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Objective 

Basic understanding of what Bayesian Networks 
are, and where they can be applied.  

Example from food science. 
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Outline 

• Introduction 

• Basic concepts of probability 

• Bayesian Networks 

• A case study: Camembert cheese ripening 

 

Link to slides: http://goo.gl/bvwM6O 



Introduction 

• Why should you care about Bayesian 
Networks (BNs)? 

– Probabilistic models 

– Understandable by humans 

– Built from data and human expertise 

– Include both quantitative and qualitative variables 



Introduction 

• BNs are probabilistic models 

– Instead of a unique response… 

– …you get the probability of an outcome 

– They can work with incomplete information! 



Introduction 

• BNs can be understood by humans 

– Graphical models 

– Arcs representing relationships between variables 

– Other models are “black boxes” (e.g., NN) 



Introduction 

• BNs can be built automatically or manually 

– By algorithms, starting from experiments 

– By experts, using their knowledge 

– Both: built by algorithm, validated by expert 



Introduction 

• Qualitative and quantitative variables 

– In the same network! 

– Link the flavor to the concentration in microbes 

– Extremely useful for complex systems 

 



Introduction 

• Applications, applications everywhere 

– Classification (anti-spam filters, diagnostics, …) 

– Modeling (simulations, predictions, modeling of 
players, …) 

– Engineering, gaming, law, medicine, risk analysis, 
finance, computational biology, bio-informatics… 

 

 



Basic concepts of probability 

• Probabilities for discrete events 

– Rolling a die! (result d) 

– Probabilities for (1 or 2), (3 or 4), (5 or 6)? 
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Basic concepts of probability 

• Probabilities for discrete events 

– Rolling a die! (result d) 

– Probabilities for (1 or 2), (3 or 4), (5 or 6)? 

P(d=1or2) 
2/6 -> 1/3 

P(d=3or4) 
2/6 -> 1/3 

P(d=5or6) 
2/6 -> 1/3 

P(d=1or2) + P(d=3or4) + P(d=5or6) = 1 



Basic concepts of probability 

• Conditional probability 

– Probability for any of the 3 events is 33% 

– Would that change with more information? 

Event Probability 

d=1or2 0.33 

d=3or4 0.33 

d=5or6 0.33 



Basic concepts of probability 

• Conditional probability 

– For example, what if we knew that the result d 
was bigger than 3? 

Event Probability 

d=1or2 ?? 

d=3or4 ?? 

d=5or6 ?? 



Basic concepts of probability 

• Conditional probability 

– For example, what if we knew that the result d 
was bigger than 3? 

Event Probability 

d=1or2 0 

d=3or4 0.33 

d=5or6 0.66 

P(d=1or2|d>3) = 0 
P(d=3or4|d>3) = 0.33 
P(d=5or6|d>3) = 0.66 



Yeast (Y) Bacteria (B) Aroma (A) P 

Weak Weak Strawberry 0.2 

Weak Weak Camembert 0.05 

Weak Weak Ammonia 0.005 

Weak High Strawberry 0.005 

Weak High Camembert 0.05 

Weak High Ammonia 0.2 

High Weak Strawberry 0.05 

High Weak Camembert 0.1 

High Weak Ammonia 0.005 

High High Strawberry 0.005 

High High Camembert 0.1 

High High Ammonia 0.23 

Basic concepts of probability 

• Combining P 

– Yeast concentration (Y) 

– Bact. Concentration (B) 

– Aroma (A) 

 

• Parameters 

– 2 x 2 x 3 

 
 𝑃 𝑌 = 𝑖, 𝐵 = 𝑗, 𝐴 = 𝑘 = 1

𝑖,𝑗 𝑘

 



Yeast (Y) Bacteria (B) Aroma (A) P 

Weak Weak Strawberry 0.2 

Weak Weak Camembert 0.05 

Weak Weak Ammonia 0.005 

Weak High Strawberry 0.005 

Weak High Camembert 0.05 

Weak High Ammonia 0.2 

High Weak Strawberry 0.05 

High Weak Camembert 0.1 

High Weak Ammonia 0.005 

High High Strawberry 0.005 

High High Camembert 0.1 

High High Ammonia 0.23 

Basic concepts of probability 

• P(Y,B|A=Strawberry) 



Yeast (Y) Bacteria (B) Aroma (A) P 

Weak Weak Strawberry 0.2 

Weak Weak Camembert 0.05 

Weak Weak Ammonia 0.005 

Weak High Strawberry 0.005 

Weak High Camembert 0.05 

Weak High Ammonia 0.2 

High Weak Strawberry 0.05 

High Weak Camembert 0.1 

High Weak Ammonia 0.005 

High High Strawberry 0.005 

High High Camembert 0.1 

High High Ammonia 0.23 

Basic concepts of probability 

• P(Y,B|A=Strawberry) 

Y B P 

Weak Weak 0.2 / 0.26 = 0.769 

Weak High 0.005 / 0.26 = 0.019 

High Weak 0.05 / 0.26 = 0.193 

High High 0.005 / 0.26 = 0.019 



Basic concepts of probability 

• Bayes’ Theorem 
 
 

• Syntax 
– H = Hypothesis 
– E = Evidence 

 

• Meaning: belief in H before and after taking into 
account E 

• In many practical cases 𝑃(𝐻|𝐸) ∝ 𝑃(𝐸|𝐻) ∙ 𝑃(𝐻) 
 



Basic concepts of probability 

• Bayes’ Theorem: Example* 

– Three production machines A1, A2, A3 

– Probability of having a piece produced by An 

• P(A1) = 0.2 ; P(A2) = 0.3; P(A3) = 0.5 

– Probability of a defective piece 

• P(D|A1) = 0.05; P(D|A2) = 0.03; P(D|A3) = 0.01 

– What is the probability of P(A3|D)? 

*from Wikipedia 
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Basic concepts of probability 

• Bayes’ Theorem: Example* 

– Three production machines A1, A2, A3 

– Probability of having a piece produced by An 

• P(A1) = 0.2 ; P(A2) = 0.3; P(A3) = 0.5 

– Probability of a defective piece 

• P(D|A1) = 0.05; P(D|A2) = 0.03; P(D|A3) = 0.01 

– What is the probability of P(A3|D)? 

*from Wikipedia 

P(D) =  P(D|A1) * P(A1) + 
 P(D|A2) * P(A2) + 
 P(D|A3) * P(A3) = 
 0.024 

= 
0.01 ∗0.5

0.024
= 0.21 
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Nodes represent 
model Variables 

Arcs represent 
relationships 

between Variables 

P(D=d|A=a) 



Bayesian Networks 
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This does not imply 
that D depends on A; 
just that we know or 
suspect a connection 



Bayesian Networks 
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B has multiple 
possible causes, in 
this case E and A. 



Bayesian Networks 
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A might be the cause 
of B and D 



Bayesian Networks 
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P(A=a1) = 0.99 
P(A=a2) = 0.01 



Bayesian Networks 
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P(D=d1|A=a1) = 0.8 
P(D=d2|A=a1) = 0.2 
P(D=d1|A=a2) = 0.7 
P(D=d2|A=a1) = 0.3 



Bayesian Networks 
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P(B=b1|A=a1,E=e1) = 0.5 
P(B=b2|A=a1,E=e1) = 0.5 
P(B=b1|A=a1,E=e2) = 0.9 
P(B=b2|A=a1,E=e2) = 0.1 
P(B=b1|A=a2,E=e1) = 0.4 
P(B=b2|A=a2,E=e1) = 0.6 
P(B=b1|A=a2,E=e2) = 0.2 
P(B=b2|A=a2,E=e2) = 0.8 



Bayesian Networks 

E 

B 

A 

C 

D 

Path of causality. 
Arrows indicate 
how information 
propagates. 
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A=a1 E=e2 

C=? 

P(B=b1|A=a1,E=e1) = 0.5 
P(B=b2|A=a1,E=e1) = 0.5 
P(B=b1|A=a1,E=e2) = 0.9 
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Bayesian Networks: Inference 
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A=a1 E=e2 

P(C=c1|B=b1) = 0.3 
P(C=c2|B=b1) = 0.7 
P(C=c1|B=b2) = 0.5 
P(C=c2|B=b2) = 0.5 

B=b1 (p=0.9) 
B=b2 (p=0.1) 



Bayesian Networks: Inference 
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A=a1 E=e2 

B=b1 (p=0.9) 
B=b2 (p=0.1) 

P(C=c1) -> P(C=c1|B=b1) * P(B=b1) +   
        P(C=c1|B=b2) * P(B=b2) 
P(C=c2) -> P(C=c2|B=b1) * P(B=b1) +  
        P(C=c2|B=b2) * P(B=b2) 



P(C=c1|B=b1) = 0.3 
P(C=c2|B=b1) = 0.7 
P(C=c1|B=b2) = 0.5 
P(C=c2|B=b2) = 0.5 

Bayesian Networks: Inference 
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A=a1 E=e2 

B=b1 (p=0.9) 
B=b2 (p=0.1) 

C=c1 (p=0.3*0.9 + 0.5*0.1=0.32) 
C=c2 (p=0.7*0.9 + 0.5*0.1=0.68) 



Bayesian Networks: Dynamic BNs 

• Evolution in time 

– Some variables at time t, others a time t+1 

– Values most probable for t+1 can be “re-used” 

– With “re-used” values, obtain new predictions 

– In this way, a dynamic is produced 

A(t) A(t+1) 



Bayesian Networks: and more! 

• Several other interesting properties 

– Can be retrained with new evidence (anti-spam) 

– …both automatically and manually 

– New nodes can be added to existing structures 

– …and much more! 



Case study: Camembert 

• 41 days of ripening 

– 15 days in ripening room 

– 26 days packed, at 4°C  

• 112 studies as of October 2009 



Case study: Camembert 

• Complex system (ecosystem, bioreactor) 

• Research lines and models 

– Development of microbes 

– Link microbial activity - sensorial properties 

– Physical-chemical phenomena 

– Ripening control through expert systems 

 

• No global view of the process! 



Case study: Camembert 

• Camembert cheese ripening process 

– Quantitative variables: pH, temperature, … 

– Qualitative variables: odor, under-rind, coat, … 

– Data from heterogeneous sources 

– Dynamic BN (DBN): t -> t+1 



Case study: Camembert 

• Quantitative variables 

– Discretize into intervals 

– Meaningful values for the intervals! 



Case study: Camembert 

• Qualitative variables 

– Ask experts 

– Link their judgment to interval of values 

– Different experts might have different judgment! 



Case study: Camembert 



Case study: Camembert 
Quantitative variables 

(current time ->  
next time) 



Case study: Camembert 

Microbes 



Case study: Camembert 

Chemical components 



Case study: Camembert 

Physical/chemical 
measurements 



Case study: Camembert 

Qualitative variables 



Case study: Camembert 

Sensory evaluation 



Case study: Camembert 

Expert Knowledge 



Case study: Camembert 

• Ripening  

• 4 distinct phases 

• Expert knowledge 

Day 1 
Day ~15 

Day  >30 



Case study: Camembert 

1. Evolution of humidity 

2. Development of under-rind +  
“champignon” aroma 

3. Development of crust + creamy consistency 

4. “Ammonia” aroma + brown color on crust 

 
Day 1 

Day ~15 
Day  >30 



Case study: Camembert 

Sensory criteria 

Evaluation protocol 

Symbolic scale 



Case study: Camembert 

• Final result 



Case study: Camembert 

• Experimental data 

– Measurable quantities (pH, T, la, …) 

– From continuous to discrete values 

– Choose appropriate discretization 



Case study: Camembert 

• pH 



Case study: Camembert 

• Microbes and chemical components 



Case study: Camembert 

• Existing models 



Case study: Camembert 

• Final result 



Case study: Camembert 

• Finally, link the two parts! 



Case study: Camembert 

• Expert knowledge was prominently used 

Expert knowledge + data 



Case study: Camembert 



Case study: Camembert 

• Now, it’s time to test the model! 

– Set initial values T(0), Gc(0), …, Km(0) 

– Temperature is set from outside 

– All other values are re-injected (DBN) 

– We observe the final phase prediction 



Case study: Camembert 

• Compare model with experimental data, for 
three settings (8°C, 12°C, 16°C) 



Case study: Camembert 



Conclusions 

• BNs are useful when 

– Quantitative and qualitative data in one model 

– Some relationships are not completely known 

– Data from heterogeneous sources 

– Need to add non-coded expert knowledge inside 
the model 



Conclusions 

• Cases where BNs might not be that useful 

– Only quantitative variables 

– Need for deterministic results 

– Well known phenomena 



QUESTIONS? 



Expert knowledge integration to model complex food processes. 
Application on the camembert cheese ripening process (Elsevier, 2011) 

http://www.sciencedirect.com/science/article/pii/S0957417411004763 


