

Multi-Objective **Evolutionary Optimization**

Alberto TONDA

Permanent Researcher (CR) UMR MIA, INRAe and Université Paris-Saclay Équipe EKINOCS 75013, Paris <u>alberto.tonda@inrae.fr</u>

Outline

- Multi-objective problems
- Multi-objective optimization
- Real-world examples
- NSGA-II
- Other approaches
- **Many**-objective optimization...?

Airplane tickets

Multi-Objective Problems Airplane tickets Flight duration (h) \mathfrak{i} \bigotimes \approx \bigotimes \bigotimes \mathfrak{S} \bigotimes \mathfrak{i} \bigotimes \mathfrak{s} \mathfrak{s} \bigotimes \approx \bigotimes

Airplane tickets

• Pareto-optimality x : solution $f_i(x)$: fitness $\nexists x': f_i(x') \ge f_i(x) \forall i$

• Pareto for *minimizing* or *maximizing*

- Real-world problems are often MO
 - Often with A LOT of conflicting objectives
 - Plane tickets: seat position, airline, airport...
 - Production: energy, quality, price, ...
 - Distribution: speed, cost, employment, ...

Multi-Objective Optimization

Single-objective optimization
 – Find ONE best solution

- Multi-objective optimization
 - Find <u>THE PARETO FRONT</u> (hard, maybe impossible)
 - Find as many non-dominated points as possible
 - Finding one point on the Pareto front is easy...
 - ...but finding many is not!

Multi-Objective Optimization

- Techniques to deal with MO
 - Assign weights to objectives, adjust weights
 - Some only work on (differential) equations
 - Multi-objective EAs (state-of-the-art)

- EAs are particularly suited
 - Population of solutions -> lots of points!
 - Black-box optimization -> easy to adopt!

Multi-Objective Optimization

- MOEAs (general idea)
 - Create population, evaluate
 - Create offspring
 - Find Pareto front
 - Remove individuals in Pareto front
 - Recompute Pareto front (iterate)
 - Obtain list of fronts
 - Kill individuals starting from worst fronts

Multi-Objective Problems Airplane tickets Flight duration (h) \bigotimes \mathfrak{X} \bigotimes

Example: Influence in Social Networks

- Advertise products in social networks
 - Use influencers (lots of followers)
 - How to choose influencers? (following overlap)
 - Spend as little as possible

- Multi-objective problem
 Minimize influencers
 - Maximize influence

Example: Influence in Social Networks

- Genome (candidate solution)
 - Set of nodes taken from a graph
 - Vector of integers of different size
 - String of bits (1=influencer, 0=not)
- Fitness function
 - (Max) influence spread in the network
 - (Min) number of nodes/influencers

Example: Ecosystem Services

- Optimize land use in agricultural regions
 - Percentage of land assigned to each use
 - Animal feed, crops, forests (carbon sequestration)
- Multi-objective problem
 - Maximize animal energy production
 - Maximize crop production
 - Maximize carbon sequestration

Example: Ecosystem Services

- Genome (candidate solution)
 - Percentage of land assigned to each task
 - For each region! (~1500 variables for "massive central")
- Fitness function
 - Model for animal energy production
 - Model for crop production
 - Model for carbon sequestration

(Non-Sorting Genetic Algorithm 2)

- Crowding can be an issue
 - Too many points too close together on the PF
 - Not really interesting...

- Crowding can be an issue
 - Ideally, you would like to explore the PF
 - Distribute points "evenly" on the PF

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

- NSGA-II (Non-Sorting Genetic Algorithm 2)
 - Crowding distance is a volume for 3 objectives, hypervolume for 4+ objectives
 - For 2 or 3 objectives, it works *really well*
- Limitations
 - The more objectives, the less effective
 - In 10+ dimensions, all points have similar crowding distances

MANY-Objective Optimization...?

- Recent research topic (2016+)
 - What do we do for 10+ objectives?
 - There's no good answer (yet)

- Clever ideas
 - Perform dimensionality reduction (NSGA-II+PCA)
 - Use individuals as references (NSGA-III)

