An Introduction to Bayesian Networks

Alberto Tonda, PhD Researcher at Team MALICES

Objective

Basic understanding of what **Bayesian Networks** are, and where they can be applied. **Example** from food science.

Outline

- Introduction
- Basic concepts of probability
- Bayesian Networks
- A case study: Camembert cheese ripening

Link to slides: http://goo.gl/bvwM60

- Why should you care about Bayesian Networks (BNs)?
 - Probabilistic models
 - Understandable by humans
 - Built from data and human expertise
 - Include both quantitative and qualitative variables

- BNs are **probabilistic models**
 - Instead of a unique response...
 - ...you get the probability of an outcome
 - They can work with *incomplete* information!

- BNs can be **understood by humans**
 - Graphical models
 - Arcs representing relationships between variables
 - Other models are "black boxes" (e.g., NN)

Input
$$\rightarrow$$
 BLACK BOX \rightarrow Output

- BNs can be **built automatically** or **manually**
 - By algorithms, starting from experiments
 - By experts, using their knowledge
 - Both: built by algorithm, validated by expert

- Qualitative and quantitative variables
 - In the same network!
 - Link the *flavor* to the *concentration* in microbes
 - Extremely useful for *complex systems*

Qualitative	Quantitative	
Like Easy	23,406 4.3	
Awkward _{Slow}	2m32s	
Squirrel	76.8%	
Efficient	\$45,849	
Ambiguous How	1,127 3.76%	
Confusing	€12.75	

- Applications, applications everywhere
 - Classification (anti-spam filters, diagnostics, ...)
 - Modeling (simulations, predictions, modeling of players, ...)
 - Engineering, gaming, law, medicine, risk analysis, finance, computational biology, bio-informatics...

- Probabilities for discrete events
 - Rolling a die! (result d)
 - Probabilities for (1 or 2), (3 or 4), (5 or 6)?

- Probabilities for discrete events
 - Rolling a die! (result d)
 - Probabilities for (1 or 2), (3 or 4), (5 or 6)?

- Probabilities for discrete events
 - Rolling a die! (result d)
 - Probabilities for (1 or 2), (3 or 4), (5 or 6)?

- Conditional probability
 - Probability for any of the 3 events is 33%
 - Would that change with more information?

Event	Probability
d=1or2	0.33
d=3or4	0.33
d=5or6	0.33

- Conditional probability
 - For example, what if we knew that the result d was bigger than 3?

Event	Probability
d=1or2	??
d=3or4	??
d=5or6	??

- Conditional probability
 - For example, what if we knew that the result d was bigger than 3?

P(d=1or2|d>3) = 0 P(d=3or4|d>3) = 0.33 P(d=5or6|d>3) = 0.66

Event	Probability
d=1or2	0
d=3or4	0.33
d=5or6	0.66

- Combining P
 - Yeast concentration (Y)
 - Bact. Concentration (B)
 - Aroma (A)

• Parameters $-2 \times 2 \times 3$

$$\sum_{i,j \ k} P(Y = i, B = j, A = k) = 1$$

Yeast (Y)	Bacteria (B)	Aroma (A)	Ρ
Weak	Weak	Strawberry	0.2
Weak	Weak	Camembert	0.05
Weak	Weak	Ammonia	0.005
Weak	High	Strawberry	0.005
Weak	High	Camembert	0.05
Weak	High	Ammonia	0.2
High	Weak	Strawberry	0.05
High	Weak	Camembert	0.1
High	Weak	Ammonia	0.005
High	High	Strawberry	0.005
High	High	Camembert	0.1
High	High	Ammonia	0.23

• P(Y,B**|A=Strawberry**)

Yeast (Y)	Bacteria (B)	Aroma (A)	Ρ
Weak	Weak	Strawberry	0.2
		Camenderi	0.05
			0.00
Weak	Weak	Ammonia	0.005
Weak	High	Strawberry	0.005
Weak	Lligh	Camembert	0.05
			~ ~
Weak	High	Ammonia	0.2
High	Weak	Strawberry	0.05
High -	ууеак	Camembert	Ū.1
High	VVCan	Ammonia	0.005
High	High	Strawberry	0.005
Liele	Lliele	Concernation	0.1
111811	111611	Cumembert	0.1
High	High	Ammonia	0.23

Aroma (A)

Strawberry

Camembert

Strawberry

Comombort

Ammonia

Strawberry

Camembert

Апппоша

Strawberry

Cumennoert

Ρ

0.2

0.05

0.005

0.005

0.00

 $\cap \mathbf{i}$

0.05

U.L

0.005

0.005

A 1

U. I

 Λ $\gamma\gamma$

• P(Y,B**A=Strawberry**) Yeast (Y) **Bacteria** (B) Weak Weak VVCak VVCan Weak **vv**Can Weak High Weak I liah ייסייי Liah Maak High Weak Y Ρ B підп vveak 0.2 / 0.26 = 0.769 Weak Weak пвп VVCan Weak High 0.005 / 0.26 = 0.019 High High 0.05 / 0.26 = 0.193 High Weak High 11:---111811 0.005 / 0.26 = 0.019 High High ما م زا ا 11:~h ייסייי ייסייי

• Bayes' Theorem

$$P(H \mid E) = \frac{P(E \mid H) \cdot P(H)}{P(E)}$$

- Syntax
 - H = Hypothesis
 - E = Evidence
- Meaning: belief in H before and after taking into account E
- In many practical cases $P(H|E) \propto P(E|H) \cdot P(H)$

- Bayes' Theorem: Example*
 - Three production machines A1, A2, A3
 - Probability of having a piece produced by An
 - P(A1) = 0.2 ; P(A2) = 0.3; P(A3) = 0.5
 - Probability of a defective piece
 - P(D|A1) = 0.05; P(D|A2) = 0.03; P(D|A3) = 0.01
 - What is the probability of P(A3|D)?

- Bayes' Theorem: Example*
 - Three production machines A1, A2, A3
 - Probability of having a piece produced by An
 - P(A1) = 0.2 ; P(A2) = 0.3; P(A3) = 0.5
 - Probability of a defective piece
 - P(D|A1) = 0.05; P(D|A2) = 0.03; P(D|A3) = 0.01
 - What is the probability of P(A3|D)?

$$P(H \mid E) = \frac{P(E \mid H) \cdot P(H)}{P(E)}$$

Bayes' Theorem: Example*

 $P(H \mid E)$

- Three production machines A1, A2, A3
- Probability of having a piece produced by An
 - P(A1) = 0.2 ; P(A2) = 0.3, P(A3) = 0.5
- Probability of a defective piece
 - P(D|A1) = 0.05; P(D|A2) = 0.03(P(D|A3) = 0.01)
- What is the probability of P(A3|D)?

 $P(E \mid$

- Bayes' Theorem: Example*
 - Three production machines A1, A2, A3
 - Probability of having a piece produced by An

• P(A1) = 0.2 ; P(A2) = 0.3, P(A3) = 0.5

Probability of a defective piece

• P(D|A1) = 0.05; P(D|A2) = 0.03; P(D|A3) = 0.01

- Bayes' Theorem: Example*
 - Three production machines A1, A2, A3
 - Probability of having a piece produced by An
 - P(A1) = 0.2 ; P(A2) = 0.3, P(A3) = 0.5
 - Probability of a defective piece
 - P(D|A1) = 0.05; P(D|A2) = 0.03(P(D|A3) = 0.01)

This does not imply that D depends on A; just that we know or *suspect* a connection

B has multiple possible causes, in this case E and A.

Bayesian Networks: Inference

Parameters

Bayesian Networks: Inference

Bayesian Networks: Dynamic BNs

- Evolution in time
 - Some variables at time t, others a time t+1
 - Values most probable for t+1 can be "re-used"
 - With "re-used" values, obtain new predictions
 - In this way, a dynamic is produced

Bayesian Networks: and more!

- Several other interesting properties
 - Can be retrained with new evidence (anti-spam)
 - ...both automatically and manually
 - New nodes can be added to existing structures
 - …and much more!

- 41 days of ripening
 - 15 days in ripening room
 - 26 days packed, at 4°C

• 112 studies as of October 2009

- Complex system (ecosystem, bioreactor)
- Research lines and models
 - Development of microbes
 - Link microbial activity sensorial properties
 - Physical-chemical phenomena
 - Ripening control through expert systems

No global view of the process!

- Camembert cheese ripening process
 - Quantitative variables: pH, temperature, ...
 - Qualitative variables: odor, under-rind, coat, ...
 - Data from heterogeneous sources
 - Dynamic BN (DBN): t -> t+1

- Quantitative variables
 - Discretize into intervals
 - Meaningful values for the intervals!

- Qualitative variables
 - Ask experts
 - Link their judgment to interval of values
 - Different experts might have different judgment!

- Ripening
- 4 distinct phases
- Expert knowledge

- 1. Evolution of humidity
- Development of under-rind + "champignon" aroma
- 3. Development of crust + creamy consistency
- 4. "Ammonia" aroma + brown color on crust

• Final result

- Experimental data
 - Measurable quantities (pH, T, Ia, ...)
 - From continuous to discrete values
 - Choose appropriate discretization

Evolution des pH au cours de l'affinage surface A

Microbes and chemical components

• Existing models

• Final result

• Finally, link the two parts!

Expert knowledge was prominently used

- Now, it's time to test the model!
 - Set initial values T(0), Gc(0), ..., Km(0)
 - Temperature is set from outside
 - All other values are re-injected (DBN)
 - We observe the final phase prediction

 Compare model with experimental data, for three settings (8°C, 12°C, 16°C)

Conclusions

- BNs are useful when
 - Quantitative and qualitative data in one model
 - Some relationships are not completely known
 - Data from heterogeneous sources
 - Need to add non-coded expert knowledge inside the model

Conclusions

- Cases where BNs might not be that useful
 - Only quantitative variables
 - Need for deterministic results
 - Well known phenomena

QUESTIONS?

Références

Les Réseaux Bayésiens

P. Naïm, P.H. Wuillemin, Ph. Leray, O. Pourret, A. Becker (Eyrolles).

Probabilistic reasoning in Intelligent Systems : Networks of plausible inference J. Pearl (Morgan Kaufman).

An introduction to Bayesian Networks F. Jensen (Springer Verlag).

Probabilistic Networks and Expert Systems R.G. Cowell & al. (Springer Verlag)

Learning Bayesian Networks R. Neapolitan (Prenctice Hall)

Learning in Graphical Models - Jordan M.I. ed. (Kluwer)

Expert knowledge integration to model complex food processes. Application on the camembert cheese ripening process (Elsevier, 2011) http://www.sciencedirect.com/science/article/pii/S0957417411004763