
Compat Unstrutured Representations forEvolutionary DesignHatem Hamda1, Fran�ois Jouve1, Evelyne Lutton2,Mar Shoenauer1 and Mih�ele Sebag3(1) CMAP { UMR CNRS 7641 { �Eole Polytehnique { 91128 Palaiseau Cedex(2) Projet Fratales { INRIA { BP 105 { 78153 Le Chesnay Cedex(3) LMS { UMR 7649 { �Eole Polytehnique { 91128 Palaiseau CedexApplied Intelligene, vol. 16, pp. 139-155, 2002.AbstratThis paper proposes a few steps to esape strutured extensiverepresentations for objets, in the ontext of evolutionary TopologialOptimum Design (TOD) problems: early results have demonstratedthe potential power of Evolutionary methods to �nd numerial so-lutions to yet unsolved TOD problems, but those approahes werelimited beause the omplexity of the representation was that of a�xed underlying mesh. Di�erent ompat unstrutured representa-tions are introdued, the omplexity of whih is self-adaptive, i.e. isevolved by the algorithm itself. The Voronoi-based representationsare variable length lists of alleles that are diretly deoded into objetshapes, while the IFS representation, based on fratal theory, involvesa muh more omplex morphogeneti proess. First results demon-strates that Voronoi-based representations allow one to push furtherthe limits of Evolutionary Topologial OptimumDesign by atually re-moving the orrelation between the omplexity of the representationsand that of the disretization. Further omparative results among allthese representations on simple test problems seem to indiate thatthe omplex ausality in the IFS representation disfavor it omparedto the Voronoi-based representations.1 IntrodutionEvolutionary Algorithms (EAs) have been widely used in the framework ofparametri optimization, i.e. when the searh spae is a strutured spae of�xed length vetors. In that ontext, EAs are just yet another optimiza-tion method: They are indeed a powerful zero-th order global optimization1



method, and, as suh, they have been suessfully applied in many domains,but . . .The most innovative and outstanding results have been reently obtainedby taking advantage of the ability of EAs to deal with very unusual un-strutured searh spaes, suh as spaes of unordered lists, of parse-trees[37, 39, 10℄, of graphs, and the like ([12, 13℄). The \only" prerequisites arean initialization proedure and variation operators that respet some min-imal requirements [54℄. Indeed, the larger the searh spae the better thesolutions it ontains, but the more diÆult it might be to �nd them.On the other hand, using unstrutured searh spaes is probably the onlyway to evolve omplex solutions for whih a desription in extension willrapidly hit some salability limits.One �rst step away from strutured representations is to use sparse variable-length lists instead of full extensive desriptions1: for instane, when searh-ing in the spae of polynomials, the extensive strutured representation wouldbe to look for the vetor oeÆients of all monomials up to a ertain degree;an unstrutured representation an be that of variable length lists of oef-�ients, desribing only some partiular monomials. The main problem ofsuh ompat unstrutured representations is of ourse the design of meaning-ful variation operators (rossover, mutation) that will make evolution di�erfrom random searh.Another further step toward salability is to use list of groups of ele-mentary items, also alled omponent-based representations in [11℄: in theontext of polynomial identi�ation, that would amount to manipulate someelementary polynomials not limited to simple monomials. But suh om-pat unstrutured representations an also be organized into . . . struturedspaes, to make their evolution easier: using Geneti Programming [36, 6℄is an alternative representation for variable degree polynomials, with well-designed variation operators. Suh searh spae also allows one to add use-ful features, suh as modularity and reursion, to the representations [37℄,making another step toward the evolution of omplex solutions: when thesolution to a problem has some symmetries, is seems quite unlikely, and atleast resoure-wasting, that evolution will \disover" multiple instanes ofthe same mehanism.1Of ourse, there also exists extensive unstrutured representation, suh as the MessyGA representation [25℄, di�erent representations for the TSP [48℄, or extensive desriptionof variable-topology neural networks [5, 21℄ whih will not be onsidered further in thispaper in the light of the salability issue. 2



But the to-date ultimate researh diretion toward the evolution of om-plex solutions seems to lie in the so-alled morphogeneti approah [13℄: in-stead of evolving parts of solutions (simple item or more omplex ompo-nents), one evolves some programs that in turn give the solution when theyare run. One of the early attempts of morphogeneti approah is the CellularEnoding of F. Gruau [27℄ where a Neural Network is built from an embryoby a GP-like program { while many reent suesses have been reported usingGP in di�erent domains [39, 40℄. As they also an evolve modular solutions,morphogeneti approahes really are appealing to build very omplex solu-tions to diÆult problems whose omponents an hardly be designed diretly.However, the inrease in salability goes together with a loss in ausality: itis almost impossible for anyone to guess the inuene of small parts of thegenotype on the �nal solution.In the framework of Topologial Optimum Design, the plain diret ex-tensive representation is the widely used bitarray approah based on a �xedmesh of the design domain. Though very suessful to overome the mainlimitations of deterministi methods for TOD [34, 32, 35℄, this representationdoes not sale up with the omplexity of the mesh. Di�erent ompat un-strutured representations based on Voronoi diagrams are introdued, thatexhibit a self-adaptive omplexity (i.e. the omplexity of the solutions isadjusted by the algorithm). These representations do not involve exatlyomponents, but do require some elementary alleles to be de�ned by theprogrammer; suh alleles an be viewed as some sort of variable omponents:due to the high degree of epistasis of those representations, the phenotypiexpression of eah allele strongly depends on the other alleles. In an attemptto avoid the biases resulting from the manual hoie of these alleles, the IFSrepresentation, a morphogeneti approah based on fratal theory, is de�ned.The paper is organized the following way. The ontext of evolutionaryTOD is realled in setion 2, from the mehanial bakground to the adap-tive penalty method used within the �tness funtion. Setion 3 introduesa series of three di�erent representations based on the idea of Voronoi dia-grams while setion 4 presents original experimental results obtained with thesimple Voronoi representations, assessing the power of the ompat unstru-tured approah. Comparative results on antilever benhmark problems arethen presented, allowing one to disriminate among the di�erent Voronoi-based representations. Setion 5 introdues the IFS representation, basedthe fratal theory, together with preliminary experimental results assessing3



its possible advantages and setting its limits, at least for simple problemsof TOD. Setion 6 disusses the relevane of the di�erent representationsintrodued in the paper and onludes on further diretions of researh.2 Bakground2.1 The mehanial problemThe general framework of this paper is the Topologial Optimum Design(TOD) problem: �nd the optimal shape of a struture (i.e. a repartitionof material in a given design domain) suh that the mehanial behaviorof that struture meets some requirements { here a bound on the maximaldisplaement under a presribed loading, but it ould also involve bounds onthe eigenfrequenies, or any ombination of sti�ness and modal optimization.The optimality riterion is here the weight of the struture, but it ould alsoinvolve other tehnologial osts.The mehanial model used in this paper is the standard two-dimensional(exept in setion 4.4) plane stress linear model, and only linear elasti mate-rials will be onsidered (see e.g. [18℄). All mehanial �gures are adimensional(e.g. the Young modulus is set to 1) and the e�ets of gravity are negleted.One of the most popular benhmark problem of Optimum Design is theoptimization of a antilever plate: the design domain is retangular, the plateis �xed on the left vertial part of its boundary (displaement is fored to 0),and the loading is made of a single fore applied on the middle of its rightvertial boundary. Figure 1 shows the design domain for the 2� 1 antileverplate problem.2.2 State of the art in Shape OptimizationThe main trends in strutural optimization an be skethed as follows. A �rstapproah is that of domain variation [15℄ (also termed sensitivity analysisin Strutural Mehanis). It onsists in suessive small variations of aninitial design domain, and is based on the omputation of the gradient of theobjetive funtion with respet to the domain. The original approah hastwo major defets: �rst, it requires a good initial guess, as it demonstratedunstable for large variations of the domain; seond, it does not allow to4
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Figure 1: The 2�1 antilever plate test problem, and a bitarray representationof a struture derived from a regular 13� 6 mesh. See setion 2.4.modify the topology of the initial domain (e.g. add or remove holes). However,the idea of topologial gradient was reently proposed and suessfully used in[22℄, allowing the modi�ation of the topology of the solution. Nevertheless,this method is stritly limited to the linear elastiity framework.The other method for topology optimization is the now standard approahof homogenization, introdued in [8℄, whih deals with a ontinuous densityof material in [0; 1℄. This relaxed problem is known to have a solution in thease of linear elastiity [3℄ { and the orresponding numerial method doesonverge to a (non-physial) generalized solution made of �ne omposite ma-terial. It an then be post-proessed to obtain an admissible solution withboolean density [2℄. The homogenization method is also insofar limited to thelinear-elastiity. The theoretial results about optimal miro-strutures onlyhandle single-loading ases, though numerial solution to multi-loading aseshave been proposed [1℄. In addition, this method annot address loadingsthat apply on the (unknown) atual boundary of the shape (e.g. uniformpressure).A possible approah to overome these diÆulties of TOD is to usestohasti optimization methods.Stohasti optimization methods have been suessfully applied to otherproblems of strutural optimization: in the framework of disrete truss stru-tures, for ross-setion sizing [42, 52℄ among others, as well as for topologialoptimization [26, 14℄ and for the optimization of omposite materials [41℄.TOD problems have also already been addressed by stohasti methods:Simulated Annealing has been used to �nd the optimal shape of the ross-5



setion of a beam in [4℄; and Evolutionary Algorithms have been used tosolve antilever problems as the one presented in Setion 2.1 in [29, 17, 34℄.The above-mentioned limitations of the deterministi methods have beensuessfully overome by these works { in [34, 32, 35℄ for instane, resultsof TOD in nonlinear elastiity, as well as the optimization of an underwaterdome (where the loading is applied on the unknown boundary) have beenproposed, both out of reah for the deterministi methods.2.3 Fitness omputationThe problem takled in this paper is to �nd a struture of minimal weightsuh that its maximal displaement stays within a presribed limitDlim whensome given point-wise fore is applied on the loading point (see Figure 1). Theomputation of the maximal displaement is made using a Finite ElementAnalysis solver [30℄).From mehanial onsiderations, all strutures that do not onnet theloading point and the �xed boundary are given an arbitrary high �tnessvalue. Moreover, the material in the design domain that is not onnetedto the loading point { and has thus no e�et on the mehanial behavior ofthe struture { is disarded during the Finite Element Analysis, but slightlypenalizes the struture at hand (see [34, 32℄ for a detailed disussion onboth these issues). In summary, for onneted strutures, the problem is tominimize the (onneted) weight subjet to one onstraint for eah loadingase, namely DiMax � Dilim, where DiMax its maximal displaement omputedby the FEM under loading i, and Dilim its presribed limit.Introduing the positive penalty parameters �i, the �tness funtion tominimize is Weight+Xi �i(Dimax �Dilim)+(1) However, adjusting �i is not an easy task, and many spei� methodsexist in Evolutionary Computation [44℄.The adaptive penalty method used here updates the penalty parameterbased upon global statistis of feasibility in the population. Its main goal isto explore the neighborhood of the boundary of the feasible region by tryingto keep in the population individuals that are on both sides of that boundary:in the ontext of sti�ness optimization in TOD, the solution does lie on theboundary, . . . but for the ontinuous problem only! One disretized, this is6



no longer true, and it an only be said that the solution lies lose to theboundary.The objetive is to maintain in the population a minimum proportion offeasible individuals as well as a minimum proportion of infeasible individuals.Denote by �kfeasible the proportion of feasible individuals at generation k, andby �inf and �sup two user-de�ned parameters. As small penalty parametersfavor the infeasible individuals (and vie-versa), the following update rule forthe �i parameters is proposed to try to keep �kfeasible in [�inf ;�sup℄:�k+1 = 8><>: � � �k if �kfeasible < �inf(1=�) � �k if �kfeasible > �sup�k otherwise(2)with � > 1. User-de�ned parameters of this method are �inf , �sup, � andthe initial value �0. The robust values � = 1:1;�inf = 0:4; and �sup = 0:8were used in all experiments presented this paper.Note that the variations of � are non monotonous, and hene there isno a priori guarantee that the best individual in the population is feasible.It an even happen that the population ontains no feasible individual {though in that ase the steady inrease of � should favor individuals withlower onstraint violation, and rapidly result in the emergene of feasibleindividuals.Some omparative results assessing the power of that population-basedadaptive penalty method an be found in [9℄ for test problems, and in [28℄in the ontext of TOD.2.4 Representations of strutures for TODAll the works ited in setion 2.2 that address TOD problems with EAs usethe same 'natural' binary representation, termed bitarray in [34℄: it relies ona mesh of the design domain { the same mesh that is used to ompute themehanial behavior of the struture in order to give it a �tness (see se-tion 2.3). Eah element of the mesh is given value 1 if it ontains material,0 otherwise (see Figure 1). Note that this bit-based representation is notequivalent to the usual bitstring representation, and that some spei� geo-metrial rossover operators had to be designed [33℄, similar to the rossoveroperator desribed below for the Voronoi-based representations.In spite of its suesses in solving TOD problems [34, 32, 35℄, bitarrayrepresentation su�ers from a strong limitation due to the dependeny of its7



omplexity on that of the underlying mesh. Indeed, the size of the individual(the number of bits used to enode a struture) is the size of the mesh. Un-fortunately, aording to both the theoretial results in [16℄ and the empirialonsiderations in [24℄, the ritial population size required for onvergeneshould be inreased at least linearly with the size of the individuals. More-over, larger populations generally require a greater number of generationsto onverge. Hene it is lear that the bitarray approah will not sale upwhen using very �ne meshes. This greatly limits the pratial appliationof this approah to oarse (hene impreise) 2D meshes, whereas MehanialEngineers are interested in �ne 3D meshes!These onsiderations appeal for some more ompat representations whoseomplexity does not depend on a �xed disretization. The ultimate step inthe diretion of omplexity-free representation is to let the omplexity itselfevolve and be adjusted by the EA.3 Voronoi-based representationsThe Voronoi representation is a �rst attempt toward unstrutured represen-tations for TOD. It has �rst been proposed in [46℄, but has been used sinethen mainly in the ontext of identi�ation problems [51, 50℄. This setionrealls the de�nition of Voronoi representation, and proposes two other rep-resentations that also derive from the same ideas.3.1 Voronoi representationVoronoi diagrams: Consider a �nite number of points V0; : : : ; VN (theVoronoi sites) of a given subset of IRn (the design domain). To eah siteVi is assoiated the set of all points of the design domain for whih thelosest Voronoi site is Vi, termed Voronoi ell. The Voronoi diagram is thepartition of the design domain de�ned by the Voronoi ells. Eah ell is apolyhedral subset of the design domain, and any partition of a domain of IRninto polyhedral subsets is the Voronoi diagram of at least one set of Voronoisites (see [47℄ for a detailed introdution to Voronoi diagrams, and a generalpresentation of algorithmi geometry).The genotype: Consider now a (variable length) list of Voronoi sites, eahsite being labeled 0 or 1. The orresponding Voronoi diagram represents a8



partition of the design domain into two subsets, if eah Voronoi ell is labeledas its assoiated site (see Figure 2).
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(a) Genotype (b) PhenotypeFigure 2: Voronoi representation on a 2� 1 design domain.Deoding: Of ourse, as some FE analysis is required during the omputa-tion of the �tness funtion, and as re-meshing is a soure of numerial noisethat ould ultimately take over the atual di�erene in mehanial behaviorbetween two very similar strutures, it is mandatory to use the very samemesh for all strutures at the same generation. A partition desribed byVoronoi sites is easily mapped on any mesh: the subset (void or material) anelement belongs to is determined from the label of the Voronoi ell in whihthe gravity enter of that element lies.However, the omplexity of the individuals (i.e. the number of Voronoisites in their representation) is totally independent of the hoie of the meshused for �tness omputation, and will evolve aording to the Darwinianpriniples underwinning the whole evolutionary proess.Initialization: the initialization proedure for the Voronoi representation isa uniform hoie of the number of Voronoi sites between 1 and a user-suppliedmaximum number, a uniform hoie of the Voronoi sites in the struture, anda uniform hoie of the boolean void/material label.Variation operators: The variation operators for the Voronoi representa-tion are problem-driven:� The rossover operator exhanges Voronoi sites on a geometrialbasis. In this respet it is similar to the spei� bitarray rossoverdesribed in [33℄. Figure 3 is an example of appliation of this operator.9



Parent 1 Parent 2

Offspring 1 Offspring 2Figure 3: The Voronoi representation, and its rossover operator: a randomline is drawn aross both diagrams, and the sites on one side are exhanged
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

(a) The add mutation: the site atend of the arrow has been addedto the genotype of Figure 2-a.The phenotype is rather di�erentfrom that of Figure 2-b). (b) Mutation by site displae-ment: a small displaement of onesite in Figure 2-a slightly modi�edthe phenotype (see Figure 2-b).Figure 4: Two mutations for Voronoi representation.10



� The mutation operator is hosen by a roulette wheel seletion basedon user-de�ned weights among the following operators:{ the displaement mutation performs a Gaussian mutation on theoordinates of the sites. As in Evolution Strategies [53℄, adaptivemutation is used: one standard deviations is attahed to eahoordinate of eah Voronoi site, undergoes log-normal mutationbefore being used for the Gaussian mutation of the orrespondingoordinate.{ the label mutation randomly ips the boolean attribute of one site.{ the add and delete mutations are spei� variable-length operatorsthat respetively randomly add or remove one Voronoi site on thelist.Boundary ontrol: One ruial problem in TOD is the �ne tuning of theboundary of the solution. The optimal shape an only be reahed in rea-sonable time if the algorithm is able to preisely ontrol the boundaries ofthe individuals in the population. Unfortunately, the Voronoi representationonly o�ers indiret ontrol of the boundary of the struture it represents.Moreover, the high epistasis of that representation makes it diÆult to mod-ify a single boundary without disturbing the adjaent ones. The idea behindthe dipole representation presented in next setion is to try to overome thatdiÆulty.3.2 Dipole representationDipoles: A dipole is a set of two Voronoi sites, one labeled 0 and the otherlabeled 1, standing almost at the same point in the design domain, but whosemedian has a presribed angle in the plane. A dipole is hene de�ned by threereal-valued variables, its oordinates (x; y) and the angle of its median withthe x-axis �. Figure 5-a is an example of a dipole. The diret ontrol over� allows a preise ontrol over that part of the boundary that goes throughthe (x; y) point.The genotype: One individual in the dipole representation is a (variable11



θ
(x,y)Figure 5: The dipole representation. A single dipole (a) and the Voronoi di-agram built using three dipoles (b): some unwanted orners appear at medianmeetings.length) list of dipoles. As in the Voronoi representation, the orrespondingVoronoi diagram represents a partition of the design domain into two subsets.Deoding: As for the Voronoi representation, the �tness of all struturesis evaluated using a �xed mesh, and the projetion on that �xed mesh isperformed as in setion 3.1.However, as an be seen on Figure 5-b, the deoding of adjaent dipolesshows that the resulting struture has two kinds of boundaries: the me-dian of the dipoles, whih an hopefully be ontrolled by the evolutionaryalgorithm, and the medians between dipoles, whose �ne tuning will be asdiÆult as in the Voronoi representation { and maybe even more, as someweird on�gurations will often arise, as the one shown in Figure 5-b.Evolution operators: these operators for the dipole representation arederived from the ones of the Voronoi representation: the initialization pro-edure hooses a number of dipoles, and initializes their oordinates uni-formly in the design domain and their angle in [0; 2�[. The rossover oper-ator exhanges dipoles exatly as its ounterpart for Voronoi representationexhanged Voronoi sites (see Figure 3). The mutation operators inlude thedisplaement mutation, the Gaussian mutation of the angle of a dipole, andof ourse the addition and destrution of dipoles in the list.Truss-like strutures For antilever problems, it is well-known that thebest strutures are in fat truss strutures. Obtaining truss strutures usingVoronoi diagrams or dipoles requires the emergene of oupled subsets ofeither sites or dipole and thus might take some time to evolve.12



Moreover, the defets of the dipole representation pointed out in Figure 5-b (together with experimental results as the ones of setions 4.2) demonstrateits inability to ahieve the �ne tuning of the boundary that was the mainreason why it was designed.The Voronoi-bar representation, introdued in next setion, aims at bothahieve the �ne tuning of the boundary, and favor the evolution of trussstrutures by providing alleles that already are truss elements.3.3 Bar representationVoronoi-Bars: A Voronoi-bar is hene de�ned by four real-valued variables,its oordinates (x; y), the angle of the bar with the x-axis � and its width.Figure 3.3-a is an example of a single Voronoi-bar.The genotype: One individual in the Voronoi-bar representation is a (vari-able length) list of Voronoi-bars. When all Voronoi-bars are simply onsid-ered as Voronoi sites, the orresponding Voronoi diagram represents a parti-tion of the design domain into onvex polygons. Eah suh polygon is thenseparated into two subdomains, namely the entral part, made of material,and the outer part, \�lled" with void (see Figure 3.3). Whenever the widthis large enough, the whole ell is 1, whereas a null value for the width turnsthe ell into a 0 ell: these extreme ases of the Voronoi-bar representationare nothing else than the Voronoi representation itself.Deoding: As for the Voronoi representation, the �tness of all strutureswill be evaluated using a �xed mesh, and the projetion on that �xed mesh isperformed as in setion 3.1: an element is onsidered made of material if andonly if its enter of gravity falls within the material part of a Voronoi-bar.As an be seen on Figure 3.3-b, the deoding of adjaent Voronoi-bars al-lows to diretly ontrol almost the whole boundary of the resulting struture,apart from some limited portions at the juntion of two \bars".Evolution operators: these operators for the Voronoi-bar representationare one again derived from the ones of the Voronoi representation: theinitialization proedure hooses a number of bars, and initializes their oor-dinates, angles and width uniformly. The rossover operator exhanges barsexatly as its ounterpart for Voronoi representation exhanged Voronoi sites13



(x,y)

θ
l

Figure 6: The Voronoi-bar representation. A single bar (a) and the struturebuilt using two suh bars (b): The thik line is the boundary between the twoVoronoi ells and is part of the struture boundary only at the juntion of thetwo bars.(see Figure 3). The mutation operators inlude the displaement mutation,the Gaussian mutation of the angle and width of a bar, and of ourse theaddition and destrution of bars in the list.4 Experimental results for Voronoi-based rep-resentationsThis setion introdues some results obtained using the Voronoi-based rep-resentations. Mesh-dependeny experiments were run on the Voronoi rep-resentation to ensure the idea of ompat unstrutured representation wasindeed playing its role: this was shown to be the ase up to the error in dis-retization [28℄. Some original results on some 3D antilever problem furtherdemonstrate that using unstrutured representations did indeed allow inno-vative results in Evolutionary Topologial Optimum Design. But the mostimportant part of this setion deals with omparative results on the benh-mark antilever problems to try to assess the usefulness of the introdutionof the other Voronoi-based representations.4.1 Evolutionary experimental onditionsUnless otherwise stated, the experiments presented further on have beenperformed using the following settings: Standard GA-like evolution (linearrank-based seletion and generational replaement of all parents by all o�-spring) with populations size 80; At most 40 Voronoi sites (or dipoles orbars) per individual; Crossover rate is 0.6 and mutation rate per individual14



is 0.3; Weights among the di�erent mutations are 0.5 for the displaementmutation, the remaining mutations equally sharing the remaining 0.5; Allruns are allowed at most 2000 generations, and the algorithm stops after 300generations without improvement; All plots are the result of 21 independentruns; All CPU times are given related to a Pentium III proessor running at300MHz under Linux. For instane, the ost of one generation for the 1� 2or the 2� 1 antilever problems disretized with 200 elements is 2s.4.2 Comparative results of Voronoi-based representa-tionsThis setion presents omparative benhmark results on the three Voronoi-based representations. Two benhmark problems are onsidered: the 1 � 2and 2 � 1 antilever plates with respetive limits on the maximal displae-ment of 20 and 220. In both ases, the vertial left boundary is �xed, and thepoint-wise fore is applied at half-height of the right vertial boundary. Theexperimental onditions for all representations are those desribed in setion4.1.Figures 7, 8 and 9 show typial best strutures obtained with respetivelythe Voronoi, the dipole and the Voronoi-bar representations, while Figures10 and 11 show statistis over 21 runs for both test ases.The �rst onlusion of these experiments is that all three representations�nd almost equally good solutions among the 21 runs. However, the bestrepresentation aording to the quality riterion is the Voronoi-bar represen-tation: almost all solutions were similar to the ones of Figure 9, whereas manysolutions found by the dipole representation were muh worse, and the so-lutions found by the Voronoi representation were onsistently slightly worse.These trends are reeted on the omparative runs shown in Figures 10 and11. Note that both Voronoi and dipole representations sometimes showed re-sults similar to the Voronoi-bar representation, but the latter really appearedmore robust.Another riterion is the omplexity of the solutions. The test ases arehere very simple, and the solutions should reet this simpliity. Here againthe Voronoi-bar representation is a lear winner: In all runs, the Voronoi-barrepresentation found very ompat solutions, ompared with those found by15
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�(a) : weight=0.215, 35 sites (b) : weight=0.35, 32 sitesFigure 7: The two best benhmark results for the Voronoi representation
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�(a) : weight=0.215, 15 dipoles (b) : weight=0.325, 36 dipolesFigure 8: The two best benhmark results for the dipole representation
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�(a) : weight=0.2, 4 bars (b) : weight=0.33, 20 barsFigure 9: The two best benhmark results for the Voronoi-bar representationthe other representations. The prefet 2-bars V-shape was even found onefor the 1� 2 antilever problem.Hene it seems that the additional omplexity in the elementary allelesof the Voronoi-bar representation does pay o�, at least on these benhmarkproblems.4.3 The 10� 1 antileverThe problem of the 10 � 1 antilever (disretized using a 100 � 10 regularmesh) proved to be diÆult for the bitarray representation as it raises an ad-ditional diÆulty: most of initial random strutures do not onnet the �xedboundary and the point where the loading is applied. Hene an alternateinitialization proedure is used, where the average weight of random stru-tures an be tuned (see [31℄ for details). Furthermore, the maximal numberof sites for eah individuals is inreased to 120, and the best results wereobtained with a population size of 120.Nevertheless, the dipole representation was unable to �nd satisfatorysolutions { in most ases, it simply ould never �nd a onneted solution,similarly to the bitarray representation.Figure 12 and 13 shows the most signi�ant results obtained using re-spetively the Voronoi and the Voronoi-bar representations.Again, a slight advantage an be seen for the Voronoi-bar representa-tion in the quality of the best solution. However, the advantage in solution17
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Figure 12: Optimal struture on the 100�10 mesh for 10�1 antilever platefor the Voronoi representation. Dlim = 12, number of ells = 105. weight= 0.479. CPU time = 14s/gen.
Figure 13: Optimal struture on the 100 � 10 mesh for 10 � 1 antileverplate for the Voronoi-bar representation. Dlim = 12, number of ells = 91.weight = 0.424. CPU time = 14s/gen.omplexity is not so lear than it was on the 1�2 benhmark. But a very in-teresting feature is the quasi-regularity of the Voronoi-bar solution: indeed,any mehanial engineer would build suh a struture by using the samepart struture four or �ve times before ending with some spei� part at thefurther end (think of how ranes are designed). But as the Voronoi-basedrepresentations do not have the ability to evolve modularity, suh partialsolutions have to be evolved six times. On-going work addresses this issueby introduing hierarhial representations based on the elementary Voronoirepresentations introdued in setion 3.4.4 Three-dimensional problemThis setion demonstrates that the Voronoi representation an indeed be ap-plied to represent three-dimensional objets. Beause the Voronoi diagramstheory is valid in any dimension, the extension of the representation de�nedin setion 3.1 to three dimensional objets is straightforward { note that thisis true for the dipole representation, too (setion 3.2), but that the bar rep-resentation (3.3) will require some work, as multiple elementary geometrialshapes should be designed (e.g. 3D bars of di�erent setions).The test problem is the 3D equivalent of the antilever benhmark prob-lem desribed in setion 2.1: The design domain is a quadrangle subset of19
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Figure 14: The design domain for the 3-dimensional antilever problem.IR3, the struture is �xed on a vertial plane, and a fore is applied in theenter of its opposite fae (see Figure 4.4). The problem is symmetrial withrespet to a vertial plane perpendiular to the �xed wall. Hene only halfof the domain is disretized, aording to a 16� 7� 10 mesh. Its left fae is�xed, and the loading is applied on the middle of the right fae.The �rst experiments presented here were performed only with the Voronoirepresentation (setion 3.1). As for large 2D domains (setion 4.3), the higheromplexity of the problem lead to modify the settings: the population size isagain set to 120 and the maximum number of Voronoi sites is also inreasedto 120.Figure 15 demonstrates that the algorithm was able to �nd some goodsolutions in . . . a few days of CPU time (3D FEM analyses are far more ostlythan 2D for the same mesh size). To the best of our knowledge, suh resultsare the �rst results of 3D TOD obtained using Evolutionary Computation.Moreover, it also stresses the ability of EAs to �nd multiple quasi-optimalsolutions to the same problem, some of them quite original indeed whenompared to the results of the homogenization method on the same problem.5 IFS representationThe Voronoi-based representations were some attempts to esape the diretenoding of disretized strutures using a prede�ned mesh. However, thebasi bloks that build the struture had to be designed by the programmer,and wrong hoies an bias the searh in a wrong diretion.20
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z(a) : weight=0.15178, 103 sites (b) : weight=0.166, 109 sitesFigure 15: Two results for the symmetrial three-dimensional problem usinga 16� 7� 10 mesh for half of the struture, with same onstraint (CPU time= 6mn/gen). The point of view is that of Figure 4.4, i.e. the struture is�xed on a vertial wall at the bak of the �gure (not represented).The following fratal-based representation is an attempt to go further inthe morphogeneti diretion: no assumption is made about what the buildingbloks of a struture ould be { but the searh spae for the genotype ishopefully rih enough so that a large number of di�erent strutures an beevolved.5.1 IFS TheoryAn IFS 
 = fF; (wn)n=1;::;Ng is a olletion of N funtions de�ned on aomplete metri spae (F; d). Let W be the Huthinson operator, de�ned onthe spae of subsets of F :8 K � F; W (K) = [n2[0;N ℄wn(K)If all wn funtions are ontrative (i.e. there exists a positive real numbers < 1 suh that d(w(x); w(y)) � s:d(x; y) for all (x; y) 2 F 2), the IFS isalled hyperboli, and there exists a unique set A, alled the attrator of theIFS, suh that W (A) = A.The uniqueness of the attrator is a result of the ontrative mapping�xed-point theorem for W , whih is ontrative aording to the Hausdor�distane de�ned by 21



dH(A;B) = max[maxx2A (miny2B d(x; y));maxy2B (minx2A d(x; y))℄From a omputational viewpoint, there are two known ways to omputethe attrator of an IFS:� Stohasti method (toss-oin): Let x0 be the �xed point of oneof the wi funtions. Build the sequene xn by xn+1 = wi(xn), i beingrandomly hosen in f1::Ng. Then Sn xn is an approximation of theattrator of 
 (the larger n, the more preise the approximation).� Deterministi method: From any kernel S0, build the sequene fSngof subsets by Sn+1 = W (Sn). When n goes to 1, Sn is an approxima-tion of the real attrator of 
.5.2 Evolutionary IFS identi�ationThe �rst attempts to evolve IFS using EAs dealt with the inverse problem:given a target shape A � F , �nd the IFS whose attrator is A.This problem an be formulated as an optimization problem: �nd the IFSwhose attrator minimizes the distane to the target shape A. As the funtionto be optimized is extremely omplex, some a priori restritive hypothesesare neessary. Usually, the searh spae is that of aÆne IFS, with a �xednumber of funtions: see [7, 55℄ for early omputational methods. Morereently, solutions based on Evolutionary Algorithms have been presentedfor aÆne IFS, i.e. IFS in whih all funtions are aÆne funtions [56, 23, 45℄.But aÆne IFS are a small subset of possible IFS, and some previous workof one of the authors [43℄ dealt with general non-aÆne IFS (alled MixedIFS) using GP, that allows to evolve any type of funtion. However, whereasassessing the ontrativity of aÆne funtions is straightforward, the ontra-tivity of general funtions de�ned as GP trees ould only be numeriallyheked a posteriori { and at a heavy omputational ost. This drawbakmotivated the very reent introdution of Polar IFS [19℄ in whih the fun-tions are sought (still using GP) in polar form around their �xed points:a simple ondition on the � funtions ensures the loal ontrativity of thefuntion around its �xed point. While this does not ensure the global on-trativity, the proportion of ontrative funtions among that lass of polarfuntions is muh larger than that of ontrative general GP trees - and the22



��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�(a) : weight=0.31 (b) : weight=0.43Figure 16: The two benhmark results for the IFS representationinverse problem an be solved more rapidly and aurately.Unfortunately, when the present work started, only the GP program toidentify mixed IFS was operational. Hene the �rst results presented in nextsetions using IFS representation for the TOD problem have been obtainedusing the mixed IFS GP-based program desribed in detail in [43℄.5.3 IFS representation for TOD: �rst resultsThe idea of shape representation using IFS is now straightforward: Theattrator of an IFS is a shape de�ned in the design domain. Hene the�tness of the IFS an be omputed using that shape as a struture, potentialsolution of the TOD.The attrator of a given IFS is omputed on the mesh that is used for theFE analyses, and the �tness is omputed as stated in setion 2.3. The same1 � 2 and 2 � 1 benhmark antilever problems than in setion 4 are used,and Figure 16 shows the best results obtained in 5 runs.First, the good news is that reasonable strutures were obtained. More-over, their shapes are indeed more \lae-like" than when using a Voronoi-based representation { and without the ost of desribing all small holes asin the bitarray representations.However, the results are not as good as the results obtained by Voronoirepresentations, and that appealed for further experiments on less simpleproblems: the IFS representation was used for the 10� 1 antilever problem23
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Figure 17: Optimal struture on the 100�10 mesh for 10�1 antilever platefor the IFS representation. Dlim = 12. weight = 0.58. CPU time = 15s/gen.of setion 4.3. The best feasible result (out of 10 independent runs) an beseen on Figure 17. Comparing this result to those presented on Figure 12 and13, it is lear that the optimal struture is heavier here. Note that a lighterstruture (0.55) that violates the onstraint on the maximal displaementvery lightly (12.17 vs 12) has also be obtained in one of the runs.These preliminary experiments raise some ritial issues:� The variane of the results was very high { some results were reallynot good at all. Suh high variane is a real problem in exploitationsituations, where it is mandatory that reasonable solutions are found atevery run. However, for design problems, it an beome an advantage,as one an hope to obtain very good solutions. It did not happen withthe benhmark problems presented here, maybe beause the (known)best solutions really are too simple.� The same adaptive penalty strategy was used here than for the Voronoi-based representations (see setion 2.3). However, whereas all runs ofVoronoi-based representations found feasible solutions, most runs usingthe IFS representation found slightly infeasible solutions.� the omputational time for deoding is muh larger for the IFS repre-sentation than for the Voronoi representation.� The inuene of mesh re�nement on the atual shape obtained by de-oding an IFS is not easy to guess. However, �rst experiments suggestthat di�erent meshes might result in quite di�erent shapes up to very�ne meshes.These remarks suggest that too many things remain unknown in the stru-ture of the IFS searh spae. Further experiments are needed, on di�erentproblems where the solution is not learly a simple objet { starting with24



the 10� 1 problem of setion 4.3, but also going to design problems outsideStrutural Mehanial, e.g. in Image Analysis domain. Another issue is theextension to three-dimensional problems. Whereas the theoretial extensionis straightforward, the omplexity of the omputation of the attrator of a3D IFS will inrease drastially.6 Disussion and onlusionThis paper has introdued new representations for the representation of ob-jets in the framework of Evolutionary Computation. These representationswere experimented with on some Design problems in Strutural Mehanis.Departing from the raw bitarray representation based on a �xed disretiza-tion of the design domain, representations based on the theory of Voronoidiagrams have been proposed, from the simple Voronoi representation to themore omplex dipole and Voronoi-bar representations.These representations are unstrutured, i.e. an individual is a variable-length unordered list of alleles. They are ompat, in the sense that theydon't require en extensive desription of the objet at hand on a (usuallyvery large) �xed set of alleles: Though the struture of a single allele in-reases when going from the Voronoi representation to the Voronoi-bar rep-resentation, all three representation implement self-adaptive omplexity ofthe solutions, i.e. the atual omplexity of the individuals is evolved by thealgorithm and does not have to be pre-de�ned by the user.These representations have been tried on simple test problems of Topo-logial Optimum Design. The results suggest that all three representationsan solve suh problems, and require roughly the same omputational e�ortfor the same quality of solution, with a slight advantage for the Voronoi-barrepresentation. However, when examining the omplexity of the solution,there is a lear advantage in using the Voronoi-bar representation, whosesolutions onsistently involve less alleles than both others. Note that thisprobably also explains the observed slight improvement in quality vs ompu-tation e�ort, as it is easier to �ne tune the solution when only few alleles areto be adjusted. However, it should be kept in mind that all 2D antileverproblems have truss-like optimal solutions onstruted from . . . bar-like el-ements. Further experiments on problems for whih the optimal solutionsdoes not exhibit suh harateristis should be arried on.25



Finally, the IFS representation was presented, a morphogeneti represen-tation in whih the struture is indiretly de�ned as the attrator of a set ofontrative mappings on the design domain. Suh representation does notmake any a priori supposition on the shape of building bloks for the solu-tion of the problem at hand. This should allow more omplex solutions tobe evolved without designing spei� alleles.Reasonable results were obtained on simple 2D TOD problems, but slightlyworse than those of any of the Voronoi-based representations. A possible rea-son for suh results is that the inrease of omplexity of the morphogenetiproess might only prove bene�ial for problems where the solution is alsoomplex { and further work will try to apply this representation to morediÆult problems, in order to assess for that hypothesis. Moreover, it alsomight be the ase that the lak of ausality (diret feed-bak from the me-hanial struture on the IFS) forbids any useful evolutionary proess, atleast with so few individuals and generations. Some experiments on highlyparallel systems with distributed populations of hundreds of thousands ofindividuals might help answering that question.Another ritial issue is the dependeny of the morphogeneti proess onthe mesh, that seems to be muh higher for IFS representations than for allVoronoi representations. Two possible answers will be investigated: by usingdi�erent unstrutured meshes during evolution, or by making the deodingproess smoother. First, by hanging the mesh at every generation, or byaveraging the �tness over a few meshes, it is hoped that only solutions thatare robust with respet to the mesh will survive suessive seletions. Se-ond, the numerial omputation of the attrator of an IFS �lls an elementwith material as soon as it is hit one by the toss-oin algorithm, whereassmoother deoding would be to onsider only the hard ore of the attratorrequiring a minimal number of suh hits before �lling it.In the present state of this researh, however, the Voronoi-bar representa-tion seems a good hoie when looking for representations of objets suitablefor evolutionary proesses, as witnessed by their use in this paper for evo-lutionary TOD: it ahieves a good ompromise between ompatness of thesolutions and eÆieny of searh for good solutions. However, whereas theextension of the Voronoi and dipole representations to three dimensions isstraightforward (see setion 4.4), that of the Voronoi-bar representation re-quires some more work: one will probably need plate and bars with di�erentross-setion shapes to be inluded in the elementary alleles. In that per-26



spetive, the IFS representation will also be tested on 3D omplex problems.It is lear that ompat expressive representations are a prerequisite tosuessful evolutionary-guided reativity [12℄). In that respet, the repre-sentations of objets proposed in that paper are a step toward more eÆientevolutionary design. However, as quoted in [37, 38℄, a key feature for reativedesign is the use of modularity, i.e. the ability to evolve sub-strutures and touse them as new building bloks. None of the proposed representations doesinlude high level onstruts, suh as the possibility to evolve symmetri, orre-usable sub-solutions. For instane, any mehanial engineer would designsolutions of the N � 1 antilever problem for large N by using many almostidential small truss-strutures again and again.In that diretion, some hierarhial representations for shapes have beenproposed already, suh as the Quad-tree representation [20℄. However quad-tree representation is not easy to evolve, as for instane standard tree rossoverdoes not preserve the loality of quad-tree disretization. Another possibleapproah ould be to hybridize both the Voronoi and some IFS-like repre-sentation: an IFS would be attahed to eah Voronoi site, and be used tode�ne the shape of the objet in the orresponding Voronoi ell (in a similarway that the angle and the width of a bar de�ne the shape of the stru-ture in the bar-representation of setion 3.3. The global evolution of suha representation might prove too time-onsuming, but ould be replaed bysome two-steps evolution, in the line of [49℄: �rst, identify the IFS adaptedto the problem at hand; then use them as a (�xed) library where Voronoisites would be allowed to hoose their internal shape.Anyway, some oupling between a hierarhial approah to omplex repre-sentations, and one of the unstrutured representations presented here seemto be a possible route to the Graal of Evolutionary Design, the automatidesign of highly omplex strutures. It is hoped that the work in this paperatually brings some building bloks to suh higher level morphogeneti rep-resentation { while already allowing the diret omputation of solutions tosimple problems out of reah for \standard" extensive representations.AknowledgementsThe authors wish to thank the anonymous reviewers, whose detailed sugges-tions helped to improve the readability of the paper.27
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