two possible answers will be investigated: by usingdi�erent unstru
tured meshes during evolution, or by making the de
odingpro
ess smoother. First, by 
hanging the mesh at every generation, or byaveraging the �tness over a few meshes, it is hoped that only solutions thatare robust with respe
t to the mesh will survive su

essive sele
tions. Se
-ond, the numeri
al 
omputation of the attra
tor of an IFS �lls an elementwith material as soon as it is hit on
e by the toss-
oin algorithm, whereassmoother de
oding would be to 
onsider only the hard 
ore of the attra
torrequiring a minimal number of su
h hits before �lling it.In the present state of this resear
h, however, the Voronoi-bar representa-tion seems a good 
hoi
e when looking for representations of obje
ts suitablefor evolutionary pro
esses, as witnessed by their use in this paper for evo-lutionary TOD: it a
hieves a good 
ompromise between 
ompa
tness of thesolutions and eÆ
ien
y of sear
h for good solutions. However, whereas theextension of the Voronoi and dipole representations to three dimensions isstraightforward (see se
tion 4.4), that of the Voronoi-bar representation re-quires some more work: one will probably need plate and bars with di�erent
ross-se
tion shapes to be in
luded in the elementary alleles. In that per-26



spe
tive, the IFS representation will also be tested on 3D 
omplex problems.It is 
lear that 
ompa
t expressive representations are a prerequisite tosu

essful evolutionary-guided 
reativity [12℄). In that respe
t, the repre-sentations of obje
ts proposed in that paper are a step toward more eÆ
ientevolutionary design. However, as quoted in [37, 38℄, a key feature for 
reativedesign is the use of modularity, i.e. the ability to evolve sub-stru
tures and touse them as new building blo
ks. None of the proposed representations doesin
lude high level 
onstru
ts, su
h as the possibility to evolve symmetri
, orre-usable sub-solutions. For instan
e, any me
hani
al engineer would designsolutions of the N � 1 
antilever problem for large N by using many almostidenti
al small truss-stru
tures again and again.In that dire
tion, some hierar
hi
al representations for shapes have beenproposed already, su
h as the Quad-tree representation [20℄. However quad-tree representation is not easy to evolve, as for instan
e standard tree 
rossoverdoes not preserve the lo
ality of quad-tree dis
retization. Another possibleapproa
h 
ould be to hybridize both the Voronoi and some IFS-like repre-sentation: an IFS would be atta
hed to ea
h Voronoi site, and be used tode�ne the shape of the obje
t in the 
orresponding Voronoi 
ell (in a similarway that the angle and the width of a bar de�ne the shape of the stru
-ture in the bar-representation of se
tion 3.3. The global evolution of su
ha representation might prove too time-
onsuming, but 
ould be repla
ed bysome two-steps evolution, in the line of [49℄: �rst, identify the IFS adaptedto the problem at hand; then use them as a (�xed) library where Voronoisites would be allowed to 
hoose their internal shape.Anyway, some 
oupling between a hierar
hi
al approa
h to 
omplex repre-sentations, and one of the unstru
tured representations presented here seemto be a possible route to the Graal of Evolutionary Design, the automati
design of highly 
omplex stru
tures. It is hoped that the work in this papera
tually brings some building blo
ks to su
h higher level morphogeneti
 rep-resentation { while already allowing the dire
t 
omputation of solutions tosimple problems out of rea
h for \standard" extensive representations.A
knowledgementsThe authors wish to thank the anonymous reviewers, whose detailed sugges-tions helped to improve the readability of the paper.27
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