
Alberto TONDA
Permanent Researcher (CR)

UMR MIAPS, INRAe and Université Paris-Saclay
Équipe EKINOCS

91120, Palaiseau
alberto.tonda@inrae.fr

• Complex Genomes
• Genetic Programming
• Linear Genetic Programming
• Examples
• Evolve Everything!

• Nature and EAs

• Nature

Genotype Phenotype Fitness

ENVIRONMENT

• Genetic Algorithms/Evolution Strategies…

0 1 1 0 … 1I

Genotype Phenotype Fitness

!(#)
0.2 1.1 3.2 0.6 … 1.5I

NO
ENVIRONMENT

• Genetic Programming
– John Koza, 1992
– Extend GA/ES to anything
– Focus on computer programs

• Internal representation
– Binary trees
– Specialized mutations and crossovers

• General idea: EVOLVE ALL THE THINGS
– If you can describe a candidate solution to a problem…
– …and variations (e.g. mutations, crossovers)…
– …and you can define a fitness function…
– …EAs can explore the space of all possible solutions!

• It worked for life on Earth!
– DNA is pretty complicated
– Genome doesn’t need to be just numbers

*

-
0.2 x

ln

*

10 y

Operators: +, -, *, /, ln…

Terminals: reals, ints, vars, …

! ", $ = 0.2 − " ∗ ln(10 ∗ $)

*

-
0.2 /

x +

ln

*

f(x) = [0.2 – (x/42)] * ln(x)

Genotype Phenotype Fitness

40 2

x

y

x

y

1 x

Fitness = ∑"#$% abs(f(xi) –g(xi))

*

-
0.2 /

x +

ln

*

f(x) = [0.2 – (x/42)] * ln(x)

Genotype 1 Phenotype

40 2

x

y

1 x

Genotype 2

*

-
0.2 /

x 42

ln

x

*

-
0.2 x

ln

*

10 y

Operators: +, -, *, /, ln…

Terminals: reals, ints, vars, …

! ", $ = 0.2 − " ∗ ln(10 ∗ $)

α

β

δ ε

γ

ζ

η θ

Operators: α, β, γ, ζ, λ, π, ς, …

Terminals: δ, ε, η, θ, ρ, σ, τ, …

Genotype Phenotype Fitness

α

β

δ ε

γ

ζ

η θ

!(#)
I	=	α(
β(δ, ε),	

γ(ζ(η, θ))
)

• Mutation(s)

α

β

δ ε

γ

ζ

η θ

• Mutation(s)

α

β

δ ε

γ

ζ

η θ

POINT MUTATION

• Mutation(s)

α

β

δ ε

γ

λ
η θ

POINT MUTATION

• Mutation(s)

α

β

δ ε

γ

ζ

η θ

SUBTREE MUTATION

• Mutation(s)

α

β

δ ε

γ

π

ρ ς

σ τ

SUBTREE MUTATION

• Mutation(s)

α

β

δ ε

γ

ζ

η θ

HOIST MUTATION

• Mutation(s)

α

β

δ ε

γ

θ

HOIST MUTATION

• Crossover(s)

• Crossover(s)

• Crossover(s)

• Issues
– Bloating
– Introns
– Destructive recombination

• Over the generations
– Individuals tend to increase in size…
– …with no benefit on their fitness!

• Solutions
– Penalize large trees (penalty coefficient)
– Fitness hole (randomly, tournament selection on

other criteria, such as size or diversity)
– Simplify (problem-dependent)

• “Useless” parts inside individuals
– Non-coding genome (y+1-1/1…)
– Increase in size

• Are they REALLY useless?
– Introns exist in natural DNA
– “Protect” important code

from destructive
recombination

• Issue with crossovers
– Important information is destroyed
– How to choose a proper cut point?

• Heuristic crossover (problem-dependent)
• Ignore the problem (hope introns solve it)

• What are we doing?
• Blending optimization and machine learning?
– If your candidate solution is a model…
– …then you are (arguably) doing machine learning!

• Terminology is still
uncertain

• Evolving linear graphs
• Used for evolving computer programs
• Backward/forward arcs interpreted as jumps

ADD AX, BX

JMP

JLE

MUL AX, 4

SUB CX, 20

label1: ADD AX, BX

JLE label2

MUL AX, 4

label2: SUB CX, 20

JMP label1

• Evolving linear graphs
• Used for evolving computer programs
• Backward/forward arcs interpreted as jumps

print(a)

while a < 100

If a > b

a -= 1

a += 1

while a < 100 :
print(a)
if a > b :

a += 1
else :

a -= 1

• Real-time strategy (RTS)
– Planet Wars (Google)
– StarCraft
– Student StarCraft AI Tournament

• Trade-off
– ANNs are better
– You can read GP trees

• TPOT
– https://epistasislab.github.io/tpot/

• Design of Artificial Neural Networks (ANNs)
– Most are built by copying literature
– Trial and error, human-designed
– But can we find something better?

• Neuroevolution!
– The concept exists since ~1995
– Wider adoption since 2016, with success of Deep

Learning (improved ANNs)

• Generate sequences of inputs to find bugs
– Motorola tests mobile phones
– Facebook tests graphical user interfaces (Sapienz)

• Fitness landscape seems impossible!
– Few points with bugs, everything else is 0
– Smoothing landscape with domain knowledge
– Reward individuals that explore functions

• Automatic correction of software bugs
• Individual: series of code modifications

• Fitness
– A series of test cases
– They still have to work Comment line 52

Swap lines 3 and 22
Change variables lines 42 and 11
…

• But does it really work?
– Aren’t EAs introducing other bugs?
– Aren’t HUMANS introducing other bugs?
– In the end, you just need to be as good as the

average programmer, and you save time
– Still experimental

Langdon, William B. Genetically Improved Software

Justyna Petke and Saemundur O. Haraldsson and Mark Harman and William B.
Langdon and David R. White and John R. Woodward. Genetic Improvement of
Software: a Comprehensive Survey

• Design of antennas for satellite ST5 (2006)
• Lots of constraints: weight, size, efficiency…
• Genome
– Forward (length, radius)
– Rotate_x (angle)
– Rotate_y (angle)
– Rotate_z (angle)

• It worked!

https://www.youtube.com/watch?v=iNL5-0_T1D0

https://www.youtube.com/watch?v=iNL5-0_T1D0

